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Spin-orbital effect on the polariton state in traps
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I discuss the similitude and differences in spin-orbital effects for electrons in quantum wells with Rashba
coupling and for polaritons in semiconductor microcavities with transverse-electric–transverse-magnetic (TE-
TM) splitting. In contrast to the case of electrons, the ground state of polaritons in the trap can be nondegenerate
and can possess a specific polarization structure. For the case of an azimuthally symmetric trap and sufficiently
strong spin-orbital coupling, the ground state is either a radial or an azimuthal vortex, depending on the sign of
the coupling constant. The effect is strongly enhanced for polaritons trapped in a ring, where even weak TE-TM
splitting results in the formation of vorticity and definite polarization of the ground state. The Hamiltonian for
quasi-one-dimensional motion of polaritons in the ring is derived, and it is shown that the dispersion of polaritons
depends qualitatively on the curvature of the ring.
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I. INTRODUCTION

Rashba spin-orbital coupling (SOC) [1,2] and the discov-
ery of electric-dipole spin resonances [3,4] played a pivotal
role in our understanding of spin-dependent phenomena in
bulk semiconductors. The role of SOC is even more pro-
nounced in low-dimensional semiconductor structures, where
the Rashba [5,6] and the Dresselhaus [7] terms, which are
both linear in the wave vector in quantum wells, allow ef-
fective manipulation of electron spins by an electric field [8].
These discoveries have founded in part the study of spin-
tronics [9,10], have a huge influence on the development of
quantum computing with semiconductor quantum dots, and
have a pronounced impact on other areas of condensed matter
physics [11].

This influence resulted, in an especially evident and
straightforward manner, in the development of research and
applications of exciton-polariton condensates in semiconduc-
tor microcavities. The strong coupling of light with excitons
in semiconductors was first discussed in pioneering work
by Pekar in 1957 [12], which led him to the discovery of
additional light waves, and quanta of these waves are re-
ferred to as polaritons nowadays. Polaritons, due to their
excitonic component, are interacting quasiparticles, both with
phonons and with themselves, and they are sensitive to ex-
ternal fields, which in principle allows their manipulation in
the crystal. While efficient relaxation of polaritons in bulk
crystals can take place, Bose-Einstein condensation in its
original sense is not possible: The lower polariton branch is
photonlike at low energies, and it does not have a ground
state to condense to [13]. (The same argument is known
for blackbody radiation [14,15].) The situation is different
in two-dimensional (2D) semiconductor microcavities [16],
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where polariton condensates have been discovered [17–19]
and intensively investigated in recent years.

Semiconductor microcavities are made of a semiconductor
layer, that is a few micrometers thick, placed between two
distributed Bragg mirrors to hold a specific mode of light
trapped in the growth direction. Several semiconductor quan-
tum wells are also put in the antinodes of the light mode, in
order to provide strong coupling of the light with excitons
in quantum wells, resulting in the formation of lower and
upper polariton branches. As long as only the lower polariton
branch is of interest, the polariton states in a microcavity
are similar to the 2D electron states, in the sense that both
are described by two-component wave functions. On the one
hand, many polarization effects and phenomena observed and
discussed for the polariton system are to some extent copycats
of those for electrons in quantum wells, but on the other hand,
they frequently bring in new ideas related to higher space
and time coherence of polaritons and to the feasibility of
experimental observation and verification by optical means.
It is worth mentioning the optical spin Hall effect [20,21], the
polariton Berry-phase interferometer [22], and the polariton
Zitterbewegung [23,24] as some examples of effects that rely
heavily on the presence of strong coupling between orbital
and pseudospin dynamics in polariton transport (see also the
review in Ref. [25] and references therein for additional infor-
mation). The linear-in-the-wave-vector SOC can be regarded
as a vector potential with noncommuting components, or the
non-Abelian gauge field, and the related effects can be clearly
demonstrated by optical means [26].

More recently, there has been growing interest in appli-
cations of polariton condensates for analog and quantum
computation. The task of forming a well-defined two-level
system with polaritons is noticeably more complex than it
is for electrons in semiconductor low-dimensional quantum
systems. Even in the single-particle approximation the energy
levels of a trapped polariton are qualitatively different from
those of an electron. The main difference comes from the role
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played by the time-reversal symmetry (TRS). For electrons
the time-reversal operator Te is odd, T 2

e = −1, which ensures
at least double degeneracy of all electron levels in the case
when TRS is present. This fact, known as the Kramers the-
orem [27], allows one, in principle, to address a particular
Kramers doublet for qubit operations. In contrast, the po-
laritons are composite bosons and the time-reversal operator
for them, Tp, is even, T 2

p = 1, which does not guarantee the
degeneracy of energy levels.

The condition of TRS imposes limitations on possible
spin-orbit synthetic Hamiltonians [28] which can be obtained
for polaritons and limits substantially the analogy between
electron and polariton systems. This is a clear reflection of the
fact that polaritons are described by pseudospin, rather than
the real spin. In particular, the Rashba term cannot appear in
the polariton Hamiltonian with preserved TRS. Interestingly,
however, the so-called Rashba-Dresselhaus term, which cor-
responds to the case when the Rashba and the Dresselhaus
contributions have the same amplitude [29], is allowed for
both electrons and polaritons, which provides identical Hamil-
tonians with SU(2) symmetry and allows the formation of a
persistent spin helix [29,30]. Having this in mind, the term
“spin-orbital coupling” is used for the polariton system in
what follows.

In this paper, the energy levels of polaritons in azimuthally
symmetric traps are considered. It is shown that the ground
state can become a singlet in the case where the SOC is
strong enough. The ground-state singlet is characterized by
well-defined radial or azimuthal linear polarization. This ef-
fect turns out to be especially strong for polaritons trapped
in the rings, and since this configuration has received much
interest recently [31–35], the SOC for the motion of polaritons
in the ring is studied in more detail. To highlight the effects of
SOC, the consideration is carried out neglecting dissipation,
i.e., assuming infinite lifetimes of polaritons in the traps. This
approximation is acceptable for ultrahigh-quality microcavi-
ties [35,36], with the polariton lifetimes exceeding 100 ps.

The equations for the case of SOC due to transverse-
electric–transverse-magnetic (TE-TM) splitting in axially
symmetric traps are formulated in Sec. II below. The energy
levels of parabolic and hard-wall disk traps are considered in
Sec. III. Section IV is devoted to the important case of ring
traps. The conclusions are given in Sec. V.

II. BASIC EQUATIONS

A polariton mode in a microcavity is fully described by the
in-plane component of the electric field E, and it is convenient
to use the 2D complex vector ψ = {ψx, ψy} ∝ E normalizing

it to the number of polaritons belonging to the mode. In the
cylindrically symmetric case, the kinetic energy density near
the bottom of the lower polariton branch should contain two
invariants, |∇ · ψ|2 and |∇ × ψ|2. As a result, the Schrödinger
equation is written as

− h̄2

2mt
(∇ · ∇)ψ − h̄2

2

(
1

ml
− 1

mt

)
∇(∇ · ψ)

= [E − U (r)]ψ. (1)

Here, U (r), with r = {x, y} being the 2D position, is the
potential energy, and ml and mt are the longitudinal and the
transverse effective masses of polaritons, respectively. For
free polaritons, the transverse mass mt corresponds to the
transverse-electric (TE) mode with (∇ · ψ) = 0, while the
longitudinal mass ml corresponds to the transverse-magnetic
(TM) mode with [∇ × ψ] = 0.

Instead of vector ψ they usually use two circular polariza-
tion components of the field ψ±1 defined by

ψ = x̂ + iŷ√
2

ψ+1 + x̂ − iŷ√
2

ψ−1 (2)

and combine them into the column � = (ψ+1, ψ−1)T. The
2 × 2 Hamiltonian corresponding to Eq. (1) is then

H = h̄2

2m∗

(
k−k+ γ k2

−
γ k2

+ k+k−

)
+ U (r)1, (3)

where k = −i∇, k± = kx±iky, and

1

m∗ = mt + ml

2mt ml
, γ = mt − ml

mt + ml
. (4)

One can see that the difference in the transverse and lon-
gitudinal masses sets the SOC of polariton modes. This is
the basic SOC in the system, and it is essentially the same
as for pure light (see Ref. [37] for a review). The splitting
parameter �LT = h̄γ /m∗ is also used to define the strength of
SOC instead of the dimensionless coupling constant γ .

In the case of azimuthally symmetric potential energy
U (r), which is mainly considered below, the wave functions
can be written in the general form

� =
(

ei(m−1)φ f (r)
ei(m+1)φ g(r)

)
, (5)

where the integer m = 0,±1,±2, . . . is the winding number
and φ is the azimuth angle. Using the relations

k±eimφ f (r) = −iei(m±1)φ

(
d

dr
∓ m

r

)
f (r), (6)

one obtains

− h̄2

2m∗

(
d

dr
+ m

r

)(
d

dr
− m − 1

r

)
f (r) − γ h̄2

2m∗

(
d

dr
+ m

r

)(
d

dr
+ m + 1

r

)
g(r) + U (r) f (r) = E f (r), (7a)

−γ h̄2

2m∗

(
d

dr
− m

r

)(
d

dr
− m − 1

r

)
f (r) − h̄2

2m∗

(
d

dr
− m

r

)(
d

dr
+ m + 1

r

)
g(r) + U (r)g(r) = Eg(r) (7b)

for the radial functions f (r) and g(r).
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Independently of the particular form of U (r), some con-
clusions about the degeneracy of the energy levels can be
drawn on the basis of time-reversal symmetry. Note that the
time reversal for the linear polarization components is reduced
to complex conjugation, as it should be for two independent
oscillators, Tp{ψx, ψy} = {ψ∗

x , ψ∗
y }. Therefore, in the circu-

lar polariton basis, one has Tp(ψ+1, ψ−1)T = (ψ∗
−1, ψ

∗
+1)T or

Tp = Kσx, using the Pauli matrices σx,y,z and the complex-
conjugation operation K . This is in striking contrast to the
electron case, where Te = Kσy.

Applying Tp to the wave functions (5) and taking into
account that the solutions of (7a) and (7b) can be chosen to
be real functions, one has

m → − m, f → g, g→ f . (8)

These substitutions leave the system composed of (7a)
and (7b) unchanged, and this implies that the energies of
the states m and −m for m �= 0 coincide. The m = 0 states,
however, are the eigenstates of Tp, and the corresponding
energy levels remain nondegenerate.

The singlet solutions for m = 0 possess well-defined po-
larization patterns of the polariton field. In this case we have
g(r) = ± f (r), so that polarization is linear, and the radial
function satisfies the equation for a single-component system
with angular momentum equal to 1,

− h̄2

2mt,l

d

dr

(
d

dr
+ 1

r

)
f (r) + U (r) f (r) = E f (r). (9)

Here, the solutions with g = − f are characterized by the
transverse mass mt = m∗/(1 − γ ) and by the azimuthal polar-
ization field shown in Fig. 1(a), while the solutions with g = f
possess the longitudinal mass ml = m∗/(1 + γ ) and the radial
polarization field shown in Fig. 1(b).

The presence of these pure longitudinal and pure transverse
states in the traps plays an important role in propagation of
polariton wave packets and leads to the possibility of polar-
ization rectification [38]. Note also that in the general case of
arbitrary potential of the dot U (r), e.g., for random polariton
billiards, the singlet polariton states are described by a real
valued vector field ψ(r) and they are thus linearly polarized
everywhere in the trap.

III. POLARITON LEVELS IN TRAPS

A quantum trap for polaritons can be approximated with a
parabolic potential near its bottom, and it is natural to begin
with a description of the energy levels for the case of harmonic
potential U (r) = m∗ω2

0r2/2. The dependence of energies on
the TE-TM splitting parameter γ , which measures the ex-
tent of the longitudinal and transverse mass difference (4), is
shown in Fig. 1(c). The presence of SOC lifts the degenera-
cies of 2D harmonic oscillator levels, and the mean distance
between the levels decreases with increasing γ . The overall
behavior of energy levels resembles the case of parabolic
quantum dots with Rashba SOC [39]. In our case the decrease
in mean level spacing is because the increase in |γ | with fixed
m∗ corresponds to the increase in the longitudinal effective
mass ml for γ < 0 or to the increase in the transverse mass mt

for γ > 0. In what follows we consider the latter case only.

(c)
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FIG. 1. The linear polarization of the states with m = 0, where
the winding number m is defined by Eq. (5). The polarization is either
azimuthal (a) or radial (b). (c) Energy levels for a 2D harmonic trap
with frequency ω0. (d) Energy levels for a hard-wall disk with radius
R0, given in units of E0 = h̄2/2πR2

0m∗. The schematic geometry of
the microcavity is shown in the inset. Blue, yellow, and green lines
show the double-degenerate levels with |m| > 0, and red lines show
the energies of the linearly polarized nondegenerate states [(a) and
(b)] with m = 0.

Note that on the one hand the change γ → −γ corresponds
to the exchange of ml and mt . On the other hand, γ → −γ

can be compensated by the change g → −g in the system
composed of (7a) and (7b). This implies 90◦ rotation of the
polarization plane, so that the azimuthal vortices in Fig. 1(a)
transform to the radial ones in Fig. 1(b) and vice versa.

While the energies of the twofold degenerate states with
|m| > 0 are defined by some effective masses residing in
between ml and mt , the energies of nondegenerate radial vor-
tices are set by the lightest mass ml , and the energies of the
azimuthal vortices are defined by the heaviest mass mt . The
energies of the former states grow rapidly with increasing
TE-TM parameter γ , while the energies of the latter states
decrease and approach the energy of the m = 1 state, which
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FIG. 2. Energy levels for polaritons moving in the ring (see the
beginning of Sec. IV for details). The schematic geometry of the mi-
crocavity is shown in the inset. The confining frequency in the radial
direction ω0 = 40h̄/m∗a2, where a is the radius of the ring.

is the ground state for γ = 0. As a result, the ground state
changes at some critical value of SOC parameter γc and the
lowest-energy azimuthal vortex becomes the ground state for
γ > γc. In the case of parabolic potential this happens at a
very high value of γc 	 0.918 [not shown in Fig. 1(c)].

The effect of ground-state change is more pronounced in
the case of polariton confinement in a hard-wall disk. For
the case of Rashba SOC this problem has been solved in
Refs. [39–41]. The hard-wall billiards, in general, and an
axially symmetric disk trap, in particular, can be formed by
excitation of polaritons along the perimeter by a spatially
structured pump [42–44], so that the polaritons move freely
inside the trap and are reflected from the boundary due to
repulsion from the incoherent excitonic reservoir. The energy
levels of polaritons in the disk are shown in Fig. 1(d). In this
case the crossing of levels takes place at γc 	 0.625. This
value is still too high as compared with typical values of γ ∼
0.1 in semiconductor microcavities [45]. Note, however, that
the values of γ can be substantially bigger in microcavities
with organic layers [46]. The effect of the ground-state change
can be observed for small values of TE-TM splitting in the
case of trapping polaritons in the ring, which is considered in
the next section.

IV. POLARITONS IN THE RING

The energy levels for polaritons moving in the ring are
presented in Fig. 2. The calculations have been carried out for

a simple model potential U (r) = U0[1 − 2(r/a)2 + (r/a)4],
where a is the radius of the ring and U0 defines the barrier
in the center. Since quasi-1D motion is achieved in the limit
of large U0 � h̄2/m∗a2, the levels shown in Fig. 2 are practi-
cally identical to the levels in harmonic approximation for the
potential with

U (r) = 1
2 m∗ω2

0(r − a)2, (10)

where ω0 = √
8U0/m∗. This frequency is used to scale the

energy levels in Fig. 2. One can observe that the crossing
of low-energy levels takes place at a rather small value of
the TE-TM splitting parameter, γc 	 0.074 for ω0m∗a2/h̄ =
40. Moreover, the crossing value γc decreases further with
increase in the ring confinement frequency. The effect of
TE-TM splitting on the high-energy levels is much less pro-
nounced. There is approximate additional degeneracy of the
levels with large winding numbers m. Due to the form of the
wave function defined by Eqs. (2) and (5), where the angular
momenta of the ψ±1 components differ by 2, the separations
of the first (lowest energy) level with m = 6 and the second
level with m = 4, as well as of the second m = 5 level and the
first m = 7 level, are nearly invisible.

To get a better understanding of the effect of SOC on
the low-energy levels, it is convenient to derive the effective
Hamiltonian for the quasi-1D angular motion of a polariton
in the ring. This Hamiltonian can be particularly useful for
the analysis of polariton condensation in the ring geometry,
spontaneous azimuthal currents [47], formations of space-
time periodic polarization patterns [24,35,48], and annular
Josephson vortices [49,50]. The annular Hamiltonian can be
obtained in adiabatic approximation by averaging over the
appropriate radial wave function. In the presence of TE-TM
splitting of polariton bands this procedure should be done
carefully, since there are two masses, mt and ml , and it is
not evident which one should be used for calculation of the
radial component of the wave function. (Obtaining the annular
Hamiltonian for the case of Rashba SOC is also error prone;
see the discussion in Ref. [51].)

The derivation can be conveniently carried out using the
equations for the radial ψr and azimuthal ψφ components of
the vector function ψ,

ψr = 1√
2

(eiφψ+1 + e−iφψ−1), (11a)

ψφ = i√
2

(eiφψ+1 − e−iφψ−1). (11b)

From Eq. (1) one obtains

− h̄2

2

[
1

ml

∂

∂r

(
∂

∂r
+ 1

r

)
+ 1

mt r2

∂2

∂φ2

]
ψr + h̄2

m∗

[
1

r2

∂

∂φ
− γ

r

∂2

∂r∂φ

]
ψφ = [E − U (r, φ)]ψr, (12a)

− h̄2

m∗

[
1

r2

∂

∂φ
+ γ

r

∂2

∂r∂φ

]
ψr − h̄2

2

[
1

mt

∂

∂r

(
∂

∂r
+ 1

r

)
+ 1

mlr2

∂2

∂φ2

]
ψφ = [E − U (r, φ)]ψφ. (12b)

Application of adiabatic approximation implies separation of
fast motion in the radial direction and slow annular motion,
ψr = Rr (r)�r (φ) and ψφ = Rφ (r)�φ (φ), and it is clear from

Eqs. (12a) and (12b) that the radial part Rr is defined by
Eq. (9) with the longitudinal mass ml , while the azimuthal
part Rφ is given by the same equation, but with the transverse
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mass mt . For parabolic trapping potential (10), averaging over
radial components can be carried out using the scaling relation
between Rr and Rφ . The resulting equations for the angular
components are[

El (γ ) + h̄2k2
φ

2mt

]
�r + iκ(γ )

h̄2kφ

m∗a
�φ = E�r, (13a)

−iκ(γ )
h̄2kφ

m∗a
�r +

[
Et (γ ) + h̄2k2

φ

2ml

]
�φ = E�φ. (13b)

Here, kφ = −i∂/a∂φ is the annular wave vector; Et (γ ) =
ε0

√
1 − γ and El (γ ) = ε0

√
1 + γ with ε0 	 (h̄ω0/2) +

(h̄2/2m∗a2) are the energies of the vortex solutions shown in
Figs. 1(a) and 1(b), respectively, and they are plotted in Fig. 2
as m = 0 solutions. Finally, the coefficient

κ(γ ) =
√

2(1 − γ 2)1/4

(1 + γ )1/2 + (1 − γ )1/2
(14)

appears due to the overlap of the radial functions Rr (r) and
Rφ (r). If the difference in the longitudinal and transverse
masses is not too extreme, this coefficient is very close to 1,
and it can be safely omitted from Eqs. (13a) and (13b).

The energy levels Em can be found by replacing kφ → m/a
and Eqs. (13a) and (13b) describe very well these levels in the
adiabatic limit h̄2m2/2m∗a2 � ε0. For small |γ | � 1 one has

Em = ε0 + h̄2m2

2m∗a2
±

√(γ ε0

2

)2
+

(
h̄2m

m∗a2

)2

. (15)

It is evident that even weak TE-TM splitting cannot be
neglected when considering the motion of polaritons in the
ring, since the small parameter γ is multiplied by a large
energy ε0 that scales the quantization of levels in the radial
direction. The point of the level crossing corresponds to a very
small γc � 1, and it can be obtained from (15) that

γc = 3h̄

m∗a2ω0
. (16)

Another way to view these results relies on the proper-
ties of polariton dispersion in a quantum wire. The 2 × 2
Hamiltonian defined by Eqs. (13a) and (13b) implies that in
the straight wire, i.e., for a → ∞, there are two independent
modes. A polariton can possess transverse polarization, in
which case it is quantized in the wire with longitudinal mass
and moves along the wire with the transverse mass, or vice
versa. For a curved wire, however, these two modes are cou-
pled. The coupling is linear in the wave vector, similarly to
the Rashba coupling. Remarkably, the coupling strength for
polaritons is proportional to the curvature of the wire a−1 and
can therefore be controlled [52].

The polariton bands in the wire are shown in Fig. 3. One
can see that there is qualitative change in the lowest band
dispersion with increasing radius of the wire, related to the
disappearance of two side minima. This corresponds to the
change from the double degenerate ground state to the nonde-
generate one. Note also that, in contrast to the electron case,
the spin-orbital coupling produces splitting of the bands at
k = 0.

FIG. 3. The dispersion of polariton bands in the wire for the
TE-TM splitting parameter γ = 0.1 and different values of the wire
radius a. Quantized values of the wave vector, which is given in units
of k0 = √

m∗ω0/h̄, are shown by dots. Thick solid and dashed lines
correspond to k0a = 4 and k0a = 20, respectively. Thin solid lines
show the dispersion in the straight wire (a → ∞).

The polarization vortex is expected to be the ground state
for the polariton rings investigated in Ref. [53], with a ring
radius of a = 50 μm and the localization length in the radial
direction corresponding to

√
h̄/mω0 	 4 μm. In this case,

the level crossing value γc 	 0.019. For the TE-TM splitting
parameter γ = 0.1, the distance to the first excited (m = 1)
level is about 0.2 μeV, which is about an order of magnitude
smaller than the dissipation broadening of the levels at the
polariton lifetime τ ∼ 200 ps [35]. To improve the level res-
olution, it is necessary to increase localization in the radial
direction. Efficient spin-flip relaxation is also necessary for
spontaneous formation of the polarization vortices shown in
Figs. 1(a) and 1(b). However, the polarization vortices can
be directly excited with corresponding Laguerre-Gaussian
beams. Depending on the sign of γ , one of them will be
stable, both topologically and energetically, while the other
should decay into the lower-energy polariton states. In gen-
eral, at least three polariton states, the m = 0 singlet and
the m = 1 doublet, should be taken into account considering
polariton condensation in the presence of dissipation and spin-
dependent polariton-polariton interaction.

V. CONCLUSIONS

Spin-orbital coupling (TE-TM splitting) for exciton-
polaritons has a pronounced effect on their levels in traps
and can change the symmetry of the ground state. The effect
is especially strong for polaritons localized in the ring traps,
where the effective 1D Hamiltonian of their motion possesses
linear-in-the-wave-vector coupling between two polarization
modes, similarly to the case of Rashba SOC. In this case, even
weak SOC cannot be neglected.

The crossover from the double-degenerate ground state in
the ring to the singlet polarization-vortex state occurs at rather
small values of the SOC coupling strength, which is inversely
proportional to the confining frequency of the 1D wire and
to the square of the ring radius; see Eq. (16). As a result,
the polaritons form the polarization-vortex singlet state in
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large-radius rings, while the ground state in small-sized rings
is a doublet without a particular polarization structure.

The importance of TE-TM splitting for the polariton mo-
tion in curved wires discussed in this paper is only one little
example from the rich world of different physical phenomena
based upon the existence of linear-in-the-wave-vector spin-
orbital coupling in solids. The seed that gave rise to this
magnificent tree of new ideas and effects was planted by

Emmanuel Rashba more than 60 years ago. It is spectacular
how, after all these years, this tree continues to grow and bear
new fruit.
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