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Quantum transport of a spin-1 chiral fermion
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We theoretically study the quantum transport in a three-dimensional spin-1 chiral fermion system in the
presence of impurity scattering. Within the self-consistent Born approximation, we find peak structure of the
density of states and significant suppression of electrical conductivity around the zero energy. The zero-energy
conductivity depends less on impurity concentration, unlike a Weyl fermion. These properties originate from the
flat-band structure of the spin-1 chiral fermion.
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I. INTRODUCTION

A variety of chiral quasiparticles beyond Weyl and Dirac
fermions can emerge in crystalline material, protected by
symmetry and topological charges [1]. The spin-1 chiral
fermion is a prominent realization of such an exotic particle,
which hosts the trivial band with nearly flat dispersion, called
the flat band, in addition to the Dirac cone. Angle-resolved
photoemission spectroscopy (ARPES) measurements ob-
served a spin-1 chiral fermion in a chiral crystal CoSi [2–6].
A two-dimensional (approximate) version of the spin-1 chiral
fermion has also been predicted [7] in the context of the α−T3

lattices. Quantum phenomena, including spin transport [8]
and optical responses [9–16], can be anomalous, stemming
from the peculiar electronic states of a spin-1 fermion. Re-
search has also spilled over into quadratic dispersion with the
spin-1 structure [17–19]. A fundamental example of such phe-
nomena is the electrical conductivity of quantum transport.

Chiral fermions of Dirac and Weyl fermions exhibit
peculiar transport properties on zero energy [20–22]. For
two-dimensional massless Dirac fermions, representing low-
energy electrons in graphene, the electrical conductivity
remains finite and independent of the relaxation time at
their gapless point, though the density of states vanishes
[23–29]. Weyl fermions in the three spatial dimensions, on the
other hand, show a specific quantum transport phenomenon
strongly depending on the impurity concentration at the Weyl
point located on the zero energy [30–34]. Interestingly, a
finite(long)-range disorder potential (does not) gives rise
to the semimetal–metal transition. These studies imply that
the quantum transport phenomena on the zero energy pos-
sibly depend on the spatial dimension, disorder type, and
symmetry/topology of chiral fermions. Therefore, a spin-
1 chiral fermion, characterized by the flat band, monopole
charge 2, and orthogonal symmetry class, is expected to show
a distinct quantum transport character. Recent years have seen
remarkable progress in our understanding of two-dimensional
spin-1 systems [35–38]. Thus, we can address quantum trans-
port phenomena in three-dimensional spin-1 systems.

In this work, we theoretically analyze the quantum
transport of three-dimensional spin-1 chiral fermion under
impurity potentials, based on the Boltzmann transport theory
and the self-consistent Born approximation (SCBA) in linear
response theory. As a result, we find some characteristic phe-
nomena near the zero energy by SCBA intrinsic to the spin-1
nature. There is a peak structure of the density of states, which
originates from a flat band of the spin-1 fermion, depending on
the impurity concentration. We also find significant suppres-
sion of conductivity near the zero energy. This phenomenon
of low-energy transport is caused by the vanishing group
velocity of the flat band and the interband effect between the
flat band and the Dirac cone.

The paper is organized as follows. Our model for a spin-1
chiral fermion in the presence of impurity is introduced in
Sec. II. The conductivity is calculated within the Boltzmann
theory in Sec. III and the SCBA with the current vertex
correction in Sec. IV. The self-consistent equation for self en-
ergy and the Bethe-Salpeter equation for vertex correction are
explicitly derived. The comparisons of our results to related
works and some remarks are discussed in Sec. V. Section VI
summarizes this work.

II. MODEL

We consider a three-dimensional spin-1 chiral fermion sys-
tem, described by

Ĥ = h̄vŜ · k, (1)

where k is the electron wave number and v is the Fermi
velocity. S = (Ŝx, Ŝy, Ŝz ) are the spin operators

Ŝx =
⎛
⎝ 0 i 0

−i 0 0
0 0 0

⎞
⎠, (2)

Ŝy =
⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠, (3)
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Ŝz =
⎛
⎝0 0 0

0 0 i
0 −i 0

⎞
⎠. (4)

The eigenenergy is given by

ελ,k = h̄vλk, (5)

where λ is the label for the conduction band (λ = 1), the flat
band (λ = 0), and the valence band (λ = −1).

We assume two impurity potentials, the Gaussian and delta
function potentials, which represent finite-range and short-
range disorders, respectively. Note that the lengthscale of
impurity may strongly affect the transport property of chiral
fermion systems, as seen in graphene. The Gaussian potential
is defined by

U (r) = ±u0

(
√

πd0)3
exp

(
− r2

d2
0

)
, (6)

where d0 is the characteristic lengthscale and ±u0 is the
strength of the impurity potential. The sign ± means to
assume that the numbers of positive- and negative-valued
impurities are the same, so the Fermi level is fixed, irrelevant
to the impurity concentration. The delta function potential is
defined by

U (r) = ±u0δ(r), (7)

which corresponds to the short-range limit (d0 → 0) of the
Gaussian potential. Their Fourier transforms are obtained to
be

u(k) = ±u0 exp

(
−k2

q2
0

)
, (8)

with q0 = 2/d0 and u(k) = ±u0, respectively. To avoid the
ultraviolet divergence, we need to regularize the delta function
potential with a hard cutoff as

u(k) = ±u0θ (q0 − k), (9)

where q0 is the inverse of the length that characterizes the
impurity potential. Both Eqs. (8) and (9) tend to be of the delta
function for q0 → ∞. The position representation of Eq. (9)
can be written in the form∫

d3k

(2π3)
eik·ru(k) = −q0r cos(q0r) + sin(q0r)

r3
. (10)

At q0 → ∞, the first term is a fast oscillating function and the
integral can be regarded as zero. The second term corresponds
to the zero-order spherical Bessel function J0(q0r).

Isotropic disorder potentials are characterized by the mo-
ment of scattering angle as

V 2
n (k, k′) = 2π

∫ 1

−1
d (cos θkk′ )|u(k − k′)|2 cosn θkk′ , (11)

where θkk′ is the angle between k and k′. We also define a
parameter characterizing the scattering strength

W = q0niu2
0

h̄2v2
, (12)

where ni is the number of scatterers per unit volume.

III. BOLTZMANN TRANSPORT THEORY

We calculate the conductivity from the Boltzmann trans-
port theory. The scattering probability Wλ′k′,λk is given by
Fermi’s golden rule as

Wλ′k′,λk = 2π

h̄
ni|〈λ′, k′|U |λ, k〉|2δ(ελ′,k′ − ελ,k). (13)

The transport relaxation time τtr is defined by

1

τtr (ελ,k)
=

∑
λ′

∫
dk′

(2π )3
(1 − cos θk′k)Wλ′k′,λk. (14)

The density of states of the linear dispersion (λ = ±1) in the
clean limit is given by

D0(ε) = ε2

2π2(h̄v)3
for ε �= 0, (15)

and that of the flat band is (λ = 0) described by the delta
function and diverges for ε = 0. The conductivity at the zero
temperature is obtained to be

σB(ε) = e2v2

3
D0(ε)τtr (ε). (16)

The transport relaxation time is written as

1

τtr (ε)
= ni

2π h̄2v

∫ 1

−1

∫ ∞

0
dk′d (cos θkk′ )k′2(1 − cos θkk′ )

× (cos θkk′ + 1)2

4
δ(k − k′)|u(k − k′)|2

= niε
2

4(2π )2h̄(h̄v)3

[
V 2

0 (ε/h̄v, ε/h̄v) + V 2
1 (ε/h̄v, ε/h̄v)

− V 2
2 (ε/h̄v, ε/h̄v) − V 2

3 (ε/h̄v, ε/h̄v)
]
, (17)

where the momentum is located on the Fermi surface, k =
ε/h̄v. As a result, we find the conductivity

σB(ε) = e2v2h̄

πniu2
0

, (18)

for the delta function potential with q0 → ∞. In addition,

σB(ε) = 8

3π

e2

h̄

1

niu2
0

h

(
ε

h̄vq0

)
, (19)

for the Gaussian potential, where we define

h(x) = 64x8

32x4 − 16x2 + 3 − (8x2 + 3) exp(−8x2)
. (20)

Figure 1 shows the conductivity for the Gaussian potential,
which is a monotonically increasing function of the Fermi
energy and takes a finite value at zero energy

σB(ε → 0) = e2v2h̄

πniu2
0

, (21)

which coincides with that of the delta function potential.
The Fermi-energy dependence of conductivity stems from
the wave-number dependence of the potential. The delta- and
Gaussian-function potentials are constant and exponentially
decreasing functions of the wave number. Therefore the con-
ductivity is constant and an increasing function for the delta
and Gaussian potentials, respectively.
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FIG. 1. Electrical conductivity of a spin-1 fermion for W = 2
(red line), W = 5 (green line), and W = 10 (blue line), derived by
the Boltzmann equation with the Gaussian potential.

IV. LINEAR RESPONSE THEORY (SCBA)

Next, we calculate the density of states and conductivity
in a self-consistent manner to consider the effect of level
broadening induced by impurity.

A. Formulation

Assuming that the impurity distribution is uniformly ran-
dom, the impurity-averaged Green’s function is given by

Ĝ(k, ε + is0) = 1

εŜ0 − h̄vkŜ · n − 
̂(k, ε + is0)
, (22)

where n = k/k is the unit vector and Ŝ0 is the identity matrix.
The sign s refers to the retarded (s = 1) and advanced (s =
−1) Green’s functions. The self-consistent equation for the
self-energy is written as


̂(k, ε + is0) =
∫

dk′

(2π )3
ni|u(k − k′)|2Ĝ(k′, ε + is0). (23)

The density of states per unit volume is calculated as

D(ε) = − 1

π
Im

∫
dk

(2π )3
TrĜ(k, ε + i0). (24)

The conductivity by the Kubo formula is written as

σ (ε) = − h̄e2v2

4π

∑
s,s′=±1

ss′
∫

dk′

(2π )3
Tr[ŜxĜ(k′, ε + is0)

× Ĵx(k′, ε + is0, ε + is′0)Ĝ(k′, ε + is′0)], (25)

where Ĵx(k, ε, ε′) is the current density flowing in the x direc-
tion reinforced with the vertex correction and is determined to
be a solution of the following Bethe-Salpeter equation:

Ĵx(k, ε, ε′) = Ŝx +
∫

dk′

(2π )3
ni|u(k − k′)|2Ĝ(k′, ε)

× Ĵx(k′, ε, ε′)Ĝ(k′, ε′). (26)

Since (Ŝ · n)3 = (Ŝ · n) for the spin-1 representation matri-
ces, the self energy is expressed as


̂(k, ε) = 
1(k, ε)Ŝ0 + 
2(k, ε)(Ŝ · n) + 
3(k, ε)(Ŝ · n)2.

(27)

Using the above expansion, Eq. (22) is rewritten as

Ĝ(k, ε) = 1

X (k, ε)Ŝ0 + Y (k, ε)Ŝ · n + Z (k, ε)(Ŝ · n)2

= x(k, ε)Ŝ0 + y(k, ε)(Ŝ · n) + z(k, ε)(Ŝ · n)2, (28)

where

X (k, ε) = ε − 
1(k, ε), (29)

Y (k, ε) = −h̄vk − 
2(k, ε), (30)

Z (k, ε) = −
3(k, ε), (31)

and

x(k, ε) = 1

X (k, ε)
, (32)

y(k, ε) = − Y (k, ε)

[X (k, ε) + Z (k, ε)]2 − Y (k, ε)2
, (33)

z(k, ε) = Y (k, ε)2 − Z (k, ε)[X (k, ε) + Z (k, ε)]

{[X (k, ε) + Z (k, ε)]2 − Y (k, ε)2}X (k, ε)
. (34)

Here we reduce the above expressions for the self energy to
a form more convenient to solve the self-consistent equation.
Substituting Eq. (28) into Eq. (23), we get


̂(k, ε + is0)

= Ŝ0

∫
k′2dk′

(2π )3
ni

{
V 2

0 (k, k′)x(k′, ε + is0)

+[V 2
0 (k, k′) − V 2

2 (k, k′)]z(k′, ε + is0)
}

+ (Ŝ · n)
∫

k′2dk′

(2π )3
niV

2
1 (k, k′)y(k′, ε + is0)

+ (Ŝ · n)2
∫

k′2dk′

(2π )3
n2

i

(
3

2
V 2

2 (k, k′) − 1

2
V 2

0 (k, k′)
)

× z(k′, ε + is0), (35)

with the help of useful relations shown in Appendix A.
Comparing this with Eq. (27), the self-consistent equation is
decomposed into the three equations as


1(k, ε + is0) =
∫

k′2dk′

(2π )3
ni

[
V 2

0 (k, k′)x(k′, ε + is0)

+ (V 2
0 (k, k′) − V 2

2 (k, k′))z(k′, ε + is0)
]
,

(36)


2(k, ε + is0) =
∫

k′2dk′

(2π )3
niV

2
1 (k, k′)y(k′, ε + is0), (37)


3(k, ε + is0) =
∫

k′2dk′

(2π )3
ni

(
3

2
V 2

2 (k, k′) − 1

2
V 2

0 (k, k′)
)

× z(k′, ε + is0). (38)
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Substituting the self energy into Eq. (24), the density of states
is written as

D(ε) = − 1

π
Im

∫
dk

(2π )3

(
1

X (k, ε + i0)

+ 1

X (k, ε + i0) + Y (k, ε + i0) + Z (k, ε + i0)

+ 1

X (k, ε + i0) − Y (k, ε + i0) + Z (k, ε + i0)

)
.

(39)

In addition, the Bethe-Salpeter equation is simplified into
an easier form. The current vertex Ĵx(k, ε, ε′) is expanded to

eight terms as

Ĵx(k, ε, ε′) = ŜxJ0(k, ε, ε′) + nx(Ŝ · n)2J1(k, ε, ε′)

+ nx(Ŝ · n)J2(k, ε, ε′) + (Ŝ · n)2ŜxJ3(k, ε, ε′)

+ Ŝx(Ŝ · n)2J4(k, ε, ε′) + (Ŝ · n)ŜxJ5(k, ε, ε′)

+ Ŝx(Ŝ · n)J6(k, ε, ε′) + nxŜ0J7(k, ε, ε′), (40)

by using Eqs. (A7) to (A11) for Eq. (26) (see Appendix A).
The matrix-form Bethe-Salpeter equation reduces to the eight
equations (see Appendix B) for the expansion coefficients
J0−J7. Substituting them into Eq. (25), the conductivity is
written as

σ (ε) = 2h̄e2v2

3

∫ ∞

0

k′2dk′

(2π )3
Re

[
−J++

0 + J++
1 + J++

2 + J++
3 + J++

4 + J++
5 + J++

6 + J++
7

(X + Y + Z )2

− J++
0 − J++

1 + J++
2 + J++

3 + J++
4 − J++

5 − J++
6 − J++

7

(X − Y + Z )2
− 2J++

0 + J++
3 + J++

4 + J++
5 + J++

6

X (X + Y + Z )

− 2J++
0 + J++

3 + J++
4 − J++

5 − J++
6

X (X − Y + Z )
+ J+−

0 + J+−
1 + J+−

2 + J+−
3 + J+−

4 + J+−
5 + J+−

6 + J+−
7

|X + Y + Z|2

+ J+−
0 − J+−

1 + J+−
2 + J+−

3 + J+−
4 − J+−

5 − J+−
6 − J+−

7

|X − Y + Z|2 + J+−
0 + J+−

4 + J+−
6

X (X ∗ + Y ∗ + Z∗)

+J+−
0 + J+−

4 − J+−
6

X (X ∗ − Y ∗ + Z∗)
+J+−

0 + J+−
3 + J+−

5

X ∗(X + Y + Z )
+ J+−

0 + J+−
3 − J+−

5

X ∗(X − Y + Z )

]
, (41)

where Jss′
i = Ji(k′, ε + is0, ε + is′0), X= X (k′, ε + i0), and so

on.

B. Numerical calculations

The self-consistent equations derived above cannot be gen-
erally solved in an analytic way, but we can obtain the solution
by numerical iteration [29]. We discretize the wave number as

dk j = kc
j∑ jmax

j=1 j
, k j = 1

2
dk j +

j−1∑
j′=1

dk j′ , (42)

where j = 1, 2, . . . , jmax and kc is the cutoff wave number.
Hereafter, we fix jmax = 500.

C. Density of states

The density of states and conductivity are obtained by
SCBA. We fix kc = q0 in the following. Note that the results
do not explicitly depend on q0 because the density of states
and the conductivity are functions of ε/(q0h̄v) and W , and is
normalized by q2

0/h̄v and e2q0/h̄, respectively.
Figures 2(a-1) and 2(a-2) show the density of states as

a function of the Fermi energy for the delta function and
Gaussian potentials, respectively. We can see a pronounced
peak structure around the zero energy. This peak stems from
the flat band at ε = 0 and is broadened by the impurity
potential. Away from the zero energy, the density of states
is approximately proportional to ε2, which comes from the

linear dispersion bands and is essentially the same as those in
the clean limit.

D. Conductivity

Figures 2(b-1) and 2(b-2) show the conductivity as a func-
tion of the Fermi energy for the delta function and Gaussian
potentials, respectively. In the high-energy region, for both the
delta function/Gaussian potential, the conductivity increases
monotonically and reaches nearly the values given in the
Boltzmann theory. However, the conductivity is significantly
suppressed in the vicinity of the zero energy. The energy range
of the suppressed area is as wide as that of the peak of the
density of states. This implies that the flat band plays a crucial
role in suppressing conductivity.

In addition, the suppressed conductivity exhibits a behavior
specific to the lengthscale of the potential. Figures 2(c-1)
and 2(c-2) show enlarged views of the suppressed area. The
conductivity for the delta function potential [Fig. 2(c-1)]
shows a small peak, whereas that for the Gaussian potential
[Fig. 2(c-2)] is nearly constant with a tiny dip in the zero
energy. This difference is due to the vertex corrections J1-J7

in Eq. (40). We clarified that the suppressed conductivity for
the Gaussian potential without vertex correction (J0 = 1, J1 =
J2 = . . . = J7 = 0) makes a small peak, the same as for the
delta function potential. Namely, the vertex correction plays
a vital role in the low-energy regime. Unlike the Gaussian
potential, the conductivity for the delta function potential
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FIG. 2. Quantum transport for W = 2 (red line), W = 5 (green line), and W = 10 (blue line), derived by the SCBA. Density of states
for (a-1) the delta function potential and (a-2) Gaussian potential (kc = q0). Conductivity for (b-1) the delta function potential and (b-2) the
Gaussian potential (kc = q0). (c-1) and (c-2) are the enlargements near the zero energy of (b-1) and (b-2), respectively.
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FIG. 3. The conductivity from the intraband transition of the Dirac cone (black line) and from the interband transition between the Dirac
cone and the flat band (red line) for W = 5 derived by the SCBA. (a) Delta function potential, (b) Gaussian potential kc = q0, and (c) Gaussian
potential kc = 3q0.

produces a small peak and is not flattened by the vertex
correction, which is given by J0 �= 0 and J1 = J2 = . . . =
J7 = 0. Note that the suppressed conductivity shows less de-
pendence on W than the unsuppressed area in the higher
energy.

In this study, we assume zero temperature. The conductiv-
ity at a finite temperature is given by

∫
dε(−∂ f /∂ε)σ (ε). The

Fermi-energy dependence of the conductivity is smeared by
the Fermi distribution f . In spin-1 systems, since the conduc-
tivity has a large Fermi-energy dependence, the temperature
dependence may be nonmonotonic.

E. Interband effect

Here we clarify the details of the characteristic behavior
near zero energy and its origin. To do so, we decompose
the conductivity into intraband and interband contributions,
which are defined by

σintra(ε) = − h̄e2v2

4π

∑
s,s′=±1

ss′
∫

dk′

(2π )3

(
SccGs

cJss′
cc Gs′

c

+ SvvGs
vJss′

vv Gs′
v

)
, (43)

and

σinter(ε) = − h̄e2v2

4π

∑
s,s′=±1

ss′
∫

dk′

(2π )3

(
S0cGs

cJss′
c0 Gs′

0

+ Sc0Gs
0Jss′

0c Gs′
c + S0vGs

vJss′
v0 Gs′

0 + Sv0Gs
0Jss′

0v Gs′
v

)
,

(44)

where the subscripts c, 0, and v denote the conduction, flat,
and valence bands in the band basis, respectively. They are
obtained by diagonalizing the Green’s function matrix as

Û †Ĝ(k, ε + is0)Û =
⎛
⎝Gs

c 0 0
0 Gs

0 0
0 0 Gs

v

⎞
⎠. (45)

In this basis, the velocities Sx and Jx are written as

Û †ŜxÛ =
⎛
⎝Scc Sc0 0

S0c 0 S0v

0 Sv0 Svv

⎞
⎠, (46)

and

Û †Ĵx(k, ε + is0, ε + is′0)Û =
⎛
⎝Jss′

cc Jss′
c0 0

Jss′
0c Jss′

00 Jss′
0v

0 Jss′
v0 Jss′

vv

⎞
⎠. (47)

The flat band has zero velocity leading to the absence of
intraband terms. The interband terms between the conduction
and valence bands are also zero.

Figure 3 shows the decomposed conductivities in the band
basis. One can see a small peak of the interband term and
suppression of the intraband terms near ε = 0. Namely, the
interband conductivity is more dominant than the intraband
one. This suggests that disorder effects are decisive for the
low-energy transport behavior.

F. Cutoff dependence

Figure 4 is the result of varying the value of kc in Eq. (42)
for the Gaussian potential. Note that we fix W = 5 here. One
can see that the peak of the density of states shown in Fig. 4
rapidly increases as kc increases. Our model has an entirely
flat band, which is a simple approximation for that in the
actual material. Namely, the cutoff momentum kc corresponds
to the range over which the band can be approximated as flat.
Consequently, as kc increases, the contribution from the flat
band also increases, resulting in a large peak structure in the
density of states.

The conductivity shown in Fig. 4(b) indicates that the
energy region showing the suppressed conductivity (σ ∼
0.011e2q0/h̄) becomes wider as kc increases for the same rea-
son as for the enhancement of the density of states discussed
above. We also find that the conductivity at ε ∼ 0 does not
change significantly with kc [Fig. 4(c)]. As the density of
states increases, the number of scattering channels also in-
creases, and as a result, the conductivity is expected to remain
nearly constant.

V. DISCUSSION

A. Comparison of results from Boltzmann equation and SCBA

Figure 5 compares the conductivity derived from the Boltz-
mann equation with that derived from SCBA. The specific
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FIG. 4. Quantum transport for kc = q0 (purple line), kc = 2q0 (green line), and kc = 3q0 (blue line) derived by the SCBA. (Gaussian
potential, W = 5). (a) Density of states, (b) conductivity, and (c) conductivity near the suppressed area.

behavior of the low-energy region (suppressed conductivity)
derived from SCBA cannot be derived from the Boltzmann
equation for the following reasons. The suppressed conduc-

FIG. 5. The conductivity (W = 2) derived by the Boltzmann
equation (dashed line) and the SCBA (solid line) for (a) the delta
function potential and (b) Gaussian potential (kc = q0).

tivity originates from the interband effects of the Dirac cone
and the flat band broadened by impurity scattering. The
spectral broadening is not considered in the Boltzmann equa-
tion hence the interband effect does not contribute to the
conductivity, owing to the energy conservation. SCBA is the
simplest method to take spectral broadening into account and
it provides a simple way to understand interband conduction
phenomena in spin-1 systems.

B. Related studies

In a three-dimensional Weyl fermion under the finite range
(Gaussian) impurity potential, the conductivity at the Weyl
point changes its behavior significantly depending on the
scattering strength, indicating the semimetal–metal transition
[30], as Fig. 6 shows. In the spin-1 fermion system, on the
contrary, the conductivity at ε = 0 has a much smaller de-
pendence on the scattering strength, showing no transition, as
Fig. 7 shows.

FIG. 6. The conductivity of a three-dimensional Weyl fermion
under the Gaussian impurity potential derived by the SCBA, redrawn
from [30]. W = q0niu2

0/4π h̄2v2 and ε0 = q0 h̄v.
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FIG. 7. Conductivity on the zero energy for the delta function
potential (black line) and Gaussian potential (kc = q0: purple line,
kc = 2q0: green line, and kc = 3q0: blue line) derived by the SCBA.

A spin-1 fermion in two spatial dimensions is not pro-
tected by symmetry but approximately emerges. In the
two-dimensional spin-1 fermion with the delta-function dis-
order potential, the density of states has a peak, and the
conductivity is suppressed near the zero energy [35] like in the
three-dimensional system. The behavior of the conductivity
suppression differs between the two-dimensional (2D) and
three-dimensional (3D) systems, with the 2D system showing
a gradual increase as energy approaches zero, whereas the
3D system shows a rapid increase and makes a small peak.
Furthermore, we elucidate a dependence of the lengthscale
of the impurity of the conductivity for the three-dimensional
system. The short-range (delta function) potential makes a
peak, while the finite-range (Gaussian) one does not. This
low-energy spectral property of conductivity can be essential
to comparing and understanding experimental results in the
future.

C. On experimental realization

The present study shows the Fermi-energy dependencies of
the density of states and the conductivity. Here we comment
on the relation to experimental realization. A direct way to
tune the Fermi energy is to use the gating of a thin-film spin-1
fermion material. Alternatively, the Fermi energy could be
varied by doping the bulk material, although this is not easy
to control continuously. A chiral crystal CoSi hosts a spin-1
chiral fermion on the Brillouin zone center in the absence of
spin-orbit interaction, which would be a good platform to ob-
serve the quantum transport of the spin-1 fermion. However,
in addition to the spin-1 fermion at the � point, there is a
double Weyl fermion at the R point, and one must take the ad-
ditional contribution from them into the transport properties.
Further research on this is desirable.

VI. CONCLUSION

This study clarifies the quantum transport theory for a
spin-1 chiral fermion with disorder potential within the SCBA
in the presence of the current vertex correction. As a re-

sult, we find some characteristic phenomena originated from
the flat-band structure near the zero energy. One is a peak
structure of the density of states. The other is the suppres-
sion of conductivity. It is discussed that these apparently
contradicting behaviors are reconciled by considering the
vanishing group velocity of the flat band. In addition, we
find that the interband effect, which is inherent to the spin-1
band structure, significantly contributes to the electrical
conductivity.

These results provide the basis for clarifying the quantum
transport phenomena of spin-1 fermions. Furthermore, it is
suggested that nontrivial impurity effects are latent in chiral
fermions beyond Dirac and Weyl fermions, and it will be an
interesting problem to clarify quantum transport phenomena
in more diverse chiral-fermion systems.

Note added. We became aware of a very recent work which
studies the density of states [39], Fermi arcs, and surface
Berry curvature for the spin-1 chiral fermion in the presence
of disorder. We found the same qualitative behavior of the
density of states.
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APPENDIX A: USEFUL RELATIONS

Let n⊥1, n⊥2, and n be the three-dimensional unit vectors
that are perpendicular mutually. Let Sx, Sy, and Sz be the 3 × 3
spin-1 representation matrices introduced in the main text. We
find the following useful relations:

(Ŝ · n)3 = (Ŝ · n), (A1)

(Ŝ · n)2Ŝi(Ŝ · n)2 = (Ŝ · n)Ŝi(Ŝ · n) = ni(Ŝ · n), (A2)

(Ŝ · n⊥1)2 + (Ŝ · n⊥2)2 + (Ŝ · n)2 = 2Ŝ0, (A3)

(Ŝ · n⊥1)Ŝi(Ŝ · n⊥1) + (Ŝ · n⊥2)Ŝi(Ŝ · n⊥2)

+ (Ŝ · n)Ŝi(Ŝ · n) = Ŝi, (A4)

(Ŝ · n⊥1)ŜiŜ j (Ŝ · n⊥1) + (Ŝ · n⊥2)ŜiŜ j (Ŝ · n⊥2)

+ (Ŝ · n)ŜiŜ j (Ŝ · n) = −Ŝ j Ŝi + 2δi j Ŝ0. (A5)

An arbitrary unit vector n′ is expressed as

n′ = n⊥1 sin θ cos φ + n⊥2 sin θ sin φ + n cos θ, (A6)

where θ denotes the angle between n and n′ and φ denotes the
azimuth angle in the n⊥1-n⊥2 plane.

Using Eqs. (A1) to (A5), we can calculate the following
integrals as:

∫ 2π

0

∫ π

0
dθdφ|u(k − k′)|2(Ŝ · n′) = (Ŝ · n)V 2

1 (k, k′), (A7)
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∫ 2π

0

∫ π

0
dθdφ|u(k − k′)|2(Ŝ · n′)2

=
(

3

2
V 2

2 (k, k′) − 1

2
V 2

0 (k, k′)
)

(Ŝ · n)2

+ [
V 2

0 (k, k′) − V 2
2 (k, k′)

]
Ŝ0, (A8)

∫ 2π

0

∫ π

0
dθdφ|u(k − k′)|2n′

xŜ0 = V 2
1 (k, k′)nxŜ0, (A9)

∫ 2π

0

∫ π

0
dθdφ|u(k − k′)|2n′

x(Ŝ · n′)

=
(

3

2
V 2

2 (k, k′) − 1

2
V 2

0 (k, k′)
)

nx(Ŝ · n)

+ 1

2

[
V 2

0 (k, k′) − V 2
2 (k, k′)

]
Ŝx, (A10)

∫ 2π

0

∫ π

0
dθdφ|u(k − k′)|2n′

x(Ŝ · n′)2

= 1

2
[V 2

1 (k, k′) − V 2
3 (k, k′)]Ŝx(Ŝ · n)

+ 1

2

[
V 2

1 (k, k′) − V 2
3 (k, k′)

]
(Ŝ · n)Ŝx

+ [
V 2

1 (k, k′) − V 2
3 (k, k′)

]
nxŜ0

+
(

5

2
V 2

3 (k, k′) − 3

2
V 2

1 (k, k′)
)

nx(Ŝ · n)2. (A11)

APPENDIX B: BETHE-SALPETER EQUATION

From Appendix A, the Bethe-Salpeter equation becomes
Eq. (B1) where Ji = Ji(k, ε + is0, ε + is′0), J ′

i = Ji(k′, ε +
is0, ε + is′0),V 2

i = V 2
i (k, k′), x = x(k′, ε + is0), x′ =

x(k′, ε + is′0), and so on,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

J0

J1

J2

J3

J4

J5

J6

J7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
∫

k′2dk′

(2π )3
ni

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V 2
0 0 1

2V 2
0 − 1

2V 2
2 V 2

0 − V 2
2 V 2

0 − V 2
2 0 0 0

0 5
2V 2

3 − 3
2V 2

1 0 0 0 0 0 0
0 0 3

2V 2
2 − 1

2V 2
0 0 0 0 0 0

0 0 0 3
2V 2

2 − 1
2V 2

0 0 0 0 0
0 0 0 0 3

2V 2
2 − 1

2V 2
0 0 0 0

0 1
2V 2

1 − 1
2V 2

3 0 0 0 V 2
1 0 0

0 1
2V 2

1 − 1
2V 2

3 0 0 0 0 V 2
1 0

0 V 2
1 − V 2

3 0 0 0 0 0 V 2
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T̂

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

J ′
0

J ′
1

J ′
2

J ′
3

J ′
4

J ′
5

J ′
6

J ′
7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B1)

where the matrix T̂ is defined as

T̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xx′ 0 0 0 0 0 0 0
T01 T11 T21 T31 T41 T51 T61 T71

T02 T12 T22 T32 T42 T52 T62 T72

zx′ 0 0 T33 0 yx′ 0 0
xz′ 0 0 0 T44 0 xy′ 0
yx′ 0 0 yx′ 0 T55 0 0
xy′ 0 0 0 xy′ 0 T66 0
0 0 0 0 0 0 0 xx′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B2)

Here, the matrix elements Ti j in the second line of T̂ are given
by

T01 = yz′ + zy′, (B3)

T11 = xx′ + xz′ + yy′ + zx′ + zz′, (B4)

T21 = xy′ + yx′ + yz′ + zy′, (B5)

T31 = xy′ + yz′ + zy′, (B6)

T41 = yx′ + yz′ + zy′, (B7)

T51 = xz′ + yy′ + zz′, (B8)

T61 = yy′ + zx′ + zz′, (B9)

T71 = xz′ + yy′ + zx′ + zz′, (B10)

Ti j in the third line are given by

T02 = yy′ + zz′, (B11)

T12 = xy′ + yx′ + yz′ + zy′, (B12)

T22 = xx′ + xz′ + yy′ + zx′ + zz′, (B13)

T32 = xz′ + yy′ + zz′, (B14)

T42 = yy′ + zx′ + zz′, (B15)

T52 = xy′ + yz′ + zy′, (B16)

T62 = yx′ + yz′ + zy′, (B17)

T72 = xy′ + yx′ + yz′ + zy′, (B18)

and, the others are given by

T33 = xx′ + zx′, (B19)

T44 = xx′ + xz′, (B20)

T55 = xx′ + zx′, (B21)

T66 = xx′ + xz′. (B22)

By solving these eight self-consistent equations, J0−J7 are
determined.
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