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Recent years have witnessed the rising of halide perovskites for potential applications in photovoltaic and
optoelectric devices. Due to the tilting motions of the octahedrons and rattling of the filling atoms, cubic halide
perovskites show strong anharmonicity and imaginary frequencies in the phonon dispersion, which brings a
great challenge to the prediction of carrier transports based on many-body theory. We have investigated the
effect of quartic lattice anharmonicity on the carrier transports of cubic CsSnI3 and CsPbI3 in a comparative
perspective by first-principles calculations. The hybrid functional of HSE06 was employed to get accurate band
gaps and the self-consistent phonon method was used to renormalize interatomic force constants. Based on
the electron-phonon Wannier interpolation and Boltzmann transport equation, the carrier mobilities and mode-
resolved scattering rates were calculated and the dominant scattering channels were analyzed. Our results reveal
that the mobility takes 595.9 and 84.5 cm2/Vs at room temperature for cubic CsSnI3 and CsPbI3, respectively,
in good agreement with the experiment results. The longitudinal stretching mode of the Sn(Pb)-I bond with
frequency of 120 cm−1 plays a dominant role in carrier scattering. In comparison, the acoustic modes and the
rattling modes have a negligible effect on carrier scattering. Calculations of the band scattering rates show that
deep valleys emerge at the band edges for both the highest valence band and the lowest conduction band, which
is responsible for the slow relaxation of hot carriers. The strength of intraband electron-phonon coupling (EPC)
between the band edge and the Sn(Pb)-I bond stretching mode is far larger than those of other modes, which leads
to the dominant scattering in carrier transport. Compared with the harmonic approximation of atom interactions,
the inclusion of quartic anharmonicity leads to the enhancement of atom interactions, which decreases the EPC
strength and consequently increases the carrier mobilities.
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I. INTRODUCTION

Recently, halide perovskites have attracted extensive at-
tention due to the potential application in high-efficiency
photovoltaics, laser, and light-emitting diode devices [1–4].
The formula of halide perovskites takes ABX 3 [A = Cs+, for-
mamidinium (FA+), methylammonium (MA+); B = Sn, Pb;
X = Cl, Br, I], where the atoms A fill the void formed by the
octahedrons BX 6. Due to the rotation of octahedrons BX 6,
a phase transition easily occurs as temperature changes in
halide perovskites. For instance, when temperature decreases
from 673 to 300 K, CsSnI3 sequentially undergoes four phase
transitions, i.e., α, β, γ , and Y phases [5]. Theoretical studies
reveal that the void space decreases when the octahedrons
rotate so that the halide atoms bond to the filling atom
more tightly [6,7]. The continuous phase transitions in halide
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perovskites deteriorate the conversion efficiency of photo-
voltaics, and therefore it is crucial to anchor the octahedrons
by various strategies. Experimentally, by adding large organic
ions FA+ and MA+ into lead halide perovskites [8] or surface
modification [9], the stability of the cubic phase can be greatly
improved.

From the perspective of lattice dynamics, the rotation of
octahedrons BX 6 will lead to the instability of cubic-phase
halide perovskites, which shows the imaginary frequency in
the phonon dispersions. The states of cubic halide perovskites
are located at the energy saddle point and the systems will
experience two energy minima if the atoms are collectively
displaced along the eigenvectors of the soft phonon mode
[10,11]. Besides the rotation of octahedrons, the filling atoms
rattle in the large void surrounded by the octahedrons, which
gives rise to a low-frequency rattling mode. Experimental
studies indicate that the rattling mode heavily scatters the
acoustic phonon and hence contributes to high thermal re-
sistivity [12,13]. These low-frequency optical modes together
with acoustic phonon modes couple to the carriers, and
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therefore contribute to the mobility of halide perovskites. Ex-
perimental measurements reveal that the hole mobility reaches
585 cm2/Vs for cubic CsSnI3 at room temperature [5], while
the mobility only takes 80 cm2/Vs for cubic FAPbI3 [14].
The big difference in mobilities between halide perovskites
presents a big puzzle to the researchers; that is, what domi-
nates in the carrier scattering of halide perovskites? Therefore,
it is necessary to explore the origin of the mobility difference
between both halide perovskites. In quantum many-body the-
ory, carriers in semiconductors are scattered by phonon via
electron-phonon coupling (EPC). However, the emergence of
soft modes brings great challenges to the mobility evaluation
since carrier scattering is physically meaningful only for a
positive frequency phonon.

For halide perovskites at high temperatures, the octahe-
drons BX 6 tilt frequently from the energy minima and the
filling atoms rattle largely in the void cage, which leads to
the strengthening of interatomic forces. The renormalization
of interatomic forces will stiffen the soft phonon mode and
enhance the thermal conductivity, as predicated by theoretical
studies [15,16]. Since cubic CsSnI3 and CsPbI3 are strongly
anharmonic materials, the thermal renormalization of inter-
atomic forces will strongly modify the phonon dispersion and
the EPC matrix, which inevitably affects the carrier transports.
Here we study the anharmonic lattice effect on the transport
properties of halide perovskites.

Moreover, experiments have observed slow relaxation time
of hot carriers for cubic halide perovskites. When electrons
of halide perovskites are excited from the valence band to
the conduction band by photons, they will lose the energy by
coupling to the phonon and eventually relax into the band edge
states. Experiments found the relaxation time of 0.4 ps for car-
riers in MAPbI3, which is much slower than those of organic
semiconductors and GaAs films [17–20]. Various mecha-
nisms have been proposed to explain the slow relaxation
of hot carriers, i.e., acoustic-optical phonon up-conversion,
hot-phonon bottleneck [21], and Auger-heating [22]. How-
ever, a direct explanation from numerical calculations is still
absent.

In this article, we have investigated the effect of quartic an-
harmonicity on the carrier transport properties of cubic CsSnI3

and CsPbI3 in the comparative perspective by first-principles
calculations. The hybrid functional of HSE06 [23] was used to
get an accurate band gap as well as the effective charge mass.
The self-consistent phonon calculation was carried out to get
the renormalized interatomic force constants (IFCs) and the
phonon dispersions. Using the Wannier-Fourier interpolation
technique, the EPC matrix was calculated from the renormal-
ized IFCs and the mobilities as well as the mode-resolved
scattering rates were calculated by solving the Boltzmann
transport equation (BTE), and the calculation results were
compared with the experiment results. Based on the calcula-
tions of mode-resolved carrier scattering rates and the EPC
strengths, the carrier scattering channels were analyzed and
the effect of quartic anharmonicity on the carrier transport was
discussed. The rest of the article is organized as follows. In
Sec. II, we introduce our calculation methods and details. In
Sec. III, the calculation results, i.e., carrier mobilities, mode-
resolved scattering rates, and EPC strengths, are analyzed and
discussed. Finally, the conclusion is given in Sec. IV.

II. METHODS AND CALCULATION DETAILS

A. Method of electron transport calculation

When electrons are driven by an electric field though the
perfect crystal of the semiconductor at finite temperature, they
will be scattered into new states by the ions vibrating under the
equilibrium positions. This leads to the resistivity and carrier
mobility at finite temperatures. Within the scheme of BTE, the
current density along the α direction can be expressed as [24]

Jα = − e

(2π )3

∑
n

∫
fnkvnk,αdk, (1)

where fnk and vnk are the Fermi-Dirac distribution and elec-
tron velocity, respectively, with the band index n and the
momentum h̄k. Considering Jα = ∑

β enμαβEβ , the electron
mobility can be expressed as the derivative of Jα with respect
to the electric field,

μe
αβ = −

∑
n∈CB

∫
vnk,α∂Eβ

fnkdk∑
n∈CB

∫
f 0
nkdk

. (2)

The contribution to ∂Eβ
fnk comes from two parts, i.e., the drift

of fnk under the electric field as well as the excitations of elec-
trons and holes by colliding with ions. In a small electric field,
i.e., eEβ�β � kBT (�β is the mean free path of the electron),
the excitation of the electron and holes from the Fermi sphere
can be neglected and the electron mobility can be solved by
integration under self-energy relaxation time approximation
[25] (SERTA). The k-dependent scattering rate, γnk = 1/τ 0

nk,
can be derived from Fan-Migdal electron self-energy as fol-
lows [25]:

1

τ 0
nk

= 2π

h̄

∑
mν

∫
dq

BZ

|gmnν (k, q)|2

× [(
1 + nqν − f 0

mk+q

)
δ(εnk − εmk+q − h̄ωqν )

+ (
f 0
mk+q + nqν

)
δ(εnk − εmk+q + h̄ωqν )

]
. (3)

In the above equation, gmnν (k, q) is the matrix element of
EPC, which represents the probability amplitude of electron
scattering from the state |nk > to |mk + q > by absorbing
a phonon of |qν >. It can be calculated by the following
equation:

gmnν (k, q) =
√

h̄

2Mωqν

〈
nk

∣∣∣∣∂VKS

∂uqν

∣∣∣∣mk + q
〉
, (4)

where M and ωqν are the mass of the unit cell and the angular
frequency of phonon |qν >. ∂VKS

∂uqν
is the deformation potential

with respect to the displacement of phonon |qν >, which can
be calculated by the density functional perturbation theory
(DFPT) [26].

To obtain accurate carrier mobilities, the Wannier-Fourier
interpolation technique was used to evaluate Eqs. (2) and
(3) with very dense k(q) mesh, as implemented in the EPW

code [27]. This technique first transforms the Hamiltonian,
dynamical matrix, and EPC matrix elements into the Wannier
representation by maximally localized Wannier functions [28]
with coarse k(q) mesh, and then transforms them back to
the Bloch representation with very fine k(q) mesh. So the
mobility can be calculated more accurately provided that the
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eigenvalues of the electron, phonon frequencies, and EPC
matrix elements have been given by interpolation. The long-
range dipolar interaction arising from Born effective charges
together with the dielectric constants have also been included
in the EPC calculation. Note that in the calculation of EPC
matrix elements, the imaginary frequency of the harmonic
phonon will be truncated to guarantee that the corresponding
carrier scattering is physically meaningful. We set the coarse q
and k mesh to be 4 × 4 × 4 and 8 × 8 × 8 for the calculations
of the phonon and electron eigenvalues, respectively. A fine
mesh of 40 × 40 × 40 was used to achieve the convergent
results. The carrier density in the halide perovskites was set
to be 1017e/cm3.

B. Method of self-consistent phonon calculation

In a perfect crystal, the ions vibrate in the equilibrium
positions and the potential energy can be expanded to a Tay-
lor series of atomic displacements. If the potential well is
parabolic, the vibration is harmonic and the dispersion can
be solved provided that the dynamical matrix is given. For
the crystal of strong anharmonicity, the cubic and quartic
terms of potential expansions must be included, which will
modify the phonon linewidth and frequencies, respectively.
Higher-order potential expansions are generally neglected due
to their trivial contribution to the energy, as verified by the
thermal conductivity calculations of several anharmonic com-
pounds [16,29]. In many-body Green’s function theory, the
anharmonic terms can be treated as the self-energy to the
free phonon Green’s function G0

q(ω). By solving the Dyson
equation, [Gq(ω)]−1 = [G0

q(ω)]−1 − �q(ω), the renormalized
frequency 
q without polarization mixing can be written as
[29]


2
q = ω2

q + 2
qIq(
q), (5)

Iq(
q) = 1

2

∑
q′

h̄�(q,−q, q′,−q′)
4
q
q′

[1 + 2n(
q′ )], (6)

where �(q,−q, q′,−q′) are the quartic IFC, and n(
q) is
the Bose-Einstein distribution function. The renormalized fre-
quency can be given by solving Eq. (5) iteratively, which is
called the self-consistent phonon (SCPH) method [29,30].

In principle, the cubic and quartic IFCs can be calculated
by the finite-difference approach, which generates the config-
urations with irreducible displacements of atoms for density
functional theory (DFT) calculations. However, due to the
rapid increase of irreducible configurations for higher-order
IFCs, the finite-difference approach is very computationally
expensive. Alternatively, we use the method of compressive
sensoring lattice dynamics [31] to estimate the anharmonic
IFC. The ab initio molecular dynamics (AIMD) of the Car-
Parrinello method [32] was used to simulate the thermal
equilibrium states of system with the size of 2 × 2 × 2. The
Nose-Hoover thermostats [33] were used to stabilize the
temperature of the canonical ensemble at 430 K. The total
simulation time lasts for 12 ps, with the time step of 2 fs
to update the configuration. The former 6 ps was used to
achieve the thermal equilibrium state and the latter 6 ps was
used for randomly sampling 160 configurations. The atoms

of the sampled configurations were displaced by 0.1 Å along
random directions. After self-consistent DFT calculations, the
sparse solution of the displacement-force sets was solved by
the least absolute shrinkage and selection operator (LASSO)
technique [29] with the cutoff radius of quartic IFC set to be
7.4 Å. The effect of Fock exchange on IFC was not included
since IFC is less sensitive to the band-gap variation. By the
SCPH method, the renormalized harmonic IFC as well as the
dynamical matrix can be obtained, which is used for further
calculations of the EPC matrix. Hence, the effect of quartic
lattice anharmonicity is naturally included in the EPC matrix.

C. Details of density functional calculation

We carried out the study on the electronic structures and
transport properties of halide perovskites by first-principles
calculations based on the plane-wave method, as imple-
mented in the QUANTUM ESPRESSO (QE) computing package
[34]. Full-relativistic optimized norm-conserving Vanderbilt
(ONCV) pseudopotentials of the Perdew-Burke-Ernzerhof
(PBE) form [35,36] were used for the elements of Cs, Sn, Pb,
and I, with the shell configurations of 5s2 p66s1, 4d105s2 p2,
5d106s2 p2, and 5s2 p5, respectively. The plane waves were
expanded up to 70 Ry, and the criterion of 10−9 Ry was used
for energy convergence. The k mesh of 15 × 15 × 15 was
used for the energy integration of the PBE calculations. The
hybrid functional of HSE06 [23], together with the optimized
fraction of Fock correlation 0.17 (0.24) for CsSnI3 (CsPbI3)
and k mesh of 8 × 8 × 8, was used to achieve the band gap
close to the experimental results.

III. RESULTS AND DISCUSSION

A. Electronic and phonon dispersions

The cubic phase of halide perovskites CsSnI3 (CsPbI3) has
the space group of Pm3m (No. 221) with three irreducible
Wyckoff positions (0,0,0), (1/2, 1/2, 1/2), and (0,1/2,1/2)
occupied by one Cs, one Sn (Pb), and three I atoms. The
Sn (Pb) atom is bonded to six nearest-neighbor I atoms,
which forms the octahedral SnI6. Cs donates one 6s electron
completely and weakly bonds to the cage of the connected
SnI6. We carried out density functional calculations on the
band structures of halide perovskites by including spin-orbital
coupling (SOC). As shown in Figs. 1(a) and 1(b), CsSnI3 and
CsPbI3 of the cubic phase belong to the semiconductors of
the direct band gap, with the valence band maximum (VBM)
and conduction band minimum (CBM) located at the R point
of the Brillouin zone. The conduction bands are mainly con-
tributed from the 5p (6p) orbits of Sn (Pb) and 6s orbits of I,
while the valence bands consist of the 5p orbits of I and 5s
(6s) orbits of Sn (Pb). It is found that the PBE functional sig-
nificantly underestimates the band gap of halide perovskites
since Eg only takes 0.06 and 0.20 eV for CsSnI3 and CsPbI3,
respectively, which are far less than the experimental values
of 1.3 and 1.8 eV [5]. Therefore, we used the hybrid func-
tional [23] of HSE06 to improve the band-gap calculations. In
Figs. 1(a) and 1(b), the band gaps have been improved to 1.15
and 1.86 eV for CsSnI3 and CsPbI3, in good agreement with
the experiment values.
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FIG. 1. (a),(b) Band structures of the cubic phase (a) CsSnI3 and
(b) CsPbI3 calculated by PBE + SOC (color mapped) and HSE +
SOC (gray), respectively. The p orbits of the Sn (Pb) and I atoms are
weighted by color mapping to the conduction and valence bands, re-
spectively. The Fermi level is set to be zero. (c),(d) Chemical bonding
of orbital pairs for (c) Sn-I and (d) Pb-I in the halide perovskites.

To analyze the chemical bonding of the band edges, we
carried out the calculations on the projected crystal orbital
Hamiltonian population [37] (COHP) for both halide per-
ovskites. Figure 1(c) shows that the conduction band edge
arises from the antibonding states between 6s of I and 5p
of Sn, while the valence band edge is mainly contributed by
the antibonding states between 5p of I and 5s of Sn. It is
found that the bonding and antibonding states between the 5p
orbits of I and Sn are far beneath and above the Fermi level,
respectively. Similar bonding states occur to CsPbI3, as shown
in Fig. 1(d).

By fitting the band edges to the parabolic function, the
effective mass of carriers, m�

h(e), can be derived. Fitting of
PBE + SOC band structures reveals that m∗

h(e) is spatially
isotropic for both halide perovskites and it gives m∗

h = m∗
e =

0.022 for CsSnI3 and m∗
h = m∗

e = 0.053 for CsPbI3. When the
Fock correlation is included, the band gap is further enlarged
by enhanced Coulomb repulsion from the p orbits, which

(a)

(b)

(c)

(d)

FIG. 2. (a),(b) Phonon dispersions for (a) CsSnI3 and (b) CsPbI3.
The dotted and solid lines represent the harmonic and anharmonic
dispersions calculated by the DFPT and SCPH methods, respectively.
The anharmonic dispersions were calculated by SCPH for both
halide perovskites at 400 K. (c),(d) Atom-projected density of states
(PDOS) for (c) CsSnI3 and (d) CsPbI3, respectively. The shaded areas
represent the PDOS of the I atoms calculated by DFPT.

reduces the dispersion at the band edge. As expected, m∗
h (m∗

e )
increases to 0.078 (0.105) for CsSnI3, and 0.131 (0.120) for
CsPbI3, as listed in Table I. Since m∗

h of CsPbI3 is about twice
the effective hole mass of CsSnI3, the much smaller mobility
of the former cannot be attributed to the band velocity.

Figure 2 shows the phonon dispersions of halide per-
ovskites calculated by both the DFPT and SCPH methods.
The anharmonic phonon dispersions have been calculated by
the SCPH method at 400 K. As shown in Fig. 2(a), large imag-
inary frequencies are found at the R point for the harmonic
dispersion of CsSnI3. These imaginary-frequency modes arise
from the rotating instability of octahedrons SnI6 around the
c crystal axis since the projected density of states (PDOS)
of I spans to the imaginary-frequency region, as shown in
Fig. 2(c). Polarization corrections were also included in the

TABLE I. Calculation results of halide perovskites. Eg(PBE) and Eg(HSE), in units of eV, are the band gaps calculated by the PBE and
HSE functionals with SOC interaction. The effective carrier mass, m∗

h(e), takes the unit of the electron static mass. Hole (electron) mobility
μh(e) and relaxation time τh(e) are in units of cm2/Vs and fs. ε and Z∗ are the static dielectric constant and Born effective charge (in units of e),
respectively. Z∗‖

I and Z∗⊥
I denote the Born effective charge of I along and perpendicular to the Sn-I bond, respectively.

Eg(PBE) Eg(HSE) m∗
h m∗

e μh μe τh τe ε Z∗
Cs Z∗‖

I Z∗⊥
I Z∗

Sn/Pb

CsSnI3 0.06 1.15 0.105 0.078 595.9 239.9 29.7 19.3 7.92 1.38 −5.41 −0.81 5.78
CsPbI3 0.20 1.86 0.120 0.131 84.5 125.3 11.1 12.9 6.82 1.38 −4.95 −0.84 5.31
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(c) (d) (e) (f)

(a) (b)

FIG. 3. (a),(b) Mean-square displacements < u2
xx > of irreducible atoms for (a) CsSnI3 and (b) CsPbI3. I1, I2, and I3 atoms bond to the

center Sn atom from the directions of x, y, and z, respectively. Open and solid symbols display the results of DFPT and SCPH, respectively.
Data points are fitted linearly. (c)–(f) Atom displacements of phonon modes (c) LO1, (d) LO2, (e) LO3, and (f) LO4 in the center of the Brillouin
zone. Cyan, magenta, and gray spheres represent Cs, I, and Sn(Pb) atoms, respectively.

phonon calculations by considering the dipolar interactions
between the Born effective charges. Large longitudinal optical
(LO) and transverse optical (TO) phonon splitting occurs to
the modes T1u of which the LO branch shifts from 56.9 to
125.8 cm−1, due to the macroscopic electric field in polar
materials. Also, flat phonon bands around 10 cm−1 can be
attributed to the rattling modes of Cs, which corresponds to
a PDOS peak. For CsPbI3, the imaginary-frequency modes
come from the motions of I and Cs, as shown in Figs. 2(b)–
2(d). LO-TO splitting has pushed the longitudinal T1u mode to
115.7 cm−1. When the quartic anharmonicity is included, the
interatomic forces between Cs and I have been strengthened.
Consequently, the low-frequency modes related to the I and
Cs atoms have been stiffened to 30 and 36 cm−1 for CsSnI3.
Similar frequency stiffening has also occurred to CsPbI3. It
is noticed that frequency renormalization mainly occurs to
those phonon modes with frequency below 20 cm−1, namely,
the rotating modes of octahedrons and the rattling modes of
Cs, while those modes with high frequencies have been less
stiffened.

Further, we calculated the mean-square displacements
(MSDs) of atoms for the halide perovskites by both harmonic
and anharmonic approximations, as shown in Figs. 3(a) and
3(b). In the harmonic approximation, the soft phonon modes
are truncated to ensure MSDs only come from the modes with
positive frequency. Under the cubic point symmetry, the MSD
is spatially isotropic for the Cs and Sn atoms, i.e., < u2

xx >=<

u2
yy >=< u2

zz >, while it reduces to be anisotropic for I atoms
in the directions parallel and perpendicular to the Sn-I bond,

i.e., < u2
‖ >�=< u2

⊥ >, due to the local bonding of Sn, as
shown in Fig. 3(a). Under harmonic approximation, MSD
takes 0.380 and 0.040 Å2 for Cs and Sn at 500 K, while it
takes 0.034 and 0.198 Å2 for I atoms along and perpendicular
to the Sn-I bond. The larger MSD of Cs means that it locates
in the flatter potential well and prefers to rattling motion in
the void cage. In contrast, Sn has much smaller MSD due
to its covalence bonding to I. It is found that the I atom has
strong anisotropic MSD, indicating a preferable distortion of
octahedron SnI6. By considering the quartic anharmonicity,
MSD has significantly reduced for Cs and I atoms because
of the renormalization of the interatomic forces. For instance,
it takes 0.097 and 0.029 Å2 for Cs and Sn atoms, and 0.026
and 0.119 Å2 for I atoms parallel and perpendicular to the
Sn-I bond, which is close to the experimental values [5]
(Cs: U11 = 0.154 Å2; Sn: U11 = 0.049 Å2; I: U11 = 0.040,
U22 = 0.215 Å2) [5]. As the temperature increases, the MSD
increases linearly. For CsPbI3, the calculation of the DFPT
gives an even larger MSD than that of CsSnI3, as shown in
Fig. 3(b). When the quartic anharmonicity is considered, the
thermal displacements are reduced significantly, i.e., 0.120
and 0.035 Å2 for Cs and Pb, respectively, as well as 0.030 and
0.139 Å2 for I atoms at 600 K, which is close to the experi-
mental results [38] (Cs: U11 = 0.182 Å2; Pb: U11 = 0.058 Å2;
I: U11 = 0.035, U22 = 0.282 Å2).

In the charge transports of semiconductors, the longitu-
dinal phonon usually scatters carriers heavily via EPC. By
analyzing the collective motions of phonon modes at the �

point, we find that five longitudinal modes dominate in halide
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(a)

(b)

FIG. 4. Carrier mobilities calculated by the BTE method for
(a) CsSnI3 and (b) CsPbI3, respectively. Data are fitted according
to the power law. Carriers are scattered by the phonon with both
harmonic (DFPT) and anharmonic (SCPH) approximations.

perovskites, namely, one acoustic mode and four optical
modes, as shown in Figs. 3(c)–3(f). As can be seen, LO1

represents the rattling motion of Cs relative to SnI6. LO2 and
LO3 mainly characterize the distortion of SnI6, while the LO4

mode represents the stretching motion of the Sn-I bond. The
frequency at the � point takes 32.5 (23.7), 42.9 (26.5), 59.0
(41.3), and 131.7 (117.2) cm−1 as the mode counts from LO1

to LO4 for CsSnI3 (CsPbI3). Compared to other LO modes,
the LO4 mode has the largest frequencies in the phonon dis-
persion. We will discuss the effect of these phonon modes on
carrier scattering in the subsequent sections.

B. Mobility and relaxation time

In order to investigate the anharmonicity effect of the
phonon on the charge transport, we calculated the EPC ma-
trix elements by Eq. (4), for which the eigenvectors of the
electrons were calculated by hybrid functionals, while the
eigenvectors and eigenvalues of the phonon were calculated
by both the DFPT and SCPH methods. After interpolating
the EPC matrix to fine q and k mesh of size 40 × 40 × 40,
the carrier mobilities were calculated by solving BTE with
SERTA.

For CsSnI3, carriers scattered by the anharmonic phonon
have larger mobilities than those scattered by the harmonic
phonon, as shown in Fig. 4(a). At 300 K, mobility takes 595.9
cm2/Vs for holes scattered by the anharmonic phonon, in
good agreement with the experiment result (585 cm2/Vs) [5].
In contrast, the mobility of holes scattered by the harmonic
phonon takes 505.1 cm2/Vs, indicating an overestimated scat-
tering of carriers. As the temperature increases, the mobilities

decay by following the power law μ = aT −α , where α takes
1.41 and 1.74 for the hole and electron, respectively. For
cubic CsPbI3, our results reveal that electron carriers have
larger mobility than hole carriers, i.e., μe = 125.3 and μh =
84.5 cm2/Vs at 300 K, as shown in Fig. 4(b). Recent experi-
ments have verified that the electron mobility is much higher
than the hole mobility for cubic CsPbI3 [39], and our result
is consistent with the experiment measurements. Transport
experiments reveal that μh takes ∼10–30 cm2/Vs for cubic
phase CsPbI3 [40–42], ∼38–40 cm2/Vs for MAPbI3 [43,44],
and 80cm2/Vs for FAPbI3 [14]. Also, a DFT calculation pre-
dicts that the upper limit of the hole mobility takes 80 cm2/Vs
for cubic CsPbI3 at room temperature [45], which is in good
agreement with our results. For CsPbI3, the exponent α takes
1.28 and 1.18 for hole and electron carriers, respectively. The
exponent α is found to be nearly the same for carriers scattered
by harmonic and anharmonic phonons. It is well known that
the exponent α will take 1.5 when the acoustic phonon domi-
nates in the carrier scattering. Recently, transport experiments
on halide perovskites have reported that the exponent α takes
1.5 for MAPbI3 [46,47], ∼1.46–1.5 for cubic MAPbBr3 and
CsPbBr3 [48,49], as well as ∼1.54–2.04 for lead halide per-
ovskites nanowires [50]. Our fitting exponents are close to the
experiment results. Although bulk halide perovskites of the
cubic phase are not energetically favored at room temperature,
they can survive in nanowires [51] or thin films [52] for a long
time. Nevertheless, the continuous transition to orthorhombic
phases enlarges the band gap and the effective mass of carriers
[53], which inevitably lowers the carrier mobility.

In the EPC picture, the relaxation time τ characterizes
the timescale in which carriers are scattered into other states
by the phonon. The electric conductivity is related to the
relaxation time by the equation σ = ne2τ/m∗. Large τ usually
means good electric conductivity. The electron relaxation time
τe can be calculated via the equation τe = ∑

k τk fk/
∑

k fk ,
where τk is the k-dependent relaxation time and fk is the
distribution function. For hole carriers, the relaxation time τh

can be obtained by replacing fk to 1 − fk . The relaxation time
has been calculated for both halide perovskites by considering
the carrier scattering arising from harmonic and anharmonic
phonons, as shown in Fig. 5. As temperature increases, the
decay of relaxation time can be well fitted in the power law
τ = ae−β . The exponent β takes ∼1.09–1.10 and ∼1.25–1.27
for hole and electron carriers of CsSnI3, respectively, as shown
in Fig. 5(a). In comparison to CsSnI3, the exponent β remains
to be 1.09 for hole carriers, while it decreases to 1.11 for
electron carriers, as shown in Fig. 5(b). When carriers are
scattered by the anharmonic phonon, the decay exponent is
found to be nearly unchanged, while the relaxation time is
enhanced significantly for both halide perovskites. At 300 K,
τh of CsSnI3 increases from 25.3 to 29.7 fs after the renor-
malization of interatomic forces. Similarly, τh of CsPbI3 is
enhanced from 7.4 to 11.1 fs due to the strengthened inter-
atomic bonding.

C. Mode-resolved scattering rates

Usually, carriers in semiconductors are predominantly
scattered by LA and LO modes, which heavily contributes
to resistivity. The LA mode causes the volume variation of
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(a)

(b)

FIG. 5. Relaxation time of hole and electron carriers for
(a) CsSnI3 and (b) CsPbI3, respectively. Curves are the fittings ac-
cording to the power law.

crystal and consequently leads to the shifts of band edges
[54,55], while LO modes couple to carriers via the polar-
ization field, namely, the Fröhlich interaction [56,57]. To
determine the dominant phonon mode in carrier scattering,

we calculated the mode-resolved scattering rates for both
halide perovskites, that is, the summation of the phonon mode
in Eq. (3) is replaced by a specified mode. As shown in
Fig. 6, we plotted the logarithmic-scaled scattering rates ver-
sus temperature for five longitudinal modes of both halide
perovskites. The collective atom motions of the LO modes
have been schematically plotted in Figs. 3(c)–3(f) and dis-
cussed in Sec. III A. For CsSnI3, it is found that the LO4

mode predominantly contributes to the scattering rates, with
typical rates of ∼1–10 ps−1 for the hole and electron car-
riers, as shown in Figs. 6(a) and 6(b). This indicates that
the stretching motion of the Sn-I bonds does greatly affect
the carrier transport via the Fröhlich interaction. We have
calculated the Born effective charges of halide perovskites to
verify the large polarization field in the halide perovskites, as
listed in Table I. It is found that I and Sn atoms have large
Born effective charges, i.e., Z∗‖

I = −5.41 and Z∗
Sn = 5.78. The

large anisotropy of the Born effective charge of the I atom
indicates that the polarization field is mainly along the Sn-I
bond, which couples to carriers via the Fröhlich interaction.
Since carriers transport mainly through the bands formed by
5p orbits of Sn and I, it can be expected that the stretching
motion of the Sn-I bond will heavily scatter the carriers in
the highest valence band (HVB) and lowest valence band
(LCB).

Recently, experiments on the photoluminescence of lead
halide perovskites [58–61] have revealed that hot carriers
are mainly cooled by coupling to the LO mode with energy
of 15.0 meV (about the frequency of 121 cm−1). Note that
the frequency of the LO4 mode at the � point takes 131
and 117 cm−1 for CsSnI3 and CsPbI3, respectively, which is
in good agreement with the experiment results [58–61]. In
comparison, the Cs atom has smaller Z∗, indicating weaker

)b()a(

(c) (d)

FIG. 6. (a),(b) Mode-resolved scattering rates for (a) hole and (b) electron carriers of CsSnI3. (c),(d) Mode-resolved scattering rates for
(c) hole and (d) electron carriers of CsPbI3. Open symbols represent the scattering rates scattered by the harmonic phonon (DFPT), while the
solid symbols mark the rates scattered by the anharmonic phonon (SCPH). Curves are the fittings according to the power law.
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polarization for the rattling motions. Indeed, the scattering
rate contributed by the rattling mode only accounts for a
thousandth rate of the bond stretching mode for both carriers
at 300 K. It is noticed that the LO2 mode contributes the
least scattering rate compared with other longitudinal modes.
This means that the distortion of octahedron SnI6 does not
significantly affect the carrier mobilities since it does not vary
the length of the Sn-I bond. Also, the longitudinal acoustic
mode LA contributes a trivial scattering rate compared with
the LO4 mode, which is consistent with the experiment results
[58]. It is noticed that the scattering rates of low-frequency
modes, i.e., LO1 and LO2, have decreased significantly after
the renormalization of the interatomic forces. However, the
scattering rate of high-frequency mode LO4 only decreases
a little. For the LO4 mode, the scattering rate of holes at
300 K decreases by 7% when the quartic anharmonicity is
included. This leads to the enhancement of mobility for hole
carriers after the renormalization of the interatomic force. As
the temperature increases, the rates increases in the power law
γ = aT η. For CsSnI3, the exponent η usually decreases as the
frequencies of the LO modes increase, and hole carriers have
larger η than the electron carriers.

Similar to CsSnI3, the carrier scattering rate of CsPbI3 pre-
dominantly comes from the LO4 mode, as shown in Figs. 6(c)
and 6(d). For hole carriers, the scattering rate of LO4 at 300 K
is one order larger than that of CsSnI3. Besides the LO4 mode,
the contribution of the LO3 mode accounts for 20% of the
total scattering rate, indicating another important scattering
source. Due to strong scattering, the exponents η of CsPbI3 are
significantly lower than those of CsSnI3 accordingly. When
the quartic anharmonicity is included, the scattering rates de-
crease significantly for those low-frequency modes, similar to
the case of CsSnI3.

Experimentally, the slow relaxation time of hot carriers has
been observed in halide perovskites by photoluminescence
spectra [17–19]. Hot carriers were excited by photons with
energy of 3.1 eV and the relaxation time lasted 0.4 ps for holes
and electrons [18,19]. To explore the origin of slow relaxation
time, we calculated the k-dependent scattering rates at 300 K
for both HVB and LCB, as plotted in Fig. 7. For CsSnI3, the
band scattering rates show deep valleys at the point R and they
nearly overlap each other along the k-path MRZ , as shown
in Fig. 7(a). Near the band edge, the band scattering rates
contributed by the LO4 mode almost overlap with the total
rates, indicating the dominant role of LO4 in carrier scattering.
Similar behaviors have also been found in CsPbI3, as shown in
Fig. 7(b). Nevertheless, the scattering valley is much deeper in
CsPbI3 than that in CsSnI3, indicating a longer relaxation time
of hot carriers for the former. Taking CsPbI3 as an example,
we can estimate the relaxation time of hot carriers for lead
halide perovskites in the experimental measurements. Elec-
trons in the valence bands will be pumped into the conduction
bands near the M point without the momentum variation af-
ter absorbing the photons of hν = 3.1 eV, as shown in the
inset of Fig. 7(b). By continuously exciting LO4 phonons of
h̄ω = 15.0 meV, the hot electron and hole will lose the energy
of 0.76 and 0.60 eV, respectively, before relaxing into the band
edges. Taking the middle point value as the average scattering
rate (γ̄ = 110 ps−1), the average time interval is estimated to
be 9 fs (�t = 1/γ̄ ) for hot carriers to emit one LO4 phonon.

(a)

(b)

FIG. 7. Band scattering rates for the HVB and LCB of (a) CsSnI3

and (b) CsPbI3 at 300 K. Rates contributed by total modes (lines with
symbols) and LO4 mode (lines) are both presented. Inset: Schematic
plot of electron hopping from HVB to LCB by adsorbing the photon
of 3.1 eV.

The relaxation time is estimated to be 0.45 and 0.36 ps for hot
electrons and holes, respectively, in good agreement with the
experiment results [18,19].

D. Electron-phonon coupling strength

As we have discussed above, the LO4 mode plays an im-
portant role in the carrier scattering for halide perovskites. It
is instructive to explore the origin of carrier scattering from
the EPC strength. In a small electric field, carriers are mainly
scattered into new states within the same band, that is, the
intraband scattering is predominant in carrier transport. Thus,
we calculated the mode-resolved intraband EPC strength for
both the HVB and LCB, as shown in Fig. 8. The phonon
dispersions have been renormalized at 400 K by the SCPH
method to include the quartic anharmonicity in the EPC cal-
culations. Since the EPC strength in Eq. (4) is both k and q
dependent, we have averaged the strength over the q mesh of
20 × 20 × 20 in the Brillouin zone so that it is only k depen-
dent. For the HVB of CsSnI3, the EPC strength of LO4 far
exceeds those of other modes, showing a plateau with the typ-
ical value of 30 meV along the k path, as shown in Fig. 8(a). At
the point R, EPC strength of LO4 reaches 29.8 meV, which is
about six times larger than those of other modes. As expected,
the LO2 mode has the lowest EPC strength, consistent with its
least scattering rate in CsSnI3. Interestingly, the EPC strengths
show dips at the point R for the HVB of CsSnI3, indicat-
ing a weakened carrier scattering at the band edge. When
the interatomic forces are renormalized, the EPC strengths
have decreased significantly for the low-frequency modes,
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(a) (b)

(c) (d)

FIG. 8. (a),(b) Mode-resolved intraband EPC strengths along the k path for the (a) HVB and (b) LCB of CsSnI3. (c),(d) Mode-resolved
intraband EPC strengths along the k path for the (c) HVB and (d) LCB of CsPbI3. The dotted and solid lines represent the EPC strengths
calculated from harmonic and anharmonic phonons (renormalized at 400 K), respectively.

i.e., LA, LO1, and LO2, while the strength of LO4 remains
nearly unchanged, with the variation less than 1%. Due to
the strong stiffening of low-frequency modes, it is expected
that the EPC strengths will decrease significantly after the
renormalization. In comparison, the high-frequency modes
have been little stiffened, giving rise to nearly unchanged EPC
strengths. Compared with the case of HVB, the EPC strengths
of LCB have been enhanced significantly at the R point for the
LA, LO3, and LO4 modes, as shown in Fig. 8(b). Similarly,
the LO2 mode has lowest coupling strength at the R point,
indicating a trivial scattering effect for the distortion of the
octahedron SnI6.

Similar to the case of CsSnI3, the EPC strength of the
LO4 mode also exhibits a plateau for the HVB of CsPbI3,
which indicates a strong coupling to hole carriers, as shown
in Fig. 8(c). Abrupt dips of the EPC strengths emerge at the R
point when the HVB couples to the phonon modes rather than
LO4. For the LCB of CsPbI3, the EPC strengths are enhanced
overall at the point R and no dips are observed, indicating an
enhancement of electron scattering.

Furthermore, we calculated the derivative of the Kohn-
Sham potential with respect to the displacements of longitu-
dinal optical modes at the R point for both halide perovskites.
The collective atomic displacement A was set to be 0.01 Å and
the ground state without atomic displacements was used as
the reference. The atoms in the unit cell were displaced along
the phonon eigenvectors with the magnitudes proportional to
the projected probability. Namely, for a phonon mode with the
eigenvector φq,ν = ∑

l,α cα
l ei(q·Rl −νt ), we displaced the atom

l along the direction α by uα
l = A|cα

l |2 and calculated the
deformation potential by �E/A. Our calculation results re-
veal that ∂VKS/∂uRν takes 0.102 (0.183), 0.041 (0.081), 0.02
(0.023), and 0.005 (0.024) mRy/Å for CsSnI3 (CsPbI3) as
the mode index ν counts from LO4 to LO1. Therefore, the
large EPC strength of the LO4 mode originates from the large

deformation potential, so that carriers in CsPbI3 couple more
strongly to the LO4 mode than those in CsSnI3.

IV. CONCLUSIONS

We have investigated the effect of quartic anharmonic-
ity on the transporting properties of halide perovskites by
first-principles calculations. The hybrid functional of HSE06
has been employed to get accurate band gaps and the effec-
tive carrier mass is calculated. The self-consistent phonon
calculations indicate that the interatomic forces have been
significantly strengthened and the low-frequency modes have
been stiffened by including the quartic anharmonicity. Our
results reveal that when the quartic anharmonicity of lattices
is considered in the EPC calculations, the hole mobility takes
595.9 and 84.5 cm2/Vs, in good agreement with the exper-
iment results. By calculating the mode-resolved scattering
rates, it is found that the stretching mode of the Sn-I (Pb-I)
bonds with typical frequency values of 120 cm−1 is predomi-
nant in the carrier scattering. The high scattering rates can be
attributed to the Fröhlich interaction between carriers and the
polarization field. The band scattering rates of HVB and LCB
overlap each other and show abrupt dips at the band edges,
indicating a slow relaxation of hot carriers. By calculating the
mode-resolved intraband EPC strengths along the k path in the
Brillouin zone, we find that the LO4 mode has the largest EPC
strength due to its high derivative of potential with respect
to the displacements of the phonon modes. Compared with
the EPC strengths calculated within the approximation of the
harmonic phonon, the quartic anharmonicity leads to smaller
EPC strengths for the low-frequency modes, which results
in the reduction of carrier scattering in halide perovskites.
We hope that our results can benefit future research on the
transporting properties of halide perovskites.
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