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Spin-triplet superconductivity from intervalley Goldstone modes in magic-angle graphene
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We consider magic-angle graphene in the doping regime around charge neutrality, and we study the connection
between a recently proposed intervalley coherent insulator at zero doping and the neighboring superconducting
domes. The magic-angle graphene continuum model has an emergent U(1) valley-charge conservation symmetry
and an emergent SU(2) symmetry corresponding to opposite spin rotations in the two valleys. The intervalley
coherent insulator spontaneously breaks both these emergent symmetries, and as a result has four Goldstone
modes that couple to doped charge carriers. We derive the effective interaction mediated by the Goldstone
modes, and we study its role in electron pair formation. The SU(2) Goldstone modes generate a ferromagnetic
interaction, which is attractive in spin-triplet pairing channels and repulsive in spin-singlet channels. From a
weak-coupling BCS calculation, we find the leading superconducting instability in the p-wave channel.
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I. INTRODUCTION

The experimental discovery of superconductivity in magic-
angle twisted bilayer graphene (MATBG) [1] has spurred a
tremendous interest in developing a theoretical understanding
of the underlying pairing mechanism [2–28]. At present, the
microscopic origin of superconductivity in MATBG is still
under debate. For example, it is not clear whether electron
pairing is the result of phonon exchange, or whether it is
driven by a more exotic mechanism coming from Coulomb
repulsion. It is also equally unclear whether the superconduct-
ing domes are in any way related to the correlated insulating
phases which are observed in transport experiments at certain
integer fillings [29–33] (signatures of these insulating phases
are also seen in spectroscopic measurements [34–39]). This
last question was addressed in more detail in two recent ex-
perimental works [40,41], where superconducting domes in
the doping regimes around two electrons or holes per moiré
unit cell (ν = ±2) were observed without any signature of a
correlated insulator.

In Refs. [31,40], superconducting domes were also ob-
served next to the charge neutrality point. In Ref. [40] it
was found that these domes appear only when the distance
between the MATBG device and the gates is large enough,
i.e., when screening by the metallic gates is sufficiently weak.
This observation suggests that Coulomb repulsion plays an
important role for the origin of superconductivity near charge
neutrality. Interestingly, in the same devices insulating behav-
ior is also observed at charge neutrality [31,40] (a charge gap
was also observed in the tunneling experiments of Ref. [38]).

In Ref. [42] it was proposed that the insulating behavior of
magic-angle graphene at charge neutrality is the result of an
intervalley coherent order that develops at zero temperature.

This order implies that the electron system spontaneously
breaks several continuous symmetries, and therefore hosts
Goldstone modes. The intervalley coherent insulator was
dubbed the K-IVC (Kramers intervalley coherent) insula-
tor [42], because it is invariant under an emergent spinless
Kramers time-reversal symmetry.

In this work, we take the K-IVC insulator of Ref. [42] as
the starting point for a study of superconductivity in MATBG
near charge neutrality. In particular, we investigate the poten-
tial role of the Goldstone modes in the formation of Cooper
pairs. More concretely, we study how the attractive interaction
mediated by the exchange of the Goldstone modes, taken
together with the screened Coulomb interaction, can give rise
to the superconducting instabilities of the doped insulator
near charge neutrality. Importantly, we find that the density
of states of the doped K-IVC insulator is significantly smaller
than that of the “bare” (noninteracting) nearly flat bands of
MATBG at the magic-angle [43–45], which allows us to treat
the problem within a weak-coupling approach. We note that
the role of intervalley Goldstone modes for superconductivity
has also been discussed previously in Ref. [46], where the
authors considered a phenomenological intervalley coherent
insulator in MATBG.

Our main result is that the exchange of intervalley Gold-
stone modes generates an attractive interaction in spin-triplet
Cooper channels only. This can be understood as follows.
At low energies, magic-angle graphene has an emergent
valley U(1) symmetry, and to a very good approximation
also an additional emergent SU(2) symmetry that phys-
ically corresponds to opposite spin rotations in the two
valleys. Intervalley coherent states spontaneously break both
these emergent symmetries, and as a result have four lin-
early dispersing Goldstone modes. Three of these Goldstone
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modes—those corresponding to the broken generators of
SU(2)—generate an effective ferromagnetic interaction be-
tween doped electrons. This interaction is attractive in the
p-wave and repulsive in the s-wave pairing channels. The
Goldstone mode generated by U(1) symmetry breaking is
attractive in both s-wave and p-wave pairing channels. We find
that the overall interaction mediated by the exchange of all
four Goldstone modes pairs electrons in a spin-triplet p-wave
channel and is repulsive in spin-singlet channels.

We perform a weak-coupling BCS-type calculation and
find a superconducting instability in the p-wave channel. The
corresponding dimensionless pairing strength λ grows as a
function of the screening length D, which is consistent with
the observations of Ref. [40]. However, the value λ = 0.12
obtained at the experimentally relevant screening length D =
15 nm is too small to explain the observed superconducting
transition temperature Tc ≈ 0.3 K [40]. We expect that our
naive BCS calculation underestimates Tc. More sophisticated
calculations that allow for a frequency-dependent pairing gap
can potentially produce higher critical temperatures. Our re-
sults do not incorporate the retardation effects that are crucial
to weaken strong Coulomb repulsion in conventional metals.
The absence of retardation poses a serious problem in the
study of superconductivity in low-density materials with a
small Fermi energy [47–49], and we therefore expect that
taking retardation into account will lead to significantly higher
values of Tc.

As found in Ref. [42], the intervalley coherent order at
charge neutrality gets destroyed when the MATBG is aligned
with the hexagonal boron-nitride substrate. The pairing in-
stabilities discussed in this work (which rely on Goldstone
modes resulting from intervalley coherent order) would then
disappear together with it. This could explain why no su-
perconductivity is seen in the substrate-aligned devices of
Refs. [32,33].

The remainder of the paper is organized as follows. In
Sec. II, we start by reviewing the essential properties of the
K-IVC insulator found in Ref. [42]. The properties of the
Goldstone modes of the K-IVC insulator are discussed in
Sec. III. In Sec. IV, we derive the coupling between elec-
trons in the conduction bands of the K-IVC state and these
Goldstone modes (for concreteness, we focus on electron dop-
ing). The effective interaction between the electrons mediated
by the exchange of Goldstone modes is derived in Sec. V.
In Sec. VI, the superconducting instabilities in the presence
of both the Coulomb interaction and the Goldstone mode-
mediated interaction are examined. We end with a discussion
and outlook in Sec. VII. In the Appendixes, we provide
additional details on how to calculate the Goldstone mode
propagator at charge neutrality, and on how to derive an effec-
tive low-energy theory for the doped electron system and the
Goldstone modes. We also give a more thorough discussion of
the analysis of the superconducting instabilities.

II. THE K-IVC INSULATOR AT CHARGE NEUTRALITY

Our starting point is the Kramers intervalley coher-
ent (K-IVC) insulator, which was found to describe the
ground state of magic-angle graphene at charge neutrality
in Ref. [42] (similar states were also discussed previously

FIG. 1. Self-consistent mean-field band structure of the K-IVC
state at charge neutrality along two cuts through the mini-BZ, one
in the x-direction (left panel) and one in the y-direction (right panel).
The parameters that were used in the BM Hamiltonian are θ = 1.09◦,
w1 = 110 meV, and w0/w1 = 0.75, where w0 (w1) is the sublattice
diagonal (off-diagonal) interlayer tunneling strength. For the inter-
action, a dual-gate screened Coulomb interaction with gate distance
D = 15 nm and dielectric constant ε = 10 was used. For more de-
tails, see Ref. [42].

in Refs. [46,50]). Evidence for intervalley coherence in
MATBG at charge neutrality was also found in quantum
Monte Carlo [51]. We write the mean-field Hamiltonian of
the K-IVC insulator as follows:

H = H0 + H� =
∑

k

c†
k[h0(k) + �(k)]ck, (1)

where the electron operators c†
k are defined in the band basis of

the Bistritzer-MacDonald (BM) model of MATBG [45]. We
consider a model that is obtained by projection into the eight
narrow bands of MATBG, such that each electron operator
carries a BM label a, together with valley and spin quantum
numbers τ ∈ {+,−} and s ∈ {↑,↓}. For our numerical simu-
lations, we keep six bands per spin and valley, corresponding
to the two narrow bands and the first two remote bands above
and below charge neutrality. As these are only bands that
lie in the energy window [−100 meV, 100 meV] of the BM
Hamiltonian, and because the Coulomb interaction energy at
the moiré scale is ∼60 meV, we expect that other BM bands at
higher energies will not be important for the strong interaction
physics in the flat bands. This assumption was verified at the
mean-field level in Ref. [42].

The term H0 in Eq. (1) represents the symmetric part of the
Hamiltonian, and H� is the order parameter contribution. The
order parameter introduces coherence between electrons from
different valleys, and is therefore off-diagonal in valley-space,
i.e., τ z�(k)τ z = −�(k), where τ z is the third Pauli matrix
acting on the valley indices. As a result, the order parameter
signals the spontaneous breaking of the valley U(1) symmetry
[denoted as UV (1)] of the interacting BM model, which acts
as

UV (1) : c†
τ,s,a,k → eiτφc†

τ,s,a,k. (2)

In Fig. 1, the mean-field band spectrum of the K-IVC insulator
obtained from self-consistent Hartree-Fock is shown along
two orthogonal cuts through the mini-Brillouin zone (mini-
BZ). Note that on top of the twofold spin degeneracy, the
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K-IVC band spectrum has additional degeneracies at time-
reversal invariant momenta. This is the result of a spinless
Kramers time-reversal symmetry T ′, which acts as

T ′ : c†
τ,s,a,k → eiτπ/2c†

−τ,s,a,−k, i → −i, (3)

and satisfies T ′2 = −1. The Kramers time-reversal symmetry
T ′ = τ yK (where K denotes complex conjugation) is a com-
bination of the conventional spinless time-reversal T = τ xK,
and a π/2 valley U(1) rotation.

Finally, let us comment on the spin properties of the K-
IVC state. Without loss of generality, we can take the K-IVC
insulator to be a spin-singlet [42], i.e. [�(k)](τ,a,s),(τ ′,b,s′ ) =
[�′(k)](τ,a),(τ ′,b)δs,s′ . An important point is that the lead-
ing part of the interacting BM model has as an enhanced
SU+(2)×SU−(2) spin rotation symmetry, where SUτ (2)
corresponds to spin rotations in valley τ . This enhanced sym-
metry is broken down to the conventional SU(2) spin rotation
symmetry by an intervalley exchange coupling, which is of
the order ∼0.1 meV. As is common in studies of MATBG,
we ignore this small intervalley exchange coupling. Because
the K-IVC order introduces coherence between electrons from
different valleys, it spontaneously breaks the subgroup of
SU+(2)×SU−(2) corresponding to opposite spin rotations in
the two valleys. In this work, we consider without loss of gen-
erality the spin-singlet K-IVC state, which has an unbroken
global spin rotation symmetry (corresponding to the same spin
rotation in the two valleys).

III. GOLDSTONE MODES OF THE K-IVC INSULATOR

The K-IVC insulator spontaneously breaks several con-
tinuous symmetries, such as the valley U(1) symmetry, and
an SU(2) symmetry corresponding to opposite spin rotations
in different valleys. The corresponding broken generators are
given by

τ z, τ zsx, τ zsy, τ zsz, (4)

where si are the Pauli matrices acting on spin indices. In
the absence of Lorentz symmetry, the number of Goldstone
modes associated with the spontaneously broken symmetries
can be smaller than the number of broken generators. In
Refs. [52–54], it was shown that in general, the number of
Goldstone modes is given by

nGS = nBS − 1
2 rankρ, (5)

where nBS is the number of broken symmetry generators. The
real, antisymmetric matrix ρ is defined using the local broken
charges qμ (for translationally invariant systems) as

ρμν = −i〈[qμ, qν]〉, (6)

where the expectation values are taken with respect to the
ground-state wave function. For the K-IVC insulator, we can
take

qμ = 1

2N

∑
q

∑
k

c†
k+qτ

zsμck, (7)

FIG. 2. K (q) at charge neutrality; see Eq. (10).

with μ = 0, x, y, z and s0 = 1. Using these expressions, we
find that [q0, qμ] = 0, and

[qi, q j] = iεi jk
1

2N

∑
q

∑
k

c†
k+qskck, (8)

with i, j, k ∈ {x, y, z}. The spin rotation symmetry of the K-
IVC state (recall that we consider a spin-singlet K-IVC state,
which is invariant under applying the same spin rotation in
both valleys) implies that 〈[qi, q j]〉 = 0. We thus arrive at the
conclusion that ρ = 0, which implies that the K-IVC insulator
has four Goldstone modes.

The Goldstone modes can be described using the following
effective Euclidean action:

SG = −1

2

∫
dω dq
(2π )3

φμ(iω, q)D−1(iω, q)φμ(−iω,−q), (9)

where φμ(iω, q) are the Goldstone fields, summation over the
repeated index μ is implicit, and

D−1(iω, q) = χs(iω)2 − K (q). (10)

In Appendix A we calculate K (q) from the mean-field K-IVC
band structure. The result of this calculation is plotted in
Fig. 2 (for q � 2π/LM , where LM ≈ 13 nm is the moiré lattice
constant). From the long-wavelength part of K (q), we obtain
the stiffness of the K-IVC state ρs as K (q) = ρsq2 + O(q4).
Numerically, we find that ρs ≈ 4 meV, which agrees with
the value obtained in Ref. [28] via a different method. The
“compressibility” χs of the Goldstone modes is not important
for our analysis below. The low-energy action in Eq. (9) im-
plies that at long wavelengths, the Goldstone modes have a
linear dispersion. This is generally true when the number of
Goldstone modes is equal to the number of broken symmetry
generators, and results from the fact that ρ = 0 excludes terms
of the form φμ∂τφν in the effective Goldstone action [54].

As a final comment, let us point out that the UV (1) symme-
try is only an emergent symmetry, and is in fact weakly broken
in the narrow bands of a complete microscopic model of
MATBG. As a result, the Goldstone modes will acquire a tiny
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(a)

(b)

FIG. 3. (a) K-IVC conduction bands at θ = 1.09◦ with the Fermi
energy at ν = 1/4 indicated by a gray dashed line. (b) Color plots of
the band energies of the two K-IVC conduction bands with a contour
corresponding to the two Fermi pockets around � at ν = 1/4.

mass. We will ignore this mass, however, as it is much smaller
than all the other energy scales in the problem. Similarly, the
intervalley exchange coupling will introduce a mass for the
three Goldstone modes φi of the order of 0.1 meV. We will
also ignore this mass, because it only significantly modifies
K (q) at very small q. These small momenta do not play an
important role anyway for our discussion below.

IV. DOPING THE K-IVC STATE AND
ELECTRON-GOLDSTONE MODE COUPLING

In this section, we consider what happens upon doping
away from the charge neutrality point. For concreteness, we
focus on electron doping and work at a fixed filling ν =
1/4 (i.e., one electron for every four moiré unit cells). By
solving the Hartree-Fock self-consistency equations at ν =
1/4, we find that the K-IVC bands do not change signifi-
cantly compared to those at charge neutrality. The additional
doped electrons simply occupy the lowest-energy states in the
conduction bands of the band structure at charge neutrality,
without any major changes to the dispersion or the energy
gap between valence and conduction bands. In Fig. 3, the
K-IVC conduction bands are shown, and the Fermi energy at
ν = 1/4 is indicated by a gray dashed line. It lies approxi-
mately 3.2 meV above the conduction-band minimum. From
Fig. 3, we see that at ν = 1/4 there are two Fermi surfaces
around the � point. The average Fermi velocity for electrons
at the outer (inner) Fermi surface is vF,1 ≈ 5.5 meV×LM

(vF,2 ≈ 8 meV×LM). Throughout this work, we will use a
notation where subscript 1 (2) refers to the lower (upper)
K-IVC conduction band containing the outer (inner) Fermi
surface. In Fig. 4, we show the Fermi energy εF and the
density of states at the Fermi energy N (0) as a function of
the filling ν. We see that for ν = 1/4, the density of states

FIG. 4. Density of states at the Fermi energy N (0) and the Fermi
energy εF (relative to the band minimum) of the K-IVC conduction
bands as a function of the filling factor ν.

is given by N (0) ≈ 0.08 meV−1 L−2
M . Note that this value is

significantly smaller than the density of states in the BM bands
at the magic-angle, where the density of states is N (0)BM � 1
meV−1 L−2

M .
We now derive the coupling between the doped electrons

in the conduction bands and the K-IVC Goldstone modes.
Similarly to the calculation of K (q) in Appendix A, we start
from the Hamiltonian [55]

H[φμ] = H0 + e−iQ̂H�eiQ̂, (11)

where

Q̂ = 1

2

∫
dr φμ(r) f †

r τ zsμ fr (12)

is the operator that generates spatially dependent valley U(1)
rotations and opposite spin rotations in the two valleys, with
φμ(r) being the corresponding Goldstone fields. The opera-
tors f †

r are the real-space fermion creation operators of the
MATBG continuum model [43–45] in the orbital basis. Going
to momentum space and transforming to the band basis of the
BM model, we can write Q̂ as

Q̂ = 1

2
√

A

∑
k,q

φq,μc†
k+q�q(k)τ zsμck, (13)

where A is the area of the system and c†
m,k create electrons in

the BM bands, with m = (τ, s, a) a combined valley, spin, and
band index. The sum over k is restricted to the first mini-BZ,
while the sum over q runs over all BZs in the repeated zone
scheme. In Eq. (13), the form factors �q(k) result from doing
the unitary transformation from the orbital basis to the BM
band basis, and they are defined as

[�q(k)]mn = 〈vm,k+q|vn,k〉, (14)

where |vm,k〉 are the periodic part of the Bloch states of the
BM Hamiltonian. Note that since the BM bands have a well-
defined valley and spin quantum number, and do not depend
on the spin quantum number, we could put the matrices τ zsμ

outside of the form factor in Eq. (13).
Expanding H[φ] to first order in φ, we find

H[φ] = H − i[Q̂, H�], (15)

where H = ∑
k c†

k[h0(k) + �(k)]ck is the K-IVC mean-field
Hamiltonian. Written out explicitly, the first-order term takes
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the form

−i[Q̂, H�] = i

2
√

A
×

∑
k,q

φq,μ c†
k+q[�(k + q)�q(k)τ z

− �q(k)τ z�(k)]sμck. (16)

We now perform a transformation to the eigenbasis of the
K-IVC Hamiltonian, where H = ∑

α,s,k Eα,kψ
†
α,s,kψα,s,k. The

electron operators ψ
†
α,s,k, labeled by a K-IVC band index α

and a spin index s, are related to the electron operators in the
BM basis as

ψ
†
α,s,k =

∑
m

[uα,k]mc†
m,s,k, (17)

where [uα,k]m are the components of the K-IVC eigenstates
|uα,k〉. In the K-IVC eigenbasis, the first-order term in φ takes
the form

−i[Q̂, H�] = 1√
A

∑
k,q

∑
α,β,ν

gαβ (k, q)φq,μψ
†
α,k+qsμψβ,k,

(18)
where the electron-boson coupling gαβ (k, q) is given by

gαβ (k, q) = i

2
〈uα,k+q|[�(k + q)�q(k)τ z

− τ z�q(k)�(k)]|uk,β〉. (19)

From �0(k) = 1, we see that the coupling at zero momentum
transfer can be written as [55]

gαβ (k, 0) = i

2
〈uα,k|[�(k), τ z]|uβ,k〉

= i

2
〈uα,k|τ z|uβ,k〉 × (Eα,k − Eβ,k ), (20)

where we have used that [�(k), τ z] = [h0(k) + �(k), τ z].
Written in this form, it is clear that the intraband scattering
processes vanish at zero momentum transfer. This important
property implies that, at small coupling, the Goldstone modes
are not Landau damped, and they also do not destroy the
Landau quasiparticles [55].

V. GOLDSTONE-MEDIATED INTERACTION

The coupling to the Goldstone modes leads to an effective
attractive interaction between the electrons, similar to the
familiar attractive interaction in coupled electron-phonon sys-
tems. The interaction between electrons doped into the K-IVC

insulator generated by the exchange of Goldstone modes is
given by

HG = 1

2A

∑
q,k,k′

V G
αβλσ (q, k, k′)sμ

s1s′
1
sμ

s2s′
2

×ψ
†
α,s1,k+qψ

†
λ,s2,k′−qψσ,s′

2,k
′ψβ,s′

1,k, (21)

where the summation over repeated band indices α, β, λ, σ ,
spin indices s1, s′

1, s2, s′
2, and μ = 0, x, y, z is implicit. Note

that the sum over q in Eq. (21) runs over all mini-BZs in the
repeated zone scheme. The potential V G(q, k, k′) is given by

V G
αβλσ (q, k, k′) = gαβ (k, q)D(0, q)gλσ (k′,−q), (22)

where D(0, q) = −K (q)−1 is the Goldstone mode propagator
defined in Eq. (10) evaluated at zero frequency, and gαβ (k, q)
is the coupling function defined in Eq. (19).

Note that in the previous section, we have calculated K (q)
at charge neutrality, whereas in this section we are considering
the K-IVC at nonzero doping, i.e., away from charge neutral-
ity. The fact that the interaction mediated by the Goldstone
modes at charge neutrality and at finite doping has approx-
imately the same form, Eq. (21), is a nontrivial result. We
discuss it in detail in Appendix B, where we use the path-
integral formalism to integrate out the valence-band fermionic
degrees of freedom and derive the effective low-energy the-
ory that couples Goldstone modes and the conduction-band
electrons. After carefully summing up certain sets of dia-
grams, we end up with the conclusion that, to good accuracy,
the effective interaction between the electrons on the Fermi
surface mediated by Goldstone modes is given by the same
expression that one would obtain by integrating out Gold-
stone modes at charge neutrality, i.e., Eqs. (21) and (22). We
emphasize that this interaction should not be viewed as some
low-energy starting point that needs to be further renormalized
by, e.g., particle-hole modes. Instead, it is an effective interac-
tion that already takes into account important renormalization
effects and will be used directly to calculate superconducting
instabilities. This is somewhat similar in spirit to the Eliash-
berg theory of superconductivity, where one self-consistently
solves for the electron Green’s function while taking electron-
phonon interaction as an input parameter (we, however, do not
study the frequency dependence of the gap function in this
paper, but we do a BCS-type analysis instead).

As a preparatory step for studying superconductivity, we
decompose the Goldstone mediated interaction in the different
Cooper channels. In particular, we use the following two Fierz
identities:

δs1s′
1
δs2s′

2
= 1

2 sy
s1s2

sy
s′

2s′
1
+ 1

2 (sysi)s1s2 (sisy)s′
2s′

1
, (23)

s j
s1s′

1
s j

s2s′
2
= − 3

2 sy
s1s2

sy
s′

2s′
1
+ 1

2 (sysi )s1s2 (sisy)s′
2s′

1
(24)

(with implicit summation over the repeated indices i, j = x, y, z) to rewrite the effective interaction as

HG = 1

2A

∑
q,k,k′

2V G
αβλσ (q, k, k′)

[
−1

2
(ψ†

αk+qsyψ
†
λ,k′−q)(ψσ,k′syψβ,k ) + 1

2
(ψ†

αk+qsys jψ
†
λ,k′−q)(ψσ,k′s jsyψβ,k )

]
. (25)

Note the minus sign in front of the spin-singlet part of the
interaction. This implies that the Goldstone-mediated interac-

tion in the spin-singlet channel is actually repulsive instead
of attractive. Physically, this can be understood from the fact
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that the combined exchange of the three Goldstone modes
corresponding to opposite spin rotations in the two valleys
generates an effective ferromagnetic interaction, which favors
pairing in a spin-triplet channel. This is completely anal-
ogous to how ferromagnetic fluctuations drive spin-triplet
superconductivity in He3 [56]. It is also similar to how antifer-
romagnetic fluctuations in doped Mott insulators favor pairing
in spin-singlet channels [57,58].

VI. SUPERCONDUCTING INSTABILITIES

We focus on zero-momentum, spin-triplet pairing of elec-
trons near the Fermi surfaces of the doped K-IVC state. The
part of the Goldstone-mediated interaction potential that we
are interested in is therefore given by

V̂ G
αβ (k′, k) =

∑
G

2V G
αβαβ (k′ − k + G, k,−k), (26)

where the sum over moiré reciprocal-lattice vectors G takes
into account the umklapp processes due to the superlattice
potential. In our numerical calculations, we restrict G to lie
within the first three shells of the mini-BZ. This part of the

interaction scatters a spin-triplet Cooper pair c†
k,αisys jc†

−k,α in

band α to a spin-triplet Cooper pair c†
k,β isys jc†

−k,β in band β.
The factor of 2 in Eq. (26) comes from the fact that both the
valley-U(1) Goldstone mode and the SU(2) Goldstone modes
from opposite spin rotations in the two valleys contribute
equally to the triplet channel, as explained in the previous
section.

To obtain physically relevant results for the superconduct-
ing instabilities, it is important not to ignore the repulsive
Coulomb interaction. The metallic state at nonzero doping
will screen the Coulomb interaction. The part of the resulting
screened Coulomb potential which scatters zero momentum
Cooper pairs in the different K-IVC bands is given by

V̂ C
αβ (k′, k) =

∑
G

V C,scr
αβαβ (k′ − k + G, k,−k), (27)

where the screened Coulomb potential V C,scr
αβλσ (q, k, k′) is dis-

cussed in more detail in Appendix C.
Because of the Kramers time-reversal symmetry of the K-

IVC state, the Goldstone-mediated and Coulomb interaction
potentials can be written as

V̂ G
αβ (k′, k) = eiϕα (k′ )

(∑
G

D(0, k′ − k + G)|gαβ (k, k′ − k + G)|2
)

e−iϕβ (k), (28)

V̂ C
αβ (k′, k) = eiϕα (k′ )

(∑
G

VC (|k′ − k + G|)
ε(k′ − k + G)

∣∣[Fk′−k+G(k)]αβ

∣∣2

)
e−iϕβ (k), (29)

where eiϕα (k′ ) and e−iϕβ (k) are gauge-dependent phase factors
(see Appendix D). These phases are irrelevant for our analysis
of the superconducting instabilities, and we can simply omit
them for now, which makes the interaction potentials real-
valued. At the end of this section, we will reintroduce the
gauge-dependent phase factors. As explained in Appendix C,
the factor ε(q)−1 in Eq. (29) incorporates the screening of the
Coulomb interaction by the doped electrons.

Next, we define the total interaction potential in the Cooper
channel for electrons on the Fermi surface as

Vαβ (θ ′, θ ) = V̂ C
αβ[kF,α (θ ′), kF,β (θ )] + V̂ G

αβ[kF,α (θ ′), kF,β (θ )],
(30)

where θ and θ ′ are polar angles in momentum space, and
kF,α (θ ) is the (angle-dependent) Fermi momentum on the
Fermi surface of band α.

As discussed in the previous section, the Goldstone-
mediated interaction is repulsive in the spin-singlet channels.
Inclusion of the Coulomb interaction leads to an instability
in the d-wave pairing channel through the Kohn-Luttinger
mechanism [59,60]. However, this instability is subleading
and has nothing to do with the Goldstone modes, so we
will exclusively focus on spin-triplet channels from now on.
We will thus look for superconducting instabilities with gap
functions of the form

�̃k =
(

�̃1,k 0
0 �̃2,k

)
⊗ isys, (31)

where �̃α,k is the gap function in the band labeled by α. Note
that we use a tilde to distinguish the superconducting gap from
the K-IVC order parameter.

To find superconducting instabilities, we can solve the lin-
earized gap equation [61]∑

β

∫
dθ

2π
Vαβ (θ ′, θ )Nβ (0)�̃β (θ ) = −λ�̃α (θ ′), (32)

where λ > 0 and Nβ (0) is the density of states per spin at
Fermi surface β, given by

Nβ (0) =
∫

dθ

2π

kF,β (θ )

2π

∣∣∣∣∂Eβ (k, θ )

∂k

∣∣∣∣
−1

k=kF,β (θ )

. (33)

Note that N1(0) + N2(0) = N (0)/2, since we previously
defined N (0) to contain a spin-degeneracy factor. See Ap-
pendix E for a review on the derivation of the linearized gap
equation.

To find the solutions to Eq. (32), we go to the angular
momentum basis and define

Vαβ (m, n) =
∫

dθ ′

2π

∫
dθ

2π
eimθ ′

Vαβ (θ ′, θ )e−inθ . (34)

Because Vαβ (m, n) is real [recall that we ignore the gauge-
dependent phase factors in Eqs. (29) and (28) for now], it
follows that V ∗

αβ (m, n) = Vαβ (−m,−n). Also, because the K-
IVC state is invariant under the mirror symmetry (x, y) →
(x,−y), it follows that Vαβ (−θ ′,−θ ) = Vαβ (θ ′, θ ). This im-
plies that Vαβ (m, n) = Vαβ (−m,−n) = V ∗

αβ (m, n), such that
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FIG. 5. Dimensionless pairing strength of the superconducting
p-wave channel as a function of the gate distance D.

the components Vαβ (m, n) are real. From the sixfold in-plane
rotation symmetry of the K-IVC state, it also follows that
Vαβ (m, n) = 0 if m �= n mod 6. Because we are considering
spin-triplet pairing, only odd angular momenta contribute,
which means that we restrict m and n in Vαβ (m, n) to both
be odd.

For the numerical calculations, we further restrict our-
selves to angular harmonics einθ with |n| � 6. This converts
the eigenvalue equation (32) to a set of decoupled finite-
dimensional matrix eigenvalue equations∑

β,M

Vαβ (n + 6N, n + 6M )Nβ (0)�̃n
β,M = −λn�̃

n
α,N , (35)

labeled by n ∈ {±1, 3}. In Eq. (35), we have defined �̃n
α,N ≡

�̃α,n+6N and �̃α,n = ∫
dθ
2π

einθ �̃α (θ ). Numerically, the sum-
mation over M is restricted by the requirement that |n +
6M| � 6 (the same holds for N , i.e., |n + 6N | � 6). Solutions
to the linearized gap equation with n = ±1 correspond to pair-
ing in the degenerate p-wave channels, and n = 3 to pairing
in the f -wave channel.

The gap functions on the Fermi surfaces corresponding to
the different λn are given by the eigenvectors �̃n

α,N :

�̃n
α (θ ) =

∑
N

�̃n
α,N e−i(n+6N )θ . (36)

At this point, it is straightforward to reintroduce the gauge-
dependent phase factors eiϕα (θ ). These phases do not change
the values of λn, but only modify the gap function to take the
form

�̃n
α (θ ) = eiϕα (θ )

∑
N

�̃n
α,N e−i(n+6N )θ . (37)

Solving the linearized gap equation for spin-triplet pairing
numerically, we find that there is only a superconducting
instability in the p-wave channel. In Fig. 5, we plot the
numerically obtained value for λp as a function of gate

distance D. These results were obtained using N1(0) = 2.9 ×
10−2 meV−1 L−2

M and N2(0) = 1.1 × 10−2 meV−1 L−2
M . We

see from Fig. 5 that the p-wave pairing strength increases as
a function of gate distance. In the experiments of Ref. [40],
the gate distance of the device displaying superconductivity
around charge neutrality was 15 nm, for which we find λ ∼
0.12. Using the standard BCS analysis (see Appendix E), one
obtains an estimate for the critical temperature given by

kBTc ∼ εF × e−1/λ. (38)

Using εF = 3.2 meV and λ = 0.12, we obtain Tc ∼ 8.94 ×
10−3 K. This value for Tc is much smaller than the experi-
mental value of Tc ≈ 0.3 K [40]. Nevertheless, given that we
have taken the effect of the repulsive Coulomb interaction into
account in our calculation, the fact that there is a pairing in-
stability at the BCS level is a nontrivial result. We expect that
our estimate for Tc is too small, and that a more sophisticated
calculation (such as, for example, a renormalization-group
calculation where the net attractive interaction can grow under
scaling towards lower energies) will lead to a significantly
higher value for Tc. Our naive BCS calculation already shows
that it is worthwhile to apply more advanced techniques to
the problem of electrons coupled to the collective modes of a
doped K-IVC insulator. In particular, we expect that allowing
for a general frequency dependence of the gap function should
significantly improve the stability of the superconductor.

VII. DISCUSSION

To summarize, we have studied the connection be-
tween the insulating state observed in MATBG at charge
neutrality [31,38,40] and the neighboring superconducting
domes [31,40]. Our starting point was to identify the insu-
lating state with the K-IVC insulator of Ref. [42], which
spontaneously breaks the valley-U(1) symmetry and the
SU(2) symmetry corresponding to opposite spin rotations in
the two valleys. We have coupled the charge carriers at fi-
nite doping (ν ∼ 0.25) to the four Goldstone modes of the
K-IVC state. The resulting effective interaction mediated by
the exchange of these Goldstone modes is attractive in the
spin-triplet channels, but repulsive in the singlet channels.
This gives rise to a general mechanism for obtaining spin-
triplet superconductivity from an intervalley coherent normal
state in MATBG. A naive BCS calculation that incorporates
both the effective interaction from Goldstone-mode exchange
and the repulsive Coulomb interaction shows that there is
indeed a pairing instability of the doped K-IVC state. We
find that the leading pairing instability occurs in the p-wave
channel.

There is room for improvement of the results presented
here. First, our starting point is a self-consistent Hartree-Fock
band spectrum, and therefore it ignores many-body correla-
tion effects. Second, our analysis of the interactions that lead
to the superconducting instability relies on an RPA approxi-
mation, and thus ignores the effects of quantum fluctuations.
Third, our numerics are done on a 24 × 24 momentum grid,
which introduces unknown finite-size errors. And finally, the
critical temperature obtained via the standard BCS formula
is smaller than the experimental value [31,40] by a factor of
∼30 (due to the exponential sensitivity of Tc on λ, this would
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correspond to a value for λ that is less than two times larger
than that found here). However, we hope that the approach put
forward in this paper can be used as a starting point for future
theoretical analytical and numerical works. In particular, we
believe that a naive BCS analysis slightly underestimates λ,
and more advanced approaches can potentially give higher
critical temperatures.

The present work opens up several other questions that
deserve further investigation. For example, it would be inter-
esting to understand whether the pairing mechanism discussed
in this work could also be operative near ν = ±2, where a
spin-polarized K-IVC state is realized [42].

The Hamiltonian of MATBG restricted to the nearly flat
bands has an approximate U (4) × U (4) symmetry [42,50],
which is responsible for the close competition between many
different symmetry-broken phases in self-consistent Hartree-
Fock studies [34,42,62–64]. Because of this approximate
symmetry, we expect the existence of many nearly soft
bosonic modes corresponding to fluctuations within the low-
energy U (4) × U (4) manifold. In principle, all these modes
can be important for superconductivity. One of these modes
even becomes massless at the continuous phase transition
between the K-IVC state and the valley-Hall state, which
occurs when the microscopic sublattice splitting induced by
the hexagonal boron nitride substrate is around 10 meV [42].
In Appendix F, we argue that non-Fermi-liquid physics is
expected at this critical point, but that deviations from Fermi
liquid theory will only manifest themselves on very long dis-
tance and timescales. An interesting topic for future work is
to further study the role of these nearly soft or critical bosonic
modes.
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APPENDIX A: CALCULATION OF K(q) AND ρS AT
CHARGE NEUTRALITY

In this Appendix, we demonstrate how to calculate func-
tion K (q) and parameter ρs introduced in Eq. (10) at charge

neutrality, i.e., at zero doping. We start by defining the oper-
ator that generates spatially dependent valley U(1) rotations
and opposite spin rotations in the two valleys:

Q̂ = 1

2

∫
dr φμ(r) f †

r τ zsμ fr, (A1)

and we write it in the band basis of the BM model to obtain

Q̂ = 1

2
√

A

∑
k,q

φq,μc†
k+q�q(k)τ zsμck, (A2)

where A is the area of the system and �q(k) are the form
factors defined in Eq. (14). Next, we choose a particular
gauge for the K-IVC order parameter and define the following
Hamiltonian:

H[φ] = H0 + e−iQ̂H�eiQ̂, (A3)

where, in accordance with the main text, H0 is the valley
symmetric part of the K-IVC Hamiltonian, and H� is the
K-IVC order parameter, H� = ∑

k c†
k�(k)ck.

Using the Hamiltonian in Eq. (A3), we obtain the free
energy F [φ] as

Z[φ(r)] = e−βF [φ(r)] = Tr(e−βH [φ(r)] ), (A4)

where the trace is over fermionic degrees of freedom. We can
now do an expansion of the free energy in φ and write

F [φ(r)] = F0 + 1

2

∫
d2r φμ(r)K̂μνφν (r) + · · · , (A5)

where K̂ is a general differential operator. Going to momen-
tum space, we obtain

F [φ(q)] = F0 + 1

2

∑
q

φμ(q)Kμν (q)φν (−q) + · · · . (A6)

In our discussion in the main text, we are interested in the
function Kμν (q), which we can obtain as

Kμν (q) = δ2F [φ]

δφμ(q)δφν (−q)

∣∣∣∣∣
φ=0

= − 1

β

δ2 lnZ[φ]

δφμ(q)δφν (−q)

∣∣∣∣∣
φ=0

.

(A7)
To obtain a more convenient formula for Kμν (q) from
Eq. (A7), we first expand the Hamiltonian to second order in
φμ, which gives

H[φ] = H0 + HK − i[Q̂, H�] − 1
2 [Q̂, [Q̂, H�]] + · · · . (A8)

Writing this in the K-IVC band basis, we obtain

H[φ] =
∑

k

∑
α

Eα,kψ
†
α,kψα,k + 1√

A

∑
k,q

∑
α,β

φμ(q)gαβ (k, q)ψ†
α,k+qsμψβ,k (A9)

+ 1

2A

∑
k,q,q′

∑
α,β

μ,ν

φμ(q)φν (q′)ψ†
α,k+q+q′ [δμν g̃αβ (k, q, q′) + (1 − δμν )ḡμν

αβ (k, q, q′)sμsν]ψβ,k, (A10)
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where

gαβ (k, q) = i

2
〈uα,k+q|[�(k + q)�q(k)τ z − τ z�q(k)�(k)]|uβ,k〉, (A11)

g̃αβ (k, q, q′) = −1

4
〈uα,k+q+q′ |(�(k + q + q′)�q(k + q′)�q′ (k) + �q′ (k + q)�(k + q)�q(k)

+�q(k + q′)�(k + q′)�q′ (k) + �q′ (k + q)�q(k)�(k))|uβ,k〉, (A12)

and |uα,k〉 are the eigenstates of the K-IVC Hamiltonian. For the derivation of Kμν (q), we do not need an explicit expression for
ḡμν

αβ (k, q, q′). As a next step, we write the partition function as a path integral,

Z[φ] =
∫

Dψ̄Dψe−S, (A13)

where the imaginary-time action is given by

S =
∑

k=k,iωn

ψ̄α (k)(−iωn + Ek,α )ψα (k) + 1√
A

∑
q

φμ(q)gαβ (k, q)ψ̄α (k + q)sμψβ (k)

+ 1

2A

∑
q,q′

φμ(q)φν (q′)ψ̄α (k + q + q′)[δμν g̃αβ (k, q, q′) + (1 − δμν )ḡμν
αβ (k, q, q′)sμsν]ψβ (k). (A14)

The Feynman rules for the vertices in this action are

(A15)

and

(A16)

Using Eq. (A7), we find that Kμν (q) is given by the sum of the following two diagrams:

(A17)

where the first diagram represents the diamagnetic contribution to the stiffness, and the second diagram is the paramagnetic
contribution.

The diamagnetic contribution is evaluated to give

Kdia
μν (q) = δμν

2

A

∑
k

∑
α

fα,kg̃αα (k, q,−q), (A18)

where fα,k = f (Eα,k ) is the Fermi-Dirac distribution function, and the Kronecker-delta δμν and the factor of 2 come from the
trace over spin indices.

The paramagnetic contribution equals

Kpara
μν (q) = δμν

2

A

∑
k

∑
α,β

fβ,k − fα,k+q

Eβ,k − Eα,k+q
|gαβ (k, q)|2, (A19)

where the factor 2δμν again comes from the trace over spin indices.
Both Kdia

μν (q) and Kpara
μν (q) are easily evaluated numerically from the mean-field K-IVC band structure, and Kμν (q) is simply

given by Kμν (q) = Kdia
μν (q) + Kpara

μν (q) = K (q)δμν .
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From K (q), one obtains the K-IVC stiffness ρs by fitting (at zero temperature) to the long-wavelength part of K (q) = ρsq2 +
O(q4). Note that the zeroth-order term in the long-wavelength expansion of K (q) has to vanish because φ is a Goldstone mode.
To see this explicitly, we write the diamagnetic contribution to Kμν (0) in the original BM band basis, where it is given by

−2δμν

4βA

∑
k

∑
ωn

tr

(
[τ z, [τ z,�(k)]]

1

iωn − h0(k) − �(k)

)
(A20)

= 2δμν

4βA

∑
k

∑
ωn

tr

(
[τ z,�(k)]

1

iωn − h0(k) − �(k)
[τ z,�(k)]

1

iωn − h0(k) − �(k)

)
, (A21)

where the trace is over the valley and BM band indices. The trace over the spin index has already been performed. To obtain
the equality in the second line, we have used the identities tr([A, B]C) = −tr(B[A,C]) and [A, B−1] = −B−1[A, B]B−1, where
A, B, and C are arbitrary matrices (and B is invertible for the second identity). We have also used that [τ z, h0(k)] = 0. The
paramagnetic contribution to Kμν (0) takes the following form in the BM band basis:

−2δμν

4βA

∑
k

∑
ωn

tr

(
[τ z,�(k)]

1

iωn − h0(k) − �(k)
[τ z,�(k)]

1

iωn − h0(k) − �(k)

)
. (A22)

By comparing Eq. (A21) to Eq. (A22), we see that the diamagnetic and paramagnetic contributions cancel exactly, such that
K (0) = 0 as required.

APPENDIX B: LOW-ENERGY EFFECTIVE THEORY AT NONZERO DOPING

At nonzero doping, we can write down an effective low-energy theory to describe the electrons at the Fermi surface and the
Goldstone modes. The total imaginary-time action of this effective theory, obtained by integrating out the electrons in the K-IVC
valence bands, is a sum of several terms:

S = Sψ + SC + Sψ−φ + Sψ−φ2 + Sφ. (B1)

Below, we define and discuss each of these terms one by one.
The first term Sψ is given by

Sψ =
∫

dω

2π

∫
k
ψ̄α (iω, k)(−iω + Eα,k )ψα (iω, k) (B2)

and it describes the electrons in the K-IVC conduction bands, meaning that α > 0. Note that spin indices are always implicit,
and that we have introduced the notation

∫
k = ∫

dk
(2π )2 . We will represent propagators of the conduction-band electrons diagram-

matically in the conventional way, i.e., by a solid straight line with an arrow.
The second term SC is the Coulomb interaction:

SC = 1

2

∫
q

VC (q)ρqρ−q, (B3)

where VC (q) is the gate-screened Coulomb potential defined in Eq. (C2), and ρq is the density of electrons in the conduction
bands as defined in Eq. (C3). Diagrammatically, we will represent the Coulomb interaction between the electrons in the K-IVC
conduction bands as

(B4)

The third and fourth terms in Eq. (B1) describe the coupling between the electrons and the Goldstone boson fields φμ. In
particular, the third term is given by

Sψ−φ =
∫

dτ

∫
k,q

gαβ (k, q)φμ(τ, q)ψ̄α (τ, k + q)sμψβ (τ, k), (B5)

235157-10



SPIN-TRIPLET SUPERCONDUCTIVITY FROM … PHYSICAL REVIEW B 106, 235157 (2022)

where the coupling gαβ (k, q) is defined in Eq. (19). As before, we represent the corresponding vertex diagrammatically as

(B6)

The fourth term Sψ−φ2 takes the form

Sψ−φ2 = 1

2

∫
k,q,q′

φμ(q)φν (q′)ψ̄α (k + q + q′)[δμν g̃′
αβ (k, q, q′) + (1 − δμν )ḡ′

αβ (k, q, q′)sμsν]ψβ (k), (B7)

where k = (iω, k), q = (iν, q), and q′ = (iν ′, q′) are three-vectors containing both frequency and momentum components, and∫
k ≡ ∫

dω
2π

∫
k. The corresponding vertex is represented diagrammatically as

(B8)

As before, only the coupling g̃′
αβ will play a role in our discussion. The coupling function g̃′

αβ (k, q, q′) contains three different

contributions. The first “bare” contribution comes from the second-order term in the expansion of e−iQ̂H�eiQ̂, which, as discussed
in Appendix A, leads to the coupling g̃αβ (k, q, q′) defined in Eq. (A12). For future convenience, we point out that this coupling
satisfies

g̃αβ (k, 0, 0) = −1

4
〈uα,k|[τ z, [τ z,�(k)]] |uβ,k〉. (B9)

The other two “renormalization” contributions to g̃′
αβ (k, q, q′) are the result of integrating out the valence electrons. The easiest

way to represent these is to write out the different contributions to the coupling g̃′
αβ (k, q, q′) diagrammatically as follows:

(B10)

where we have represented the propagator of the valence-band electrons by a dotted line with an arrow. The first diagram on
the right-hand side represents the “bare” coupling 1

2 g̃αβ (k, q, q′) discussed above. The last two diagrams on the right-hand
side correspond to the “renormalization” contributions involving a virtual valence-band electron, with two vertices given by
gαβ (k, q). Translating these diagrams into equations, the coupling g̃′

αβ (k, q, q′) is given by

ḡαβ (k, q, q′) = g̃αβ (k, q, q′) +
∑
γ<0

(
gαγ (k + q, q′)gγ β (k, q)

i(ω + ν) − Eλ,k+q
+ gαγ (k + q′, q)gγ β (k, q′)

i(ω + ν ′) − Eλ,k+q′

)
, (B11)

where the sum is over the K-IVC valence bands, labeled by negative integers.
The fourth term Sφ in Eq. (B1) is the “bare” quadratic boson action obtained after integrating out the valence electrons and

expanding the free energy up to the second order in φ:

Sφ = 1

2

∫
q
φμ(q)K0(q)φμ(−q), (B12)

where K0(q) is given by the diagram

(B13)

which evaluates to

K0(q) = 2
∑
α<0

∫
dk

(2π )2
g̃αα (k, q,−q). (B14)
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We would like to emphasize that the bare quantity K0(q) at finite doping is very different from the quantity K (q) which we
calculated in Appendix A at charge neutrality. In particular, in general K0(0) will not be equal to zero, such that the boson φ

appears to be massive. To obtain a proper, massless Goldstone mode propagator, we need to “dress” it with the RPA self-energy,
which contains two terms. The first term originates from the φψ̄ψ coupling and is given by

(B15)

The second contribution to the boson self-energy comes from the φ2ψ̄ψ coupling and is given by

(B16)

Using the definition of the φ2ψ̄ψ coupling in Eq. (B10), we can rewrite this as

(B17)

Evaluating all diagrams we find that the boson self-energy is given by

�G(iω, q) = �
p
G(iω, q) + �d

G(iω, q) = 2
∑
α,β

∫
dk

(2π )2

nα,k+q − nβ,k

iω + Eα,k+q − Eβ,k
|gαβ (k, q)|2 + 2

∑
α>0

∫
dk

(2π )2
nα,kg̃αα (k, q,−q),

(B18)

where the factors of 2 again come from spin degeneracy, and the indices α and β in the first term run over both the K-IVC
valence and conduction bands, i.e., α and β run over both positive and negative integers.

Including the self-energy, the “dressed” boson propagator equals

D−1
R (iω, q) = −K0(q) − �G(iω, q). (B19)

We now claim that the properly “dressed” propagator does describe a massless boson, and therefore satisfies the following
equation:

K0(0) + �G(0, 0) = 0. (B20)

To show that this condition is indeed satisfied, we start with using Eq. (20) to write

nα,k − nβ,k

Eα,k − Eβ,k
|gαβ (k, 0)|2 = −1

4
(nα,k − nβ,k )〈uα,k|[τ z,�(k)]|uβ,k〉〈uβ,k|τ z|uα,k〉. (B21)

Note that because of the trace over the spin indices in the bubble diagrams, the screening corrections are only nonzero if the
external boson line is labeled by μ = 0. Summing over both α and β in Eq. (B21), we obtain for the screened coupling to the
μ = 0 boson, ∑

α,β

nα,k − nβ,k

Eα,k − Eβ,k
|gαβ (k, 0)|2 = −1

4

[
tr
(
Po

k [τ z,�(k)]Pu
k τ z) − tr

(
Pu

k [τ z,�(k)]Po
kτ z)], (B22)

where Po
k = ∑

α nα,k|uα,k〉〈uα,k| is the projector onto the occupied states in the K-IVC bands at momentum k, and Pu
k = ∑

α (1 −
nα,k )|uα,k〉〈uα,k| is the projector onto the unoccupied states at k. Using Pu

k = 1 − Po
k , we find∑

α,β

nα,k − nβ,k

Eα,k − Eβ,k
|gαβ (k, 0)|2 = 1

4
tr
(
Po

k[τ z, [τ z,�(k)]]
) = −

∑
α

nα,kg̃αα (k, 0, 0), (B23)

where for the last equality we have used Eq. (B9). Combining Eqs. (B23), (B18), and (B14), one finds that Eq. (B20) indeed
holds, i.e., that K0(0) + �G(0, 0) = 0.

Since the bare boson propagator does not describe a massless Goldstone mode, it is crucial to always use the dressed
propagator DR(iω, q) to investigate the effect of the Goldstone modes on the conductive electrons. For small enough doping, the
“dressed” propagator DR(iω, q) will be very close to D(iω, q), the propagator of the Goldstone modes at charge neutrality.
This is because D−1

R (iω, q) ≈ χR(ν)(iω)2 − ρR(ν)q2 changes continuously with doping and crosses over to D−1(iω, q) ≈
χs(iω)2 − ρsq2 at ν = 0. We have numerically verified that D−1

R (iω, q) at ν = 1/4 is indeed close to D−1(iω, q). In the main
text, we therefore use D−1

R (iω, q) = D−1(iω, q) for simplicity. The main motivation for this is that we found the propagator
obtained at charge neutrality to be less prone to numerical error.
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Using the propagator D(iω, q), the Goldstone mode-mediated interaction between the electrons is obtained from the following
tree-level diagram:

(B24)

where

V G
αβλσ (iω, q, k, k′) = gαβ (k, q)D(iω, q)gλσ (k′,−q). (B25)

Equations (21) and (22) in the main text are then obtained by considering the static limit of V G, i.e., setting ω = 0.

APPENDIX C: COULOMB INTERACTION AND SCREENING

The bare repulsive interaction between the doped electrons in the K-IVC conduction bands is given by

HC = 1

2A

∑
q

VC (q) : ρqρ−q :, (C1)

where VC (q) the dual gate-screened Coulomb potential

VC (q) = e2

2ε0ε

tanh(Dq)

q
. (C2)

In this expression, D is the distance from the MATBG device to the metallic gates, and ε is the dielectric constant. Note that
in the Coulomb interaction, the sum over q is not restricted to the first mini-BZ, but it goes over all BZ in the repeated zone
scheme. The operators ρq are defined as

ρq =
∑

k

ψ
†
k+qFq(k)ψk (C3)

and they correspond to the density of electrons in the K-IVC conduction bands. The form factors Fq(k) that appear in this
expression are given by

[Fq(k)]αβ = 〈uα,k+q|�q(k)|uβ,k〉, (C4)

where |uα,k〉 are the K-IVC eigenstates corresponding to the conduction bands, and �q(k) are the form factors defined previously
in Eq. (14). The form factors �q(k) result from expressing the Coulomb interaction in the BM band basis (see, e.g., Ref. [42]
for details). Note that because of these form factors, the Coulomb interaction acquires an explicit dependence on the incoming
momenta k and k′.

Because there is a Fermi surface at ν = 1/4, the electrons can efficiently screen the Coulomb interaction. To take this effect
into account, we calculate the standard (static) polarization bubble, which evaluates to

�(q) = −2
∫

dk
(2π )2

∑
α,β

nα,k+q − nβ,k

Eα,k+q − Eβ,k
|[Fq(k)]αβ |2, (C5)

where nα,k = n(Eα,k ) = �(εF − Eα,k ) is the zero-temperature Fermi-Dirac distribution [�(x) is the Heaviside step function]
representing the fermion occupation numbers, εF is the Fermi energy, and the factor of 2 comes from the spin degeneracy.

From the polarization bubble, we obtain the dielectric function ε(q) = 1 + VC (q)�(q), which appears in the static RPA
screened Coulomb interaction

V C,scr
αβλσ (q, k, k′) = VC (q)

ε(q)
[Fq(k)]αβ[F−q(k′)]λσ = e2

2ε0ε

tanh(Dq)

q + ks(q)
[Fq(k)]αβ[F−q(k′)]λσ . (C6)

In the last line, we have defined

ks(q) = e2

2ε0ε
�(q) tanh(Dq), (C7)

which is a q-dependent inverse screening length.
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APPENDIX D: INTERACTIONS IN THE COOPER CHANNEL AND KRAMERS TIME-REVERSAL SYMMETRY

The goal of this Appendix is to show that as a result of the Kramers time-reversal symmetry of the doped K-IVC state, the
Goldstone-mediated and Coulomb interactions in the Cooper channel can be written as in Eqs. (29) and (28) in the main text.
For the Coulomb interaction, this means that we will show that it can be written as follows:

V̂ C
αβ (k′, k) ≡

∑
G

e2

2ε0ε

tanh(D|k′ − k + G|)
|k′ − k + G| + ks(k′ − k + G)

[Fk′−k+G(k)]αβ[Fk−k′−G(−k)]αβ

= eiϕα (k′ )

(∑
G

e2

2ε0ε

tanh(D|k′ − k + G|)
|k′ − k + G| + ks(k′ − k + G)

∣∣[Fk′−k+G(k)]αβ

∣∣2

)
e−iϕβ (k), (D1)

where the sum is over moiré reciprocal-lattice vectors G, and eiϕα (k′ ), e−iϕβ (k) are gauge-dependent phase factors.
We start by recalling the definition of the K-IVC form factors Fq(k):

[Fq(k)]αβ = 〈uα,k+q|�q(k)|uβ,k〉, (D2)

where |uα,k〉 are the K-IVC eigenstates. Because of the spinless time-reversal symmetry T = τxK of the BM model, we can
without loss of generality use BM form factors which satisfy �−q(−k) = τx�

∗
q(k)τx and τ z�q(k)τ z = �q(k). Using these

properties, we find that

[F−q(−k)]αβ = 〈uα,−k−q|iτy�
∗
q(k)iτ T

y |uβ,−k〉. (D3)

Because of the T ′ symmetry, with T ′ = τ zT = iτyK , the K-IVC eigenstates satisfy

T ′|uβ,k〉 = eiϕβ (k)|uβ,−k〉 ⇒ iτ T
y |uβ,−k〉 = e−iϕβ (k)|uβ,k〉∗, (D4)

where eiϕβ (k) is a gauge-dependent phase factor. Since |uα,k+G〉 = |uα,k〉, it follows that eiϕα (k+G) = eiϕα (k). Using Eq. (D4), one
finds that the K-IVC form factors satisfy

[F−q(−k)]αβ = ei[ϕα (k+q)−ϕβ (k)]〈uα,k+q|�q(k)|uβ,k〉∗ = ei[ϕβ (k)−ϕα (k+q)][Fq(k)
]∗
αβ

, (D5)

which in turn implies Eq. (D1).
Next, we show that the Goldstone-mediated interaction in the Cooper channel similarly satisfies

V̂ G
αβ (k, k′) ≡ −

∑
G

K (k′ − k + G)−1gαβ (k, k′ − k + G)gαβ (−k, k − k′ − G)

= −eiϕα (k′ )

(∑
G

K (k′ − k + G)−1
∣∣gαβ (k, k′ − k + G)

∣∣2

)
e−iϕβ (k). (D6)

First, we again use the properties of the BM form factors, and we find

gαβ (−k,−q) = i

2
〈uα,−k−q|�(−k − q)iτy�

∗
q(k)iτ T

y τ z − τ ziτy�
∗
q(k)iτ T

y �(−k)|uβ,−k〉. (D7)

The Kramers time-reversal symmetry of the K-IVC state implies that iτ T
y �(−k)iτy = �∗(k), which allows us to write

gαβ (−k,−q) = − i

2
〈uα,−k−q|iτy[�∗(k + q)�∗

q(k)τ z − τ z�∗
q(k)�∗(k)]iτ T

y |uβ,−k〉. (D8)

From the transformation property of the K-IVC states in Eq. (D4), we find that

gαβ (−k,−q) = ei[ϕα (k+q)−ϕβ (k)]g∗
αβ (k, q), (D9)

which implies Eq. (D6).

APPENDIX E: BCS GAP EQUATION

In the main text, we look for superconducting states with an order parameter of the form

�̃
t
k =

(
�̃1,k 0

0 �̃2,k

)
⊗ isys, (E1)

corresponding to spin-triplet pairing of electrons within the same band. The finite-temperature gap equation is then given by

�̃α,k = − 1

A

∑
β,k′

Vαβ (k, k′)
�̃β,k′

2
√

E2
β,k′ + |�̃β,k′ |2

tanh

⎛
⎜⎝

√
E2

β,k′ + |�̃β,k′ |2
2kBT

⎞
⎟⎠, (E2)
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where A is the area of the system. To find the critical temperature of possible superconducting states, we take the BCS gap
equation and apply the standard procedure by ignoring the dependence on the gap in the denominator and the argument of the
hyperbolic tangent in Eq. (E2), motivated by the fact that the gap goes to zero if we approach the critical temperature from below.
This leaves us with

�̃α,k = − 1

A

∑
β,k′

Vαβ (k, k′)
�̃β,k′

2Eβ,k′
tanh

(
Eβ,k′

2kBTc

)
≈ −

∑
β

∫
dE Nβ (E )

∫
dθ ′

2π
Vαβ[k, k′(E , θ ′)]

�β,k′(E ,θ ′ )

2E
tanh

(
E

2kBTc

)
, (E3)

where θ ′ is a polar angle in momentum space, and

Nβ (E ) =
∫

dθ

2π

kβ (E , θ )

2π

∣∣∣∣∂Eβ (k, θ )

∂k

∣∣∣∣
−1

k=kβ (E ,θ )

(E4)

corresponds to the density of states in band β. Here, we use kβ (E , θ ) to denote the inverse function of the dispersion Eβ (k, θ ),
i.e., it is defined via the relation Eβ[kβ (E ′, θ ), θ ] = E ′. Note that the approximation in Eq. (E3) is justified if the dispersion near
the Fermi surfaces is close to being isotropic.

Next, focusing on the vicinity of the Fermi surface, we write

�̃α,k ≈ −
∑

β

Nβ (0)
∫

dθ ′

2π
Vαβ[k, kF,β (θ ′)]�̃β,kF,β (θ ′ )

∫
dE

tanh
(

E
2kBTc

)
2E

⇒ �̃α (θ ) ≈ −
∑

β

Nβ (0)
∫

dθ ′

2π
Vαβ (θ, θ ′)�̃β (θ ′)

∫
dE

tanh
(

E
2kBTc

)
2E

, (E5)

where kF,β (θ ′) is the angle-dependent Fermi momentum on the Fermi surface in band β. In the last line, we have introduce the
notation �β (θ ) = �β,kF,α (θ ) for the gaps on the Fermi surfaces, and also Vαβ (θ, θ ′) = Vαβ[kF,α (θ ), kF,β (θ ′)] for the interaction
on the Fermi surfaces. Nβ (0) is the density of states of band β at the Fermi surface.

It is now clear that to find solutions of the gap equation, we have to solve the eigenvalue equation∑
β

∫
dθ ′

2π
Vαβ (θ, θ ′)Nβ (0)�̃β (θ ′) = −λ�̃α (θ ), (E6)

after which we can proceed with the solution of the gap equation in the standard way to obtain

kBTc ∼ εF × e−1/λ, (E7)

where εF is the Fermi energy.

APPENDIX F: CONTINUOUS TRANSITION BETWEEN
K-IVC AND VALLEY HALL INSULATOR

If the hexagonal boron-nitride (hBN) substrate encapsu-
lating the MATBG system becomes sufficiently aligned with
one of the graphene layers, it can introduce a significant
C2z-breaking sublattice splitting �tσz via the proximity ef-
fect [65–68]. Here, σi are the Pauli matrices acting on the
sublattice index. The sublattice splitting generates a Dirac
mass at both the K and K ′ points of the mini-BZ, leading
to an insulating single-particle spectrum at charge neutrality.
Depending on the sign of the sublattice splitting, the spin-
resolved bands in each valley have Chern number ±1 [69–71].
Note that time-reversal symmetry is not broken, and that the
bands in different valleys that are exchanged under time-
reversal have opposite Chern numbers. Because only the
valley-resolved Chern number of the filled bands is nonzero,
this state is referred to as the valley Hall (VH) insulator.

In Ref. [42] it was found that within mean-field theory,
there is a transition from the K-IVC insulator to the VH
insulator at a critical sublattice splitting (say, on the top layer)
of �∗

t ∼ 10 meV. At this point, there is a second-order phase
transition where both the UV (1) and time-reversal symmetry

are restored. Importantly, the single-particle gap does not
close at the transition. We also find that the Fermi surfaces
around � at ν = 1/4 do not change in any significant way
if we tune through the transition. However, if �t becomes
sufficiently close to the critical value �∗

t , there is an additional
soft (critical) bosonic mode that can facilitate pairing.

Based on experience with other systems with a Fermi
surface coupled to a critical mode, one naturally expects non-
Fermi-liquid behavior near the K-IVC-VH transition, even
at small coupling [72–79]. We will argue that this expecta-
tion is essentially correct, but also that the non-Fermi-liquid
physics follows from very small, seemingly negligible terms.
To set up the argument, let us actually start from the VH
side, i.e., let us consider the system with �t > �∗

t . Also,
in this Appendix, we will work in the sublattice polarized
basis introduced in Ref. [42]. As the precise definition of
this basis is not relevant for this work, we will not give it
here and just refer to Ref. [42] for details. The only reason
why we use the sublattice polarized basis is that the K-IVC
order parameter takes on a particularly simple form. Namely,
in this basis we have �(k) = [dx(k)τx + dy(k)τy]σy, where
τi are still the Pauli matrices acting on the valley index. The
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Yukawa coupling to the K-IVC modes that become soft near
the critical point is then given by

HY = g

N

∑
k,q

c̃†
k+q( �φq · �τ )σyc̃k, (F1)

where �φq · �τ = φx
qτx + φ

y
qτy. So the doped VH state coupled

to the K-IVC modes is described by

H =
∑
k,τ,α

ετ,α,kc̃†
τ,α,kc̃τ,α,k

+ 1

N

∑
k,q

∑
τ,τ ′,α,β

〈wτ,α,k+q|( �φq · �τ )σy|wτ ′,β,k〉c̃†
τ,α,k+qc̃τ ′,β,k,

(F2)

where ετ,α,k and |wτ,α,k〉 are the band energies and Bloch
states of the mean-field VH Hamiltonian. Because the VH
state preserves the valley symmetry, the eigenstates have a
well-defined valley quantum number τ . The index α distin-
guishes between valence and conduction bands. Since we are
interested in, e.g., electron doping, we neglect the valence
bands and focus only on the conduction bands. This means
that we can ignore the α index, and label the electrons by the
valley index (and spin). We can then write the Hamiltonian as

H =
∑
k,τ

ετ,kc̃†
τ,kc̃τ,k

+ 1

N

∑
k,q

(g+−(k, q)φ+
q c̃†

+,k+qc̃−,k + H.c.), (F3)

where in the last line we have introduced the notation φ+
q =

φx
q + iφy

q and

g+−(k, q) = g〈w+,k+q|τxσy|w−,k〉. (F4)

For our purposes, the main question we want to address is
whether the coupling g+−(k, q) becomes zero at zero momen-
tum transfer, i.e., whether g+−(k, 0) = 0 or not.

Before we answer the above question, we first recall that
the BM model has an emergent approximate particle-hole
symmetry P [80,81], which acts in the sublattice polarized
basis as [42]

P : c̃†
k → τ zσyc̃−k. (F5)

If we combine the particle-hole symmetry with the time-
reversal symmetry T defined in Eq. (3), we obtain an

approximate PT symmetry acting as

PT : c̃†
k → iτyσyc̃k , i → −i. (F6)

Because of this approximate PT symmetry, we conclude
that the dominant, particle-hole symmetric terms in the VH
Hamiltonian anticommute with τyσy, and therefore also with
τxσy. But these matrices exactly constitute the K-IVC order
parameter in the sublattice polarized basis. This implies that
if the VH Hamiltonian was perfectly particle-hole symmetric,
then the coupling would vanish for zero momentum transfer:
g+−(k, 0) = 0. This is because τxσy anticommutes with the
particle-hole symmetric VH Hamiltonian, such that it maps
a conduction-band Bloch state to a valence-band Bloch state
and vice versa. Because of this, the matrix element in Eq. (F4)
is strictly zero. Note that the full Yukawa coupling term in
Eq. (F1) is not zero when q = 0, only the part projected onto
the conduction bands is. In other words, at q = 0, the Yukawa
coupling only mixes the valence and conduction bands of
the particle-hole symmetric VH insulator, but it does not mix
conduction bands among themselves. In part, this is a mani-
festation of the fact that the hBN sublattice splitting σz and the
K-IVC order parameter τxσy anticommute, which also implies
that the electron gap at ν = 0 does not close at the critical
point.

In general, we of course have to include the small particle-
hole symmetry breaking terms in the VH Hamiltonian. These
terms give rise to a nonzero but very small value for g+−(k, 0).

Similar to the analysis in Ref. [82], we can now consider
the electron interaction induced by the soft K-IVC modes for
�t � �∗

t . It is given by [82]

VIVC(k, q, ω) = −|g+−(k, q)|2χ (q, ω). (F7)

Here, χ (q, ω) is the valley-U (1) susceptibility

χ (q, ω) ∼ χ0

(
ξ−2

c2q2 + ω2 + ξ−2

)1−η/2

, (F8)

where ξ ∼ |�t − �∗
t |−ν = |δ�t |−ν is the correlation length of

the boson field φ, and χ0 ∼ |δ�t |−γ . The critical exponents
ν, γ , and η are those of the (2+1)-d O(2) Wilson-Fisher fixed
point [83].

Because g+− is nonzero at q = 0, the interaction
VIVC(k, 0, 0) in Eq. (F7) diverges at the critical point, resulting
in non-Fermi-liquid physics. However, because g+−(k, 0) is
very small, we only expect the non-Fermi-liquid physics to
manifest itself at very long distance and timescales.

[1] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E.
Kaxiras, and P. Jarillo-Herrero, Unconventional superconduc-
tivity in magic-angle graphene superlattices, Nature (London)
556, 43 (2018).

[2] F. Guinea and N. R. Walet, Electrostatic effects, band distor-
tions, and superconductivity in twisted graphene bilayers, Proc.
Natl. Acad. Sci. (USA) 115, 13174 (2018).

[3] F. Wu, A. H. MacDonald, and I. Martin, Theory of Phonon-
Mediated Superconductivity in Twisted Bilayer Graphene,
Phys. Rev. Lett. 121, 257001 (2018).

[4] B. Lian, Z. Wang, and B. A. Bernevig, Twisted Bilayer
Graphene: A Phonon-Driven Superconductor, Phys. Rev. Lett.
122, 257002 (2019).

[5] Y.-Z. You and A. Vishwanath, Superconductivity from valley
fluctuations and approximate SO(4) symmetry in a weak cou-
pling theory of twisted bilayer graphene, npj Quantum Mater.
4, 16 (2019).

[6] T. J. Peltonen, R. Ojajarvi, and T. T. Heikkila, Mean-field theory
for superconductivity in twisted bilayer graphene, Phys. Rev. B
98, 220504(R) (2018).

235157-16

https://doi.org/10.1038/nature26160
https://doi.org/10.1073/pnas.1810947115
https://doi.org/10.1103/PhysRevLett.121.257001
https://doi.org/10.1103/PhysRevLett.122.257002
https://doi.org/10.1038/s41535-019-0153-4
https://doi.org/10.1103/PhysRevB.98.220504


SPIN-TRIPLET SUPERCONDUCTIVITY FROM … PHYSICAL REVIEW B 106, 235157 (2022)

[7] Y. W. Choi and H. J. Choi, Strong electron-phonon cou-
pling, electron-hole asymmetry, and nonadiabaticity in magic-
angle twisted bilayer graphene, Phys. Rev. B 98, 241412(R)
(2018).

[8] C. Xu and L. Balents, Topological Superconductivity in Twisted
Multilayer Graphene, Phys. Rev. Lett. 121, 087001 (2018).
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