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Ab initio low-energy effective Hamiltonians for the high-temperature superconducting cuprates
Bi2Sr2CuO6, Bi2Sr2CaCu2O8, HgBa2CuO4, and CaCuO2
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We derive ab initio low-energy effective Hamiltonians (LEH) for high-temperature superconducting (SC)
copper oxides Bi2Sr2CuO6 (Bi2201, N� = 1, T exp

c ∼ 10 K), Bi2Sr2CaCu2O8 (Bi2212, N� = 2, T exp
c ∼ 84 K),

HgBa2CuO4 (Hg1201, N� = 1, T exp
c ∼ 90 K), and CaCuO2 (Ca11, N� = ∞, T exp

c ∼ 110 K), with substantially
different values of experimental optimal SC transition temperature T exp

c and number N� of laminated CuO2

planes between the two neighboring block layers. We apply the latest methodology of the multiscale ab initio
scheme for correlated electron systems (MACE), and focus on the LEH consisting of one antibonding (AB)
Cu3dx2−y2/O2pσ orbital centered on each Cu atom. We discuss prominent features of this LEH: (1) The ratio
U/|t1| between the onsite effective Coulomb repulsion (ECR) U and amplitude of nearest-neighbor hopping t1

increases with T exp
c and N�, consistently with the expected increase in d-wave SC correlation function Pdd with

U/|t1|. One possible cause of the increase of U/|t1| with N� is the replacement of apical O atoms by Cu atoms
from neighboring CuO2 planes when N� increases. Furthermore, we show that the increase in distance between
Cu and apical O atoms decreases the effective screening (ES) defined as the screening by electrons outside of the
LEH and increases U/|t1|. (2) For Hg1201 and Ca11, we examine the variation in U/|t1| with hole doping per AB
orbital δ, and show that U/|t1| decreases when δ increases, which may partly account for the disappearance of SC
when δ exceeds the optimal value in experiment. (3) For N� � 2, offsite inter-CuO2 plane ECR is comparable to
off-site intra-CuO2 plane ECR. We discuss contributions of inter-CuO2 plane ECR to both Pdd and the stability
of the SC state.

DOI: 10.1103/PhysRevB.106.235150

I. INTRODUCTION

Unconventional superconductivity (SC) occurs in cuprates
[1] with the transition temperature Tc reaching the maximal
value T exp

c ∼ 138 K at ambient pressure for HgBa2Ca2Cu3O8

[2], and even higher values (�150 K) for Hg-based com-
pounds under pressure [3,4]. It is empirically observed that
T exp

c has a correlation with N�, the number of CuO2 layers
sandwiched by the neighboring block layers; in the Bi-based
cuprates Bi2Sr2CaN�−1CuN�

O2N�+4; T exp
c < 10 K for N� = 1

(Bi2201) [5,6], up to ∼40 K under optimal substitution [7];
T exp

c ∼ 84 K for N� = 2 (Bi2212) [8–11]; T exp
c ∼ 110 K for

N� = 3 (Bi2223) [12] and HgBa2Ca2Cu3O8 also belongs to
N� = 3. Namely, T exp

c increases progressively with N� and
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this trend is also satisfied for carrier doped CaCuO2, which
is interpreted as N� = ∞, and reaches T exp

c ∼ 110 K [13].
However, the microscopic mechanism that causes this trend
is not well understood.

If appropriate, LEHs that correctly describe low-energy
physics could be derived systematically for compounds that
have different N� and the relevant material-dependent param-
eters are revealed, it would provide hints to the origin of
the difference in T exp

c and eventually the SC mechanism in
cuprates.

Historically, single-orbital Hubbard models with ad-
justable parameters of onsite ECR U and the hopping t have
been extensively studied to understand the cuprate supercon-
ductors. This single orbital is expected to be an antibonding
orbital originating from strongly hybridized atomic Cu 3dx2−y2

and O 2pσ orbitals, which is centered on each Cu atom and
denoted as AB hereafter. However, it is not trivial whether
the degrees of freedom beyond the antibonding orbital AB
play only minor roles in understanding physics of SC. The
band structure derived from density functional theory (DFT)
suggests atomic Cu 3dx2−y2 , 3d3z2−r2 and O 2pσ orbitals, ab-
breviated as x, z and p orbitals hereafter, are located relatively
close to the Fermi level and potentially contribute to low-

2469-9950/2022/106(23)/235150(22) 235150-1 Published by the American Physical Society

https://orcid.org/0000-0002-0710-9880
https://orcid.org/0000-0003-2724-0621
https://orcid.org/0000-0002-4055-8792
https://orcid.org/0000-0002-5511-2056
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.235150&domain=pdf&date_stamp=2022-12-23
https://doi.org/10.1103/PhysRevB.106.235150
https://creativecommons.org/licenses/by/4.0/


JEAN-BAPTISTE MORÉE et al. PHYSICAL REVIEW B 106, 235150 (2022)

energy physics. For instance, charge transfer energy �Exp

between atomic x and p orbitals smaller than the onsite ECR
for x was claimed to lead to essential insufficiency of the
single-band Hubbard-type model [14] including the negative
correlation of �Exp to T exp

c [15]. The positive correlation be-
tween T exp

c and �Exz defined between x and z orbitals was also
addressed [16]. An inapplicability of the AB Hubbard model
to overdoped cuprates was also claimed from earlier x-ray
absorption spectra [17,18]. Furthermore, theoretical studies of
the Hubbard model [19–30] showed the increasing supercon-
ducting order for larger |U/t1| in the superconducting solution
of the simple Hubbard model at finite hole doping, where U
is the onsite interaction and t1 denotes the nearest-neighbor
hopping within a CuO2 layer. However, this solution becomes
an excited state for large |U/t1| and the true ground state is
dominated by severely competing charge-ordered (CO) states
contrary to the widely spread SC phase found in the doping
concentration dependence of the experiments [19,23–30].

Nonetheless, a recent study [31] of the ab initio single-
orbital AB Hamiltonian [32] for Hg1201 (T exp

c ∼ 90 K [33])
derived by MACE, without adjustable parameters and be-
yond the simple Hubbard model, was able to reproduce the
experimental phase diagram at zero temperature, including
the dominant SC phase under hole doping. Offsite inter-
action parameters beyond the Hubbard model have turned
out to be crucially important: Although they reduce the
long-range d-wave superconducting order parameter �SC =√

limr→∞ Pdd (r) monitored by the d-wave Cooper pair corre-
lation function Pdd (r) at distance r, they allow the stabilization
of the SC state over the competing CO states, because the
CO is more severely damaged, so that the SC ground state is
successfully predicted. This supports that the ab initio single-
orbital AB Hamiltonian offers a promising framework for the
in-depth understanding of the SC mechanisms in the cuprates,
provided that the ab initio LEH is carefully derived beyond
the Hubbard picture. In this paper, we extend the work along
this line and derive the ab initio Hamiltonians systematically
for several compounds that have different N� to gain insights
into the substantial dependence of T exp

c on N�.
In the early stage of the derivation of the ab initio LEH

for the cuprates within the MACE [34], the hopping param-
eters (one-particle part) were at the level of the local density
approximation (LDA) or generalized gradient approximation
(GGA), and the effective interactions (two-particle part) were
at the level of the constrained version (cRPA) of the random
phase approximation (RPA) [35,36], where the screening by
the electrons contained in the effective Hamiltonian is ex-
cluded and is called cRPA screening. At this level, the T exp

c

dependence of the LEH parameters was studied [37–42], with-
out the recent improvement of the MACE by the constrained
GW (cGW ) method [43–46], self-interaction correction (SIC)
[44], and level renormalization feedback (LRFB) [32]. There,
the partial screening nature of the cRPA screening is retained
even for the screening taken into account in the cGW level,
and we call it cGW screening, or cGW + LRFB screening
if we start from the GW electronic structure improved by
the LRFB. Recent LDA/GGA+cRPA studies [39–41] at this
level reported that the high-Tc SC is favored by a higher value
of |U/t1|. However, they studied the Hamiltonian without
considering the offsite interaction and did not consider the

competition with the CO. For instance, in Ref. [39], the cRPA
value of U for TlBa2CuO5 (Tl1201, N� = 1, T exp

c ∼ 50 K) is
∼40% lower than their estimate for Hg1201 (N� = 1, T exp

c ∼
90 K) and Ca11 (N� = ∞, T exp

c ∼ 110 K). In addition, their
value of U for Hg1201 is ∼2.9 eV, which is substantially un-
derestimated with respect to ∼3.8 eV in Ref. [46]. It is known
that an insufficient treatment of the disentanglement proce-
dure [47] can cause the underestimate. Still, the enhanced SC
for larger |U/t1| is consistent with the Hubbard model study
mentioned above [19,21,23–30].

In this paper, we apply the state-of-the-art methodology of
the MACE [32], by using the RESPACK code [48]. We use the
pseudopotential (PP) and plane wave formalisms, to reduce
the computational cost compared to the all-electron (AE) im-
plementation. This allows us to treat compounds with more
atoms in the unit cell such as Bi2201 and Bi2212 even with
the improved MACE scheme mentioned above [32]. It enables
to derive LEHs for different N� and to study the systematic
dependence of the LEH parameters on Bi2201 (T exp

c ∼ 10 K,
N� = 1), Bi2212 (T exp

c ∼ 84 K, N� = 2), Hg1201 (T exp
c ∼

90 K, N� = 1), and Ca11 (T exp
c ∼ 110 K, N� = ∞), which

helps reaching our present goal to understand the microscopic
origin of strongly increasing Tc. Our comparison of the LEH
for Hg1201 with the literature using the all-electron imple-
mentation in Refs. [32,46] is useful to establish the accuracy
and reliability of our PP framework.

We separate the comparison of Hg1201 and Ca11 (Hg/Ca
compounds), on the one hand, and the comparison of Bi2201
and Bi2212 (Bi compounds), on the other hand. As explained
below, it is possible to compare Hg/Ca compounds on equal
footing, then Bi compounds on equal footing; however, the
comparison of Hg/Ca with Bi compounds altogether is not
reliable, due to two main complications:

a. Difference in optimal hole concentration δopt between
Hg/Ca and Bi compounds. A difficulty in estimating the
optimal hole concentration is due to the uncertainty in the
oxygen deficiency. By keeping in mind the uncertainty, still,
the optimal hole concentration for Hg1201 was estimated to
be between δopt = 0.10 and 0.15 from the Seebeck coefficient
[49]. In the case of Ca11, we consider the experimental struc-
ture from Ref. [50], while the optimum concentration may
have a similar value to Hg1201 by considering the oxygen de-
ficiency [13]. To reproduce δopt in the experimental SC phase
while keeping the comparison of Hg/Ca compounds on equal
footing, we employ the hole concentration per AB orbital
δ = 0.1 in the derivation of the LEH for Hg/Ca compounds.
For completeness, we also consider δ = 0.0.1 However, in
the case of Bi compounds, the optimal value of δ in the
experimental SC phase is estimated as δopt ∼ 0.19 for Bi2201
and δopt ∼ 0.27 for Bi2212 [7,52,53]. Here, δopt appears to be
closer to 0.2, so that we derive the LEH for δ = 0.2 for both
Bi compounds.2

1In addition, we derive and present LEHs at δ = 0.2 for Hg/Ca
compounds in the Supplemental Material [51]. However, we stress
that the latter LEHs may correspond to the overdoped regime and
may not be able to reproduce the SC ground state when the LEHs are
solved by the low-energy solver.

2For Bi2212, we also give the LEH for δ = 0.1 in the Supplemental
Material [51].
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b. Uncertainty on atomic coordinates in Bi compounds.
In the SC phase of Bi compounds, experimental estimates
of the distance dz

Oap between Cu and apical O atoms along
z direction vary between ∼2.26–2.60 Å for Bi2201 [54–57],
and between ∼2.30–2.50 Å for Bi2212 [54,58–60]. Similarly,
in the case of Bi2212, there is an uncertainty on the ampli-
tude dz

buck of the buckling of Cu-O-Cu bonds, which varies
between dz

buck � 0.07 Å [58,60] and 0.27 Å [54]. This further
complicates the comparison of Bi compounds with Hg/Ca
compounds. Nonetheless, our treatment of Bi compounds on
equal footing allows to investigate the effect of variations in
dz

Oap and dz
buck, at least in the comparison within the two Bi

compounds. We show that the uncertainty on dz
Oap and dz

buck
causes significant variations in U/|t1| and the ES. However,
this does not change the trend, that is, U/|t1| is at least ∼10%
larger for Bi2212 compared to Bi2201.

We first analyze a three-orbital LEH, called the ABB LEH
below, consisting of the antibonding AB orbital as well as two
counterpart bonding orbitals denoted by B. By examining the
ABB LEH, we suggest that the single-orbital AB Hamiltonian
looks enough, by showing that the lower Hubbard band (LHB)
from the AB manifold is located above the upper Hubbard
band (UHB) from the B manifold and both are nearly sepa-
rated.

As for the AB Hamiltonian, we compare separately Hg/Ca
compounds, on the one hand, and Bi compounds, on the other
hand, as explained above. We find three main trends: (1) Ab
initio U/|t1| increases when N� and T exp

c increase, which sug-
gests a positive correlation between T exp

c and U/|t1|, although
this correlation remains empirical since values of T exp

c are
estimated from experiment, and it is desirable to solve the
present LEHs in future studies to clarify the difference in SC
between compounds. Nonetheless, this positive correlation is
consistent with the previous report for the dependence of the
SC order parameter �SC on U/|t1| in simple models [28].
(2) Also, U/|t1| decreases when δ increases, which partly
explains the progressive disappearance of SC when δ exceeds
δopt. (3) In addition, for N� � 2, offsite interactions between
electrons at neighboring CuO2 layers are comparable to that
within a CuO2 layer. We discuss contributions of these inter-
CuO2 layer interactions to both �SC and the stability of the
SC state: A possible scenario is that inter-CuO2 layer inter-
actions contribute to destabilize charge-ordered states which
compete with the SC state. The present quantitative estimates
will allow to investigate the latter dependence, as well as
detailed clarification about the severe competition with the
charge ordering/phase separation when they are solved by an
accurate solver.

This paper is organized as follows: Sec. II describes our
method and computational details. The first part of the LEH
derivation starting from the Kohn-Sham (KS) level with LDA
or GGA and improving it to the GW level supplemented
with LRFB correction [32] is outlined in Sec. III. In Sec. IV,
we start from the GW + LRFB electronic structure to derive
AB LEH for Hg/Ca compounds in Sec. IV A, and for Bi
compounds in Sec. IV B. In Sec. V, we analyze material
dependence of the derived LEH parameters, and their effect
on �SC and stability of SC state. In Appendix A, we give
a reminder of the methodology [32,46] outlined in Sec. II,
give details about intermediate steps of the derivation of the

single-orbital AB Hamiltonian, and benchmark our results
with respect to the all-electron implementation [32,46]. In
Appendix B, we discuss in detail the effect of hole doping
on the electronic structure, and decrease in U/|t1| when hole
doping increases. In Appendix C, we discuss in detail the
crystal structure of Bi compounds, including the uncertainty
on dz

Oap and dz
buck, and estimate the variation in U/|t1| with

dz
Oap and dz

buck for Bi compounds. In Appendix D, we discuss
the validity of the single-orbital AB Hamiltonian derived in
Sec. IV. In Appendix E, we propose an approximation (not
used in this paper, but useful for future studies) to reduce the
computational cost of the MACE for compounds with large
number of bands as the cuprates with N� � 2, without loss of
accuracy.

II. METHODS AND COMPUTATIONAL DETAILS

Effective LEHs in the present paper have the form

Ĥ =
∑

(i,R,σ )

∑
( j,R′,σ ′ )

tσσ ′
i j (R′ − R)c†

iσRc jσ ′R′

+ 1

2

∑
(i,R,σ )

∑
( j,R′,σ ′ )

U σσ ′
i j (R′ − R)c†

iσRc†
jσ ′R′c jσ ′R′ciσR,

where R = [abc] is the coordinate of the unit cell in the frame
of primitive lattice vectors (a, b, c) shown in Fig. 1. The
indices i, j denote the orbitals within the unit cell, and σ, σ ′
denote the spin indices. By using these notations, c†

iσR and
ciσR are, respectively, the creation and annihilation operators
in the spin-orbital coordinate (i, σ ) at R, and tσσ ′

i j (R′ − R)

and U σσ ′
i j (R′ − R) are, respectively, the hopping and direct

interaction parameters between spin-orbitals (i, σ ) at R and
( j, σ ′) at R′, which satisfy translational symmetry so that we
may restrict the calculation to tσσ ′

i j (R) and U σσ ′
i j (R). If R =

R0 = [000] and i = j, we abbreviate U σ �=σ ′
ii (R0) as the onsite

interaction U for the AB Hamiltonian, and Ui for multiorbital
Hamiltonians.

In the case of the AB Hamiltonian, there is only one AB
orbital per unit cell for Hg1201, Bi2201 and Ca11 (i = j = 1),
but two for Bi2212 (i, j = 1, 2, as in Fig. 1). For a comparison
of energy scales in the series of the cuprates, we separate
Ui j (R) into four different categories of parameters, denoted as
onsite, intralayer, interlayer (“l”), and distant interlayer (“d”)
parameters. A few typical interaction parameters are repre-
sented schematically in Fig. 1. Intralayer, offsite interaction
parameters are Vn = U11(Rn), where Rn gives the position
of the nth nearest-neighbor orbital within the CuO2 layer
(we have R1 = [100], R2 = [110], R3 = [200], R4 = [210],
R5 = [220] and R6 = [300]). Interlayer interaction parame-
ters are defined only for Bi2212 and Ca11, as V l

n = U12(Rn)
for Bi2212 and V l

n = U11(Rn + c) for Ca11, where c = [001]
is defined as in Fig. 1. Distant interlayer parameters for
Hg1201, Bi2201, and Bi2212 are defined as those between
different CuO2 layers separated by a block layer, that is, V d

n =
U11(Rn + c) for Hg1201 and Bi2201 and V d

n,i j = Ui j (Rn + c)
for Bi2212. For Ca11, there are no block layers; instead of V d

n ,
we define the second interlayer parameters as V 2l

n = U11(Rn +
2c). The one-particle part ti j (R) is classified into intralayer
(tn), interlayer (t l

n), and distant interlayer (t d
n ) or second
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FIG. 1. Left panel: Crystal structures of Hg1201, Bi2201,
Bi2212 and Ca11, and directions of primitive vectors (a, b, c).
Colored balls used for each atomic species are defined in the upper
right inset. Right panel: Simplified representation of CuO2 layer
structures for Bi2201, Bi2212, and Ca11, with only Cu atoms, in-
layer, and apical O atoms. We also show schematic representations
of a few intralayer (Vn), interlayer (V l

n ), second interlayer (V 2l
n ), and

distant interlayer (V d
n ) interaction parameters by thick black bonds,

and isosurfaces of AB maximally localized Wannier orbitals within
the AB Hamiltonian of Hg1201 and Ca11 at hole doping per AB
orbital δ = 0.0, and of Bi2201 and Bi2212 at δ = 0.2. (absolute
value is 0.01, yellow is positive, blue is negative). The simplified
representation for Hg1201 is not shown here. For Bi2212, we show
only one of the two AB orbitals.

interlayer (t2l
n ) hopping parameters, which are defined

similarly. Regarding interaction parameters other than
U σσ ′

i j (R′ − R) (including Hund, exchange and pair hopping
parameters, and parameters beyond two-body interaction),
they are assumed to play minor roles and ignored. For the sake
of completeness, we give the Hund interaction parameters in
the Supplemental Material [51]. However, in the AB Hamilto-
nian, the amplitude of the intersite Hund interaction does not
exceed ∼0.04 eV for all compounds, that is, 4% of the direct
interaction parameter. On the other hand, the superexchange

energy J ∼ 4|t1|2/U between neighboring AB orbitals is not
negligible, and we will discuss it as well.

Distant interlayer parameters are usually neglected in the
AB Hamiltonian, even within the most recent MACE method-
ology [32,46]. Neglecting t d

n parameters is justified by their
small amplitude (�0.01 eV for Bi compounds). Although V d

n
parameters are small (V d

0 /U � 8% in this paper), they are
not always practically negligible. It is worth noting that the
distant interlayer Coulomb interactions lead to the screening
of the intralayer interactions due to the dielectric or metallic
responses from the distant layers. It may be possible to include
the screening effect from layers outside the 2D Hamiltonian
by using the dimensional downfolding procedure [61], which
we do not consider here. In the following, we will focus on
intralayer and interlayer parameters; other parameters such as
V d

n and V 2l
n may be found in the Supplemental Material [51].

We compute the effective parameters ti j (R) and Ui j (R)
by using our new implementation of the MACE scheme
[32,34,35,43,46] within the RESPACK code [48]. We quickly
summarize the scheme here; details are given in Appendix A.
We first compute the electronic structure at the KS level.
Then, the medium-energy (M) space, composed of 3d-like
bands from Cu and 2p-like bands from O, is improved at
the GW + LRFB level, by following the methodology in
Ref. [32]; other bands are left at the KS level. We then use the
resulting GW + LRFB electronic structure as a starting point
to derive the AB Hamiltonian at cRPA and cGW levels. The
cRPA allows to remove the double counting in the screening
in the two-particle part, whereas the cGW allows to remove
the exchange and correlation double counting term in the
one-particle part.

Now, we give computational details. Structural data is
taken from Ref. [55] for Bi2201, Ref. [54] for Bi2212,
Ref. [33] for Hg1201 and Ref. [50] for Ca11. DFT cal-
culations are done with QUANTUM ESPRESSO [62,63]
and optimized norm-conserving Vanderbilt pseudopotentials
(PPs)3 [64] using the GGA-PBE functional [65]. For Ca11
and Hg1201, we regenerate the PPs by using the ONCVPSP
code [66], and switch the functional to the Perdew-Zunger
LDA [67] to compare with the calculations using the all-
electron implementation [32,46], for which the LDA was
used. Nonetheless, we have checked that using either the LDA
or GGA has little influence on the KS electronic structure.
Hole doping is simulated as follows: We use the implemen-
tation of the virtual crystal approximation (VCA) [68] in
QUANTUM ESPRESSO [62,63]. As for Bi compounds, we
simulate hole doping by interpolating the PPs for Bi and
Pb, with proportions of 1 − δPP for Bi and δPP for Pb. This
corresponds to the experimental substitution of Bi by Pb in the
SC phase [69,70]. Similarly, we interpolate the PPs for Hg and
Au in the case of Hg1201, and Ca and K in the case of Ca11,
with proportions of 1 − δPP for Hg or Ca and δPP for Au or K.
Thus, δPP corresponds to the hole doping per atom of dopant
(Bi, Hg or Ca) in the unit cell. This yields the total hole doping
in the unit cell δtot = 2δPP for Bi compounds (since there

3We used the PPs X_ONCV_PBE-1.0.upf (X = Bi, Sr, Ca, Hg, Ba,
Cu, O, Pb, Au and K) from the distribution found in Ref. [71].
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FIG. 2. Band structures of Bi compounds at hole doping per AB orbital δ = 0.0, (a), (c) and δ = 0.2, (b), (d), and Hg/Ca compounds at
δ = 0.0, (e), (g) and δ = 0.1 (f), (h), at the KS level (all bands, in solid black curves) and GW + LRFB level (improvement of bands within M
space, in dashed red curves). For Bi compounds in panels (a) and (c), we show the intermediary KS band structures at δ = 0.0 for completeness,
although we do not use them as a starting point in the derivation of the LEH. High-symmetry points are defined in Cartesian coordinates, in
units of 2π/|a|, 2π/|b| and 2π/|c|, as � = [0.0 0.0 0.0], D = [0.5 0.0 0.0], Z = [1.0 0.0 0.0], and X = [0.5 0.5 0.0]. For Ca11, we redefine
Z = [0.0 0.0 0.5], and we define R = [0.5 0.0 0.5] and A = [0.5 0.5 0.5].

are two Bi atoms in the unit cell), and δtot = δPP for Hg/Ca
compounds (since there is only one Hg or Ca atom in the unit
cell). We deduce the hole doping per AB orbital δ = 0.5δtot

for Bi2212 (in which there are two Cu atoms per unit cell)
and δ = δtot for other compounds (in which there is only one
Cu atom per unit cell). The full Brillouin zone is sampled
with a 12 × 12 × 12 k-point grid at the DFT level, reduced
to 6 × 6 × 3 (6 × 6 × 6) in GW and cGW calculations for
Hg1201, Bi2201 and Bi2212 (Ca11). We consider 100 bands
for Ca11 (from ∼ − 4.1 Ha to ∼ + 2.7 Ha with respect to
the Fermi level), 250 bands for Bi2201 (−4.1/ + 2.0 Ha),
340 bands for Bi2212 (−4.1/ + 2.1 Ha) and 190 bands for
Hg1201 (−4.3/ + 1.8 Ha). We use a Fermi-Dirac smearing
of 0.0272 eV in the calculation of occupation numbers. The
KS exchange-correlation potential is extracted from the KS
electronic structure by sampling the unit cell with a grid
of size 120 × 120 × 450 for Bi2201, 120 × 120 × 540 for
Bi2212, 150 × 150 × 150 for Ca11, and 120 × 120 × 450 for
Hg1201. The plane wave cutoff energy is 100 Ry for wave
functions and 8 Ry for polarization. We compute the RPA and
cRPA polarizations for 100 real frequencies and 30 imaginary

frequencies, by considering the exponential grid in Ref. [72]
on both real and imaginary axes; the modulus of frequency
has the maximum value ∼18.5 Ha for Bi2201, ∼18.8 Ha
for Bi2212, ∼20.5 Ha for Ca11, and ∼18.5 Ha for Hg1201.
the GW and cGW self-energies are calculated by using the
contour deformation technique [73,74].

III. PREPROCESSING OF INITIAL ELECTRONIC
STRUCTURE AT KS LEVEL TO PROCEED

TO GW + LRFB LEVEL

Here, we discuss the preprocessing of the starting elec-
tronic structure before the improvement of the M space from
the KS level to the GW + LRFB level.

Figure 2 shows the KS (GGA) band structures for Bi2201,
Bi2212, Hg1201, and Ca11. We employ the doping concentra-
tion in the experimental SC phase close to the optimal value
to derive the LEH as discussed in the Introduction.

The M space is composed of 23 bands for Bi2201 and
34 bands for Bi2212. For Bi2201, we consider δPP = 0.1
to obtain δ = δtot = 0.2, in agreement with the experimen-
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tal optimal value δopt ∼ 0.19 for substituted Bi2201 [7]. For
Bi2212, we consider δPP = 0.2 to obtain δtot = 0.4 and δ =
0.2, so that δ = 0.2 is the same for Bi2212 and Bi2201.
Indeed, to compare the two compounds reliably and on equal
footing, the parameter which should be identical is the hole
doping per AB orbital δ, and not the total hole doping in the
unit cell δtot. Also, the choice of δ = 0.2 for Bi2212 is reason-
able since δopt ∼ 0.27 [52,53]. Thus, considering δ = 0.2 for
both compounds is in correct agreement with the optimally
doped experimental SC phase, and allows to compare both
compounds on equal footing.

In the case of Hg/Ca compounds, the KS (LDA) band
structures for δ = 0.0 are shown in Figs. 2(e) and 2(g). The
M space is composed of 17 and 11 bands, respectively. The
crystal structures [33,50] correspond to the experimental high-
T exp

c SC phases. We consider δ = 0.1 in addition to δ = 0.0,
as discussed in the Introduction. Resulting band structures are
shown in Figs. 2(f) and 2(h). The choice of δ � 0.1 is justified
for both compounds as we mentioned in Introduction.

Then, we preprocess the M space at the GW + LRFB
level, following the methodology in Ref. [32]. Details are
given in Appendix A, along with a reminder of the MACE
scheme; here, we briefly outline the scheme. The M space is
preprocessed at the GW level: We calculate the frequency-
dependent GW self-energy, from which we construct the GW
electronic structure (which includes M bands preprocessed at
the quasiparticle GW level, and bands outside the M space
left at the KS level). We next improve the GW electronic
structure at the GW + LRFB level as follows. We restart from
the GW electronic structure and derive a three-orbital LEH
(xp Hamiltonian) at the cRPA level and cGW level with the
SIC (cGW −SIC) [44]. We solve this xp Hamiltonian with
the mVMC code [23,75,76] to deduce the LRFB correction
�μ of the charge transfer energy �Exp between x and p
orbitals, from the exchange splitting effect in the antiferro-
magnetic phase of the mother compound. We then combine
�μ with the previously calculated GW self-energy to obtain
the GW + LRFB [32] electronic structure (which includes M
bands preprocessed at the quasiparticle GW + LRFB level,
and bands outside the M space left at the KS level). The
corresponding band structures for the M space are shown in
Fig. 2. We note that, for Hg1201 at δ = 0.0, the GW + LRFB
band structure in Fig. 2(f) is in good agreement with Fig. 7 in
Ref. [32].

IV. SINGLE-ORBITAL AB HAMILTONIAN

We now proceed to the main process to derive the AB
Hamiltonian for all four aforementioned compounds. As dis-
cussed in Sec. III, we will compare separately (1) Hg/Ca
compounds for δ = 0.0 and δ = 0.1 in Sec. IV A and (2) Bi
compounds for δ = 0.2 in Sec. IV B. Here, we discuss the
differences between AB Hamiltonians and their origin; impli-
cations of the differences in AB Hamiltonians regarding the
difference in SC between compounds will be discussed later
in Sec. V. We start from the GW + LRFB electronic structure,
and compute the AB maximally localized Wannier (MLW)
orbitals as described in Appendix A 5. The outer window
consists in the M space, from which we exclude the 4, 7, 10
and 2 lowest bands for Hg1201, Bi2201, Bi2212, and Ca11,

respectively. Then, we compute the two-particle part at cRPA
level and one-particle part at cGW level, which yields the
final effective Hamiltonian at the cGW + LRFB(AB) level, as
described in Appendix A 5.

Validity of the AB Hamiltonian. Before showing results for
the AB Hamiltonian, we discuss the restriction to the single-
orbital picture. In Appendix D, we extend the AB Hamiltonian
to the ABB Hamiltonian, which includes the AB orbital plus
two bonding (B) orbitals. We analyze the competition between
(i) the average onsite Coulomb repulsion on AB and B man-
ifolds, and (ii) the charge transfer energy between AB and B
manifolds. We show that (i) is weaker than or barely equal to
(ii). As a consequence, the upper Hubbard band from the B
manifold remains well below the Fermi level, and it is nearly
separated from the lower Hubbard band from AB orbital. This
suggests the B manifold does not essentially contribute to
low-energy physics, and it is reasonable to restrict the LEH
to the AB orbital.

A. Comparison of Hg/Ca compounds

First, we discuss the comparison of Hg/Ca compounds.
Results for the AB Hamiltonian are summarized in Table I and
Fig. 3. Table I shows the irreducible effective parameters; the
complete list is given in Supplemental Material [51]. Figure 3
shows band structures for the one-particle part, as well as
important quantities and ratios between effective parameters.
In the case of Hg1201, we benchmark our result with respect
to the all-electron implementation [32] in Appendix A 5.

The overall trends are summarized as follows. (1) At
δ = 0.0, U/|t1| increases from Hg1201 to Ca11, concomi-
tantly with the increase in N� and T exp

c . (2) At δ = 0.1, (2a)
U/|t1| decreases with respect to δ = 0.0 for both compounds.
However, (2b) U/|t1| is still larger for Ca11 with respect to
Hg1201. (3) The decay of intralayer interactions with distance
becomes faster from Hg1201 to Ca11. (4) In addition, nonneg-
ligible interlayer effective parameters appear for Ca11.

(1) First, we discuss the increase in U/|t1| from Hg1201
to Ca11 at δ = 0.0. The value of U/|t1| increases by ∼5%
from Hg1201 to Ca11. This increase is not caused by the
variation in |t1|, which increases by ∼5% from Hg1201 to
Ca11. Instead, it is caused by the variation in U , which in-
creases by ∼11% from Hg1201 to Ca11. The value of U is
controlled by two parameters: The bare interaction v, which
has a similar value of ∼14.0 eV for both compounds, and
the cGW + LRFB screening ratio R = U/v, which increases
by ∼12% from Hg1201 to Ca11, so that the ES is reduced
from Hg1201 to Ca11. This reduction in the ES is clearly
responsible for the larger U/|t1| in Ca11. Let us discuss the
origin of this reduction. The increase in R from Hg1201 to
Ca11 still holds within three-orbital Hamiltonians (ratios Rx

and Rp in Table IV of Appendix A, and ratios RAB and RB

in Table XI of Appendix D), which suggests the ES channel
between AB-like band and B-like bands is not responsible for
the increase in R. Instead, the main factor likely to be effective
to the ES is caused by substitution of apical O atoms by apical
Cu atoms from Hg1201 to Ca11: The number of apical O
atoms per Cu atom is NOap = 2 for Hg1201 (N� = 1), but
NOap = 0 for Ca11 (N� = ∞) since both apical O atoms are
replaced by apical Cu atoms from neighboring CuO2 planes,
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TABLE I. Effective Hamiltonian parameters (in eV) for the AB Hamiltonians of Hg/Ca compounds at δ = 0.0 and δ = 0.1. The complete
list of parameters is given in Supplemental Material [51]. We also give the values of U/|t1|.

No hole doping (δ = 0.0)

U/|t1| U V1 V2 V3 V4 V5 V6

Hg1201 8.16 4.029 0.900 0.520 0.379 0.329 0.265 0.146
Ca11 8.60 4.482 1.044 0.554 0.356 0.288 0.201 0.118

V l
0 V l

1 V l
2 V l

3 V l
4 V l

5 V l
6

Ca11 0.749 0.521 0.396 0.289 0.247 0.184 0.108
t l
0 t1 t2 t3 t4 t5 t6

Hg1201 − −0.494 0.112 −0.055 0.018 0.002 −0.002
Ca11 −0.059 −0.521 0.120 −0.029 0.008 −0.007 −0.001

Hole doping per AB orbital δ = 0.1

U/|t1| U V1 V2 V3 V4 V5 V6

Hg1201 7.35 3.999 1.002 0.596 0.448 0.389 0.320 0.174
Ca11 8.10 4.221 0.969 0.539 0.380 0.316 0.241 0.139

V l
0 V l

1 V l
2 V l

3 V l
4 V l

5 V l
6

Ca11 0.739 0.530 0.414 0.322 0.283 0.227 0.129
t l
0 t1 t2 t3 t4 t5 t6

Hg1201 − −0.544 0.111 −0.043 0.010 0.000 −0.004
Ca11 −0.053 −0.521 0.132 −0.047 0.008 0.000 −0.014

as seen in Fig. 1. This explains the increase in R. Indeed, the p
orbitals at apical O contribute to cRPA/cGW /cGW + LRFB
screening while the screening by the AB band at the CuO2

plane is excluded in the estimate of U , resulting in poorer
screening by cRPA/cGW /cGW + LRFB for larger N�. It in-
dicates the importance of estimating the interaction by the
cRPA/cGW /cGW + LRFB screening. More complex factors
may also enter. For instance, the distance between neghbour-
ing CuO2 planes in Ca11 is dz

Cu/Cu = 3.18 Å [50] whereas, in
Hg1201, the distance between Cu and apical O is dz

Oap = 2.80
Å [33]: The larger value of dz

Cu/Cu in Ca11 with respect to
dz

Oap in Hg1201 may also contribute to reduce the ES, in
addition to the decrease in NOap. Conversely, for N� � 2, the
presence of noncorrelated orbitals in Cu and in-plane O ions
may contribute to increase the ES of neighboring layers.

(2) Now, we discuss the case of δ = 0.1. First, we see
that (2a) U/|t1| is reduced with respect to δ = 0.0 for both
compounds. Namely, U/|t1| decreases by ∼12% for Hg1201
and by ∼6% for Ca11, so that (2b) at δ = 0.1, U/|t1| is
∼10% larger for Ca11 with respect to Hg1201. However,
the cause of (2a) is different for both compounds: In the
case of Hg1201, v is reduced by ∼5% and |t1| increases by
∼10%, whereas U is almost identical: The dominant mech-
anism in the reduction of U/|t1| is the delocalization of AB
orbital, which increases |t1|. In the case of Ca11, v and |t1|
remain similar (difference is less than ∼2%) but U decreases
by ∼6%: The dominant mechanism is the increase in the
ES. As discussed in Appendix B, the difference between
dominant mechanisms in both compounds is due to complex
effects introduced by the LRFB correction in the preprocess-
ing of the starting electronic structure. Nonetheless, if we
consider the starting electronic structure at KS or GW level
(without the LRFB correction), the trend (2a) should remain
valid and the underlying cause of the decrease in U/|t1| upon
hole doping is more intuitive. As explained in Appendix B,

the hole doping of AB orbital decreases Cu3d/O2p charge
transfer energies. If we do not consider complex effects intro-
duced by the LRFB, the decrease in charge transfer energies
contributes to delocalize the AB orbital and increase the ES,
reducing U/|t1|.

(3) Also, the decay of intralayer interactions with distance
becomes faster from Hg1201 to Ca11, as seen in Fig. 3:
Values of V3/V1 and V6/V3 decrease from Hg1201 to Ca11 at
both δ = 0.0 and δ = 0.1. Finally, (4) nonnegligible interlayer
effective parameters appear for Ca11: V l

0 has intermediate
values between V1 and V2. This is caused by the proximity of
CuO2 planes due to N� = ∞. We note that values of V l

n decay
with distance (from ∼0.7 eV for n = 0 to ∼0.1 eV for n = 6),
similarly to values of Vn.

B. Comparison of Bi compounds

Now, we discuss the comparison of Bi compounds. Re-
sults for the AB Hamiltonian are summarized in Table II and
Fig. 4. Table II shows the irreducible effective parameters; the
complete list is given in Supplemental Material [51]. Figure 4
shows band structures for the one-particle part, as well as
important quantities and ratios between effective parameters.

The overall trends at δ = 0.2 are summarized as follows:
(1) U/|t1| increases from Bi2201 to Bi2212, concomitantly
with the increase in N� and T exp

c . (2) The decay of intralayer
interactions with distance becomes faster from Bi2201 to
Bi2212. (3) In addition, nonnegligible interlayer effective
parameters appear for Bi2212. Regarding (2) and (3), the
discussion is similar to that for (3) and (4) in Sec. IV A and
we do not repeat it. In the following, we discuss (1) in detail.

(1) At δ = 0.2, U/|t1| increases by ∼13% from Bi2201 to
Bi2212. This increase is not caused by the variation in U ,
which decreases by ∼4% from Bi2201 to Bi2212. Instead,
the increase is due to the variation in |t1|, which decreases by
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FIG. 3. Upper panel: Band structure of the AB Hamiltonian at
the cGW + LRFB(AB) level, corresponding to the one-particle part
in Table I. High-symmetry points are defined as in Fig. 2. Lower
panel: important quantities and ratios between effective parameters
in Table I.

∼14% from Bi2201 to Bi2212. This decrease in |t1| is caused
by the buckling of in-plane Cu-O-Cu bonds. Indeed, although
the in-plane cell parameter along a is the same for Bi2201 and
Bi2212 (∼3.81 Å), in-plane O atoms are slightly distorted out
of the CuO2 plane in Bi2212 because of GdFeO3-type tilting

of CuO6 octahedron [77], which increases the distance be-
tween Cu and in-plane O atoms. This contributes to decrease
the hopping amplitude |t1|. However, the localization of MLW
orbitals is not affected, and v varies by less than 1% between
both compounds. Despite the reduction of the characteristic
energy scale |t1| for Bi2212 with respect to Bi2201, experi-
mental Tc is enhanced for Bi2212, which may be ascribed to
the increase of U/|t1|, with which Tc may nonlinearly increase
(see discussions in Sec. V for details).

The minor (4%) decrease of U for Bi2212 than Bi2201 is
counterintuitive in terms of the discussion in Sec. IV A be-
cause a part of the neighboring apex oxygen layer is replaced
by CuO2 plane with increasing N� from Bi2201 to Bi2212.
The origin is discussed in Appendix C).

There exists experimental uncertainty of dz
Oap. For Bi2201

the uncertainty range is between 2.26 and 2.60 Å [54–56,69]
while in the case of Bi2212, though smaller the range (dz

Oap ∼
2.30–2.50 Å [59]) also exists. However, we have employed
nearly the lower bound 2.30 Å for Bi2212 and nearly the upper
bound 2.58 Å for Bi2201. Since U monotonically increases
with dz

Oap (see Appendix C and Fig. 6), U could decrease
for Bi2201 and increase for Bi2212. This could make larger
difference in U/|t1| between Bi2212 and Bi2201. Therefore,
we can safely say that U/|t1| is larger for Bi2212 than Bi2201.

V. DISCUSSION

In Sec. IV, we discussed the origins of the differences
in the AB Hamiltonians for different compounds. Material
dependence of the LEH parameters clarified in the present
paper will contribute to understanding of material dependence
of the SC on the microscopic level and hence to understanding
of the universal mechanism of SC when they are solved by
reliable quantum many-body solvers in future. However, even
before solving them, one can gain insight into the materials
dependence of the experimentally observed SC phases from
the derived AB Hamiltonians.

Here, we discuss the insights provided by material depen-
dence of the AB Hamiltonian, regarding SC. We first discuss
four points: (1) amplitude of the SC order parameter �SC;
(2) competition of the SC state with charge inhomogeneous
states at low temperatures; (3) decrease in U/|t1| upon hole
doping; finally, (4) origins and material dependence of |t1|
and associated quantities such as the magnetic superexchange
constant.

TABLE II. Effective Hamiltonian parameters (in eV) for the AB Hamiltonians of Bi compounds at δ = 0.2. The complete list of parameters
is given in Supplemental Material [51]. We also give the values of U/|t1|.

Hole doping per AB orbital δ = 0.2

U/|t1| U V1 V2 V3 V4 V5 V6

Bi2201 8.34 4.393 1.030 0.602 0.450 0.395 0.334 0.178
Bi2212 9.37 4.226 0.915 0.518 0.366 0.312 0.253 0.138

V l
0 V l

1 V l
2 V l

3 V l
4 V l

5 V l
6

Bi2212 0.643 0.463 0.368 0.291 0.262 0.220 0.120
t l
0 t1 t2 t3 t4 t5 t6

Bi2201 − −0.527 0.144 −0.042 0.016 −0.014 −0.002
Bi2212 −0.098 −0.451 0.133 −0.051 −0.001 0.006 0.001
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FIG. 4. Upper panel: Band structure of the AB Hamiltonian at
the cGW + LRFB(AB) level, corresponding to the one-particle part
in Table II. High-symmetry points are defined as in Fig. 2. Lower
panel: important quantities and ratios between effective parameters
in Table II.

On (1), �SC is given by the long-range value of Pdd , as
�SC = √

Pdd (r → ∞). According to Refs. [31] and [28], �SC

strongly increases with |U/t1|. This simple trend is in good
agreement with the correlation between higher T exp

c and larger
|U/t1| in our results and the previous cRPA studies [39,40].
On the other hand, there exists exceptions such as La2CuO4

(La201), where |U/t1| is larger than for Hg1201 despite the
lower Tc; as an illustration, results from Refs. [32,46] are

given in Table III. However, this is consistent with previ-
ous studies [29,32,46,78] which argue that too large |U/t1|
leads rather to the CO or charge inhomogeneous states than
the SC.

Finally, we mention that a recent study [79] of the bi-
layer t-t ′ Hubbard model shows that Pdd (r → ∞) is similar
for N� = 1 and N� = 2 at least at the optimal doping. This
suggests that �SC at optimal doping may not depend on
inter-CuO2 layer quantities, but rather on intra-CuO2 layer
quantities such as U/|t1|. However, this should be tested by
solving the AB Hamiltonians on the ab initio basis here be-
yond the t-t ′ Hubbard model.

(2) Besides U , offsite intralayer interactions Vn are impor-
tant as well. For Hg1201, |V1/U | and |V3/V1| were shown [31]
to have a significant effect on SC: Starting from the “only U”
case, V1 strongly reduces the value of Pdd (from ∼5 × 10−2

to ∼2 × 10−3), but V3 partly compensates this reduction (Pdd

increases to ∼7 × 10−3). Despite the overall reduction of Pdd

and thus �SC due to Vn parameters, the latter more destabilizes
the competing CO state, and relatively favor the SC ground
state. In our results, |V1/U | slightly decreases with N� and
T exp

c (or remains similar in the case of Hg/Ca compounds
at δ = 0.0), whereas |V3/V1| decreases with N� and T exp

c .
This is counterintuitive since a lower value of |V3/V1| is not
expected to favor a SC ground state or high value of �SC

[31]. However, for N� � 2, the effect of V3 may be enhanced
by offsite interlayer interactions. Indeed, the intralayer effect
of V3 is to destabilize the CO state by causing frustration
in the charge ordering. In the case of N� � 2, the interlayer
interaction becomes comparable or larger than V3. We re-
marked in Sec. IV A that values of V l

n decay with distance:
This suggests interlayer interaction does not act merely as
a uniform background, and short-range interlayer interaction
may play a role in the stability of CO states. It is plausible
that V l

n parameters enhance the frustration effect on top of
V3, and would contribute to further destabilization of the CO
state.

Two intriguing issues are left for future studies: (1) Do
V l

n parameters affect the value of the SC order parameter
�SC? (2) Do V l

n parameters contribute to further desta-
bilization of CO states? The AB Hamiltonians presented
in this paper may be used as a basis to investigate these
questions.

(3) Also, we have clarified in Sec. IV A and Appendix B
that U/|t1| decreases when hole doping δ increases. At least
in the overdoped region beyond the optimal doping, the re-
duction of U may play roles for the reduction of Tc with δ

[80].

TABLE III. Reminder of the results for AB Hamiltonians from Refs. [32,46] for La2CuO4 and Hg1201, at δ = 0.0. In Ref. [46], the GW
electronic structure is used as a starting point instead of the GW +LRFB one; the framework of the rest of the calculation is similar. We also
remind our result for Hg1201 at δ = 0.0 for comparison, and show values of J = 4|t1|2/U .

Starting point Compound T exp
c (K) N� |U/t1| J (eV) |t1| (eV) |t2/t1| |t3/t1| |V1/U | |V3/V1|

Ref. [46] GW La2CuO4 ∼45 1 10.36 0.185 0.48 0.15 0.21 0.25 0.56
Ref. [46] GW Hg1201 ∼90 1 9.49 0.194 0.46 0.26 0.16 0.22 0.54
Ref. [32] GW +LRFB Hg1201 ∼90 1 7.56 0.270 0.51 0.25 0.15 0.22 0.39
This work GW +LRFB Hg1201 ∼90 1 8.16 0.240 0.49 0.23 0.11 0.22 0.42
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(4) Then, we discuss the possible role of |t1| and superex-
change energy J ∼ 4|t1|2/U . As discussed in Sec. IV B, in
the case of Bi2212, |t1| ∼ 0.45 eV is reduced compared to
Bi2201 for which |t1| ∼ 0.53 eV (and also other compounds
for which |t1| � 0.49 eV). This reduction in |t1| is caused by
the buckling of in-plane Cu-O-Cu bonds. It is obvious that
if all the energy scales of the Hamiltonian parameters are
scaled by λ, Tc should also be scaled by λ. Therefore, Tc

must be scaled by the energy unit defined by |t1| itself in
addition to the dimensionless parameter U/|t1|. Nevertheless,
since the superconducting order is expected to increase non-
linearly with U/|t1|, the reduced |t1| may lead to enhanced
Tc, which is consistent with Bi2212 showing higher Tc than
Bi2201.

Second, let us quickly discuss the possible role of J , which
is represented in Figs. 3 and 4: Ref. [81] claimed that a larger
J may be favorable to SC; reciprocally, smaller values of J
and hence |t1| may be destructive for SC. However, in our
results for Bi compounds, J ∼ 0.192 eV for Bi2212 is smaller
than J ∼ 0.253 eV for Bi2201 despite the much higher T exp

c

for Bi2212 (∼84 K) compared to Bi2201 (∼10 K), so that
J shows a negative correlation with T exp

c again. Regarding
Hg/Ca compounds, at δ = 0.0, J ∼ 0.242 eV for both com-
pounds. However, at δ = 0.1, J ∼ 0.296 eV for Hg1201 but
J ∼ 0.256 eV for Ca11, so that J shows a negative correlation
with T exp

c . In any case, we do not find a positive correlation
between J and T exp

c . This suggests that J is not a primary
component to control Tc. This is, however, in accordance with
the trend of higher Tc for larger U/|t1| mentioned already if t1
is the same.

Although the essence does not change, the parameters of
our derived LEH could be substantially altered by the atomic
coordinates, particularly sensitively by the apex oxygen po-
sition, which has experimental uncertainty in the case of Bi
compounds in the literature. It is desired to experimentally
determine the positions more precisely. In particular, we have
shown the Hamiltonian parameters for Bi2201 in Table II
when we assume dz

Oap = 2.58 Å, while it could be realistically
∼2.4 Å, which makes difficult to compare with Ca11 and Hg
1201 quantitatively because dz

Oap = 2.4 Å would give roughly
20% reduction of U/|t1| as is inferred from Fig. 6, resulting
in U/|t1| ∼ 6.7, much smaller than the cases of Hg1201 and
Ca11, which could be the origin of lower Tc.

VI. SUMMARY

We have derived and compared LEHs for Bi2201, Bi2212,
Hg1201, and Ca11 to gain insights into the mechanism
of cuprate superconductivity from the differences of the
Hamiltonian parameters of the compounds that show di-
verse superconducting transition temperatures. In the case of
Hg1201, we have benchmarked our result with respect to
Ref. [32]. The Hamiltonians are also derived by aiming at
serving for future studies to obtain detailed physical properties
by accurate quantum many-body solvers.

We have employed the following steps for the derivation:
(1) Preprocessed quasiparticle electronic structure is used

as a starting point for the derivation of the LEH. To derive
the LEH, we employ hole doping per AB orbital δ � 0.1 for
Hg/Ca compounds and δ = 0.2 for Bi compounds, which is

close to the experimental optimal value for superconductivity.
We improved the exchange and correlation from the KS level
to the GW + LRFB level.

(2) By using the result of (1), the single-orbital AB LEHs
are derived on the cGW+LRFB level. In addition to (2),
three-orbital ABB LEHs were obtained, which showed that
B orbitals might have few effect on the low-energy physics
except for the indirect cGW + LRFB screening effect to
renormalize the effective interaction within the AB subspace.
The sufficiency to restrict to the single-orbital picture appears
reasonable, which supports the focus to the single-orbital AB
Hamiltonian. We then compared the variations in effective
parameters from Bi2201 to Bi2212, on the one hand, and
from Hg1201 to Ca11, on the other hand, within the single-
band AB Hamiltonian. The main findings are the following:
Experimental SC transition temperature T exp

c becomes higher
for larger U/|t1| concomitantly with larger number N� of lami-
nated CuO2 planes between the two neighboring block layers.
In addition, T exp

c is higher if the offsite interactions Vn decays
faster as a function of the distance or nonnegligible interlayer
parameters emerge for N� � 2. Furthermore, U decreases
upon hole doping, which may play a role for the decrease of
Tc and disappearance of SC at overdoped hole concentration
as observed experimentally. Our result on the systematic de-
pendence of the ab initio LEH parameters suggests that larger
U/|t1| favors larger SC order parameter �SC and hence higher
Tc, whereas tuning of intra- and interlayer interactions could
amplify Tc. The derived ab initio LEHs provide a reliable
starting point to investigate these hypotheses by solving them
by a reliable quantum many-body solver.
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APPENDIX A: REMINDER OF THE MACE PROCEDURE
AND DETAILS ABOUT INTERMEDIARY QUANTITIES

Here, as a complement to Sec. II, we give a reminder of
the MACE scheme [32,34,35,43,46], which we have imple-
mented within the RESPACK code [48]. In addition, we give
details about intermediate quantities such as the three-orbital
xp effective Hamiltonian and the LRFB correction �μ.

We start from the electronic structure at the KS level, which
is represented in Fig. 2. The one-particle Green’s function at

235150-10



AB INITIO LOW-ENERGY EFFECTIVE HAMILTONIANS … PHYSICAL REVIEW B 106, 235150 (2022)

KS level is

GKS(r, r′, ω) =
∑
n,k

ψKS
nk (r)ψ∗KS

nk (r′)
ω − εKS

nk + iη
, (A1)

and the superscript in the one-particle Green’s function G
is that in KS eigenvalues and eigenfunctions (εKS

nk , ψKS
nk ) in

Eq. (A1). k is the wave vector in the full Brillouin zone, m, n
are the band indices, and η is the attenuation factor whose
value is set to 0.027 eV in our calculations. The origin of
frequency ω is the Fermi level εF, which is set to zero. First,
we preprocess the medium-energy (M) space, composed of
3d-like bands from Cu atoms and 2p-like bands from O atoms
in the unit cell; the complementary subspace, denoted as H,
will be left at the KS level. The number of bands within M
space is denoted as NM, which is five times the number of Cu
atoms in the unit cell plus three times the number of O atoms
in the unit cell: NM = 11 for Ca11, 17 for Hg1201, 23 for
Bi2201, and 34 for Bi2212.

1. Disentanglement of the M space and H space at the KS level

In case the M space is entangled with other bands from H
space, we first disentangle [47] the M space from these other
bands. The latter consist in the s-bands from Hg and Ba near
X point for Hg1201 at δ = 0.0, the semicore bands around
∼ − 7/ − 6 eV near X point for Hg1201 at δ = 0.1, and the
interstitial s-like band from Ca near A point for Ca11 at δ =
0.0 and 0.1, as seen in Fig. 2.

To do so, we extract the M space by computing NM MLW
orbitals with atomic 3d character centered on Cu atoms and
atomic 2p character centered on O atoms; the outer window
is the whole M space, plus one band above M space for Ca11,
two bands above M space for Hg1201 at δ = 0.0, and one
band below M space for Hg1201 at δ = 0.1. If necessary,
we use the inner window to preserve the band dispersion of
M bands. The inner window is [−7.0 : 0.0] eV with respect
to Fermi level for Hg1201 at δ = 0.0, [−6.0 : +0.9] eV for
Hg1201 at δ = 0.1, and [−8.0 : +0.5] eV for Ca11 at δ = 0.1.
Regarding Ca11 at δ = 0.0, we have checked that the final AB
Hamiltonian is not affected (notably, U/|t1| varies by less than
1%) by the choice of using the inner window, so that the latter
is unnecessary.

We minimize the spillage functional [83] in the outer
window to extract the M space, then minimize the spread
functional [84] in the M space to deduce the MLW orbitals
and Wannier bands, which provide a basis spanning the M
space at KS level. Then, we recompute the KS bands which
were formerly entangled with the M space; the latter bands
become orthogonal to the M space after this procedure. We
obtain the disentangled KS eigenelements (εKS,dis

nk , ψKS,dis
nk ).

This modifies the one-particle Green’s function at the KS level
GKS, allowing to separate it into

GKS,dis = GKS,dis
M + GKS,dis

H , (A2)

in which the subscript “M” (respectively, “H”) means the
summation over band index n in Eq. (A1) is restricted to the
M space (respectively, H space). In case the M bands are
already disentangled from H bands (which is the case for Bi
compounds at δ = 0.2, as seen in Fig. 2), we simply have
(εKS,dis

nk , ψKS,dis
nk ) = (εKS

nk , ψKS
nk ) and GKS,dis = GKS.

2. Preprocessing of the M space at the GW level

Then, we preprocess the disentangled M space at the GW
level. To do so, we compute the irreducible RPA polarization

χ = −iGKS,disGKS,dis, (A3)

which is denoted as χ [GKS,dis], and deduce the RPA screened
interaction

W = [I − vχ ]−1v, (A4)

which is denoted as W [v, χ ], where I is the identity matrix
and v is the bare Coulomb interaction. Then, we compute the
matrix elements of the GW self-energy4

�GW = iGKS,disW , (A5)

which is denoted as �GW [GKS,dis,W ], as a function of
frequency ω and within the basis of disentangled KS eigenele-
ments. The matrix elements are

�GW
mn (k, ω) =

∫
�

dr
∫

�

dr′ψ∗KS,dis
mk (r)

× �GW (r, r′, ω)ψKS,dis
nk (r′), (A6)

where m, n are restricted to the M space, and � is the unit cell.
Then, we obtain the quasiparticle GW self-energy, as

�̃GW
mn (k) = �GW

mn (k, ωmn(k)), (A7)

where ωnn(k) = εKS,dis
nk and ωmn(k) = εF if m �= n, as done in

Ref. [46]. This allows us to deduce the quasiparticle GW one-
particle part restricted to the M space, as

hGW
mn (k) = hKS

mn (k) + [ − V xc
mn(k) + �̃GW

mn (k)
]
ZGW

mn (k), (A8)

in which the KS one-particle part hKS, the KS exchange-
correlation potential V xc, and the quasiparticle GW self-
energy �̃GW are calculated in the basis of disentangled KS
eigenelements, restricted to the M space. We also take into ac-
count the frequency dependence of �GW

nn (k, ω) around ωnn(k),
by defining the perturbative renormalization factor for diago-
nal elements [43]:

ZGW
nn (k) = 1/

[
1 − ∂

∂ω
�GW

nn (k, ω = ωnn(k))

]
, (A9)

which is denoted as Z[�GW
nn (k, ωnn(k))]. For m �= n, ZGW

mn (k)
is set to unity, as done in Ref. [46]. Then, we diagonalize
Eq. (A8), which yields the GW eigenelements (εGW

nk , ψGW
nk )

within the M space. We recompute the Fermi level, then shift
bands in the H space so that their position with respect to the
Fermi level remains unchanged. We obtain the preprocessed
Green’s function at the GW level:

GGW = GGW
M + GKS,dis

H , (A10)

which gives the GW electronic structure, in which exchange
and correlation have been improved with respect to the
LDA/GGA exchange-correlation potential in the KS elec-
tronic structure. This GW electronic structure will be used
as a starting point to derive the three-orbital xp Hamiltonian

4For this part, the computational cost may be reduced by using the
approximation proposed in Appendix E.
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and compute the LRFB correction, which will allow to further
improve the starting electronic structure at the GW + LRFB
level.

3. Three-orbital xp Hamiltonian with LRFB correction

Now, we derive the three-orbital Hamiltonian which is used
in Sec. III for the calculation of the LRFB correction. This
Hamiltonian is denoted as xp in this paper; it is equivalent to
the three-orbital Hamiltonian in Ref. [46], and is sometimes
denoted as d pp Hamiltonian in the literature. We restart from
the GW electronic structure in Eq. (A20), and construct three
MLW orbitals (six in the case of Bi2212), with atomic x char-
acter centered on Cu atoms, and atomic p character centered
on in-plane O atoms. We use the whole M space as the outer
window. We obtain the xp subspace, from which we disen-
tangle other bands within the M space (denoted as N). The
disentangled eigenelements are denoted as (εGW,dis

nk , ψGW,dis
nk ),

and the associated Green’s function is

GGW,dis = GGW,dis
xp + GGW,dis

N + GKS,dis
H . (A11)

Then, we compute χRPA = χ [GGW,dis] and the cRPA po-
larization χ cRPA = χRPA − χxp where χxp = χ [GGW,dis

xp ] is
the double counting screening term consisting in screen-
ing channels which are internal to the xp subspace. From
χRPA and χ cRPA, we deduce, respectively, the RPA screened
interaction W RPA[v, χRPA] and cRPA effective interaction
W cRPA[v, χ cRPA]. We evaluate W cRPA(ω = 0) in the basis of
MLW orbitals wiR, where i is the Wannier band index and R
is the position of the primitive cell which contains the MLW
orbital, to deduce the two-particle part of the xp effective
Hamiltonian, as

Ui j (R
′ − R) =

∫
�

dr
∫

�

dr′w∗
iR(r)w∗

jR′ (r′)W cRPA

× (r, r′, ω = 0)wiR(r)w jR′ (r′), (A12)

and we may restrict the calculation to Ui j (R) by using the
translational invariance. Then, we compute the GW self-
energy � [GGW,dis,W RPA] and remove the double counting
exchange and correlation term as follows. The latter term is
the self-energy �xp which is internal to the xp subspace. At
the GW level, this term is

�xp = GGW,dis
xp Wxp, (A13)

where GGW,dis
xp is the intra-xp subspace Green’s function,

and Wxp = W [W cRPA(ω = 0), χxp] is the intra-xp subspace
RPA screened interaction, in which W cRPA(ω = 0) plays
the role of the intra-xp subspace bare interaction. We deduce
the constrained self-energy as �� = � − �xp. We compute
the matrix elements of hKS, V xc and �� in the basis of
(εGW,dis

nk , ψGW,dis
nk ) restricted to the xp subspace, and evaluate

both diagonal and off-diagonal elements at ωmn(k) = εF as
done in Ref. [46] to deduce the quasiparticle constrained self-
energy �̃�. We obtain the cGW −SIC one-particle part in the
basis of (εGW,dis

nk , ψGW,dis
nk ) restricted to the xp subspace, as

hcGW −SIC
mn (k) = [hKS − V xc + �̃� − tSIC]mn(k)ZcGW

mn (k),

(A14)

in which we apply the perturbative renormalization factor
ZcGW = Z[��nn(k, εF)] to diagonal elements, and the SIC
term [44] is computed in the basis of Wannier orbitals as

tSIC
i = −Uii(0)ni/2, (A15)

where ni is the occupation number of the MLW orbital i, then
tSIC is rotated to the basis of (εGW,dis

nk , ψGW,dis
nk ). Finally, we

rotate hcGW −SIC to the basis of MLW orbitals to deduce the
one-particle part of the effective Hamiltonian, as

ti j (R′ − R) =
∫

�

drwiR(r)hcGW −SIC(r)w jR′ (r), (A16)

and we may restrict the calculation to ti j (R) by using the
translational invariance.

Table IV shows the most important effective parameters
for the xp Hamiltonian. Here, we (1) compare to xp Hamilto-
nians obtained by using the all-electron (AE) implementation
[32,46] at δ = 0.0 and (2) discuss a technical subtlety in the
case of δ �= 0.0.

(1) First, we focus on Hg/Ca compounds at δ = 0.0, and
benchmark our result with respect to the AE implementation.
For Hg1201, our results compare to those in Ref. [46]. Also,
for Ca11, we derived the xp Hamiltonian by using the AE
implementation, for comparison.

(1.i) The onsite bare interaction is different for the x orbital.
Typically, vx ∼ 29 eV in the AE result and ∼25 eV in our
result. This is due to the PPs used in our calculations; we
have checked that the difference in vx may be corrected by
regenerating the PPs with reduced cutoff radii, but at the ex-
pense of increasing the cutoff energy for wave functions from
100 Ry to at least 200 Ry. Nonetheless, effective interaction
amplitudes are in good agreement; the difference is less than
5%. Also, the soft PPs allow computational tractability for
compounds with a larger number of atoms in the unit cell,
such as Bi2212.

(1.ii) The one-particle part is in good agreement, except the
charge transfer energy �Exp which is a bit underestimated in
our new implementation: The difference is ∼10% for Ca11
and ∼19% for Hg1201. For Ca11, the difference in �Exp

does not exceed 10%, which remains acceptable. For Hg1201,
although the difference is a bit larger, the final AB Hamil-
tonian is well reproduced, so that we deem it acceptable as
well. This discrepancy is partly due to the difference in GW
occupation numbers, which are more covalent in the PP result
with respect to the AE result. These occupation numbers are
used to calculate the SIC, as tSIC

i = −Uini/2 [44], so that,
before applying the renormalization factor [43], �Exp is mod-
ified by tSIC = tSIC

x − tSIC
p (which is negative in practice). For

Ux = 8.51 eV and Up = 5.35 eV (our values for Hg1201), a
modification nx → nx − δ and np → np + δ/2 with δ as small
as 0.04 electrons (corresponding to the difference between our
result and the AE result) leads to an increase in �Exp as large
as 0.12 eV, which partly explains the larger �Exp for the AE
result.

(2) Then, we discuss the case of δ �= 0.0. In that case, the
xp Hamiltonian should, in principle, consider a total number
of electrons per CuO2 plane and unit cell and within the xp
subspace Ne = 5.0 − δ to be consistent with the starting elec-
tronic structure. Nonetheless, we renormalize Ne = 5.0 − δ to
the undoped value Ne = 5.0. Here, we explain why.
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TABLE IV. Three-orbital xp Hamiltonian. We give the hole doping per Cu atom δ which is considered in the starting GW electronic
structure. We remind the values of T exp

c (in K), and give the total number of electrons per CuO2 plane and unit cell and within the xp subspace
(Ne), GW occupation numbers for x and p orbitals (nx and np), charge transfer energy between the x and p levels (�Exp), amplitudes of
hoppings between neighboring x and p orbitals (|txp|) and two p orbitals within the unit cell (|tpp|), intraorbital effective interaction (Ux and
Up) and bare interaction (vx and vp) for x and p orbitals, and interorbital effective interaction Vxp between x and p orbitals in the unit cell.
We also give the intraorbital cGW screening ratio Ri = Ui/vi, and the SIC tSIC = −Uxnx/2 + Upnp/2. Upper panel shows the xp Hamiltonian
obtained by using the all-electron (AE) implementation [46] for Hg/Ca compounds, for comparison. Then, we show in lower panels the xp
Hamiltonian obtained with our PP implementation, and values of the LRFB correction �μ obtained by solving the xp Hamiltonian. We note
that Ne is renormalized to the undoped value Ne = 5.0 even if δ �= 0.0, and nx , np and tSIC are recalculated accordingly (other parameters are
not changed).

δ T exp
c (K) Ne nx np �Exp |txp| |tpp| Ux Up Vxp vx vp Rx Rp tSIC �μ

Hg1201 (AE) 0.0 ∼90 5.0 1.437 1.781 2.41 1.26 0.75 8.84 5.31 1.99 28.82 17.11 0.31 0.31 −1.62
Ca11 (AE) 0.0 ∼110 5.0 1.433(0) 1.783(5) 2.62 1.29 0.74 9.33 6.16 2.35 28.99 17.84 0.32 0.35 −1.19
Hg1201 0.0 ∼90 5.0 1.474 1.763 2.03 1.32 0.80 8.51 5.35 1.93 25.19 17.03 0.34 0.31 −1.56 1.10
Ca11 0.0 ∼110 5.0 1.454 1.773 2.36 1.36 0.77 9.72 6.30 2.46 25.35 17.58 0.38 0.36 −1.48 1.50
Hg1201 0.1 ∼90 5.0 1.490 1.755 1.76 1.32 0.80 8.92 5.53 2.07 25.21 17.02 0.35 0.32 −1.80 1.05
Ca11 0.1 ∼110 5.0 1.474 1.763 2.10 1.35 0.82 8.88 5.76 2.20 25.23 17.14 0.35 0.34 −1.47 1.15
Bi2201 0.2 ∼10 5.0 1.450 1.775 2.54 1.42 0.85 9.48 6.19 2.27 25.55 17.72 0.37 0.35 −1.37 1.41
Bi2212 0.2 ∼84 5.0 1.458 1.771 2.40 1.35 0.86 9.00 5.85 1.98 25.70 17.73 0.35 0.33 −1.38 1.33

For Hg1201 [32] and Ca11 at δ = 0.0, the ground state
of the xp Hamiltonian has antiferromagnetic order, whereas
the GW electronic structure is paramagnetic. As stated in
Ref. [32], the difference in the character of the ground state
introduces the correction from the exchange splitting (which
is not taken into account at the GW level). To obtain a
comparable correction for δ �= 0.0, we must obtain a ground
state with similar character (that is, antiferromagnetic). How-
ever, considering Ne = 5.0 − δ poses a practical problem: The
antiferromagnetic state is not the ground state anymore at,
e.g., Ne = 4.8, so that we cannot obtain a correction which
is comparable to that at δ = 0.0. To avoid this, we consider
the following refinement: we renormalize Ne = 5.0 − δ to the
undoped value Ne = 5.0 and recalculate the GW occupation
numbers and SIC [44] accordingly. The only parameter which
is modified with respect to the xp Hamiltonian at Ne = 5.0 −
δ is the charge transfer energy �Exp.

4. LRFB correction to improve the GW electronic structure

Then, we compute the LRFB correction [32] of the GW
electronic structure. We take the three-orbital xp Hamiltonian
in Table IV. We neglect interlayer parameters for Bi2212 and
Ca11 in the xp Hamiltonian, and consider only parameters
within a given CuO2 plane. We solve this xp Hamiltonian
with the mVMC code [23,75,76] as described in Ref. [32], to
deduce the LRFB correction �μ of the charge transfer energy
�Exp between the x and p levels. We obtain the value of �μ

which allows to reproduce the GW occupations; the value
is given in Table IV. This correction is used to improve the
GW electronic structure at the GW + LRFB level. We start
from �μ in the basis of MLW orbitals, which is �μi = 0 for
i = x and �μi = �μ for i = p. We rotate �μ to the basis of
(εGW,dis

nk , ψGW,dis
nk ), in which we modify Eq. (A14) as

hcGW −SIC+LRFB
mn (k) = hcGW −SIC

mn (k) + �μmn(k). (A17)

First, we take into account the effect of ZcGW in �μ by
considering the one-particle quantity

�̃μmn(k) = �μmn(k)/ZcGW
mn (k). (A18)

Then, we rotate �̃μ to the basis of (εKS,dis
nk , ψKS,dis

nk ), and
modify Eq. (A8) in the basis of (εKS,dis

nk , ψKS,dis
nk ), as

hGW +LRFB
mn (k) = hGW

mn (k) + �̃μmn(k)ZGW
mn (k). (A19)

Then, Eq. (A19) is diagonalized as in Appendix A 2 to obtain
the GW + LRFB electronic structure, whose eigenelements
are denoted as (εGW +LRFB

nk , ψGW +LRFB
nk ). We recompute the

Fermi level, then shift bands in the H space so that their po-
sition with respect to the Fermi level remains unchanged. We
obtain the preprocessed Green’s function at the GW + LRFB
level:

GGW +LRFB = GGW +LRFB
M + GKS,dis

H . (A20)

5. Single-orbital AB Hamiltonian and benchmark for Hg1201

We then use the resulting GW + LRFB electronic structure
as a starting point to derive the AB Hamiltonian at cRPA
and cGW + LRFB levels; the cRPA allows to remove the
double counting term in the screening in the two-particle
part, whereas the cGW allows to remove the exchange and
correlation double counting term in the one-particle part. We
restart from the GW + LRFB electronic structure, and con-
struct one MLW orbital (two in the case of Bi2212), with
atomic Cu x character centered on Cu atoms. The outer
window is the M space from which we exclude the lowest
bands (given in Sec. IV), to avoid catching bonding character.
We minimize the spillage functional [83] to extract the AB
subspace, then minimize the spread functional [84] in the
AB subspace to deduce the AB MLW orbitals. Then, we
disentangle other bands within the outer window from the AB
subspace. These other bands, together with the unmodified
lowest bands which were excluded from the outer window,
are denoted as Ñ . This yields the disentangled eigenelements
(εGW +LRFB(AB)

nk , ψ
GW +LRFB(AB)
nk ), and the associated Green’s
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TABLE V. Effective Hamiltonian parameters for the AB Hamil-
tonian of Hg1201 at δ = 0.0, taken from Table I. The complete list
of parameters is given in Supplemental Material [51]. Our result
is denoted as PP. We also show the all-electron (AE) result from
Ref. [32], for comparison.

U V1 V2 V3 V4 V5 V6

AE 3.846 0.834 0.460 0.318 0.271 0.209 0.233
PP 4.029 0.900 0.520 0.379 0.329 0.265 0.146

t l
0 t1 t2 t3 t4 t5 t6

AE − −0.509 0.127 −0.077 0.018 0.004 −0.004
PP − −0.494 0.112 −0.055 0.018 0.002 −0.002

function:

GGW +LRFB(AB) = GGW +LRFB(AB)
AB + GGW +LRFB(AB)

Ñ
+ GKS,dis

H ,

(A21)

which represents the “GW + LRFB(AB)” electronic
structure. As an illustration, for Bi2201, we show the
comparison between GW + LRFB and GW + LRFB(AB)
band structures (restricted to M space) in Fig. 7(a) of
Appendix D. Then, we compute χRPA = χ [GGW +LRFB(AB)]
and χAB = χ [GGW +LRFB(AB)

AB ], from which we deduce
χ cRPA = χRPA − χAB. We obtain W RPA = W [v, χRPA] and
W cRPA = W [v, χ cRPA], from which we deduce the two-
particle part by using Eq. (A12). Then, we compute WAB =
W [W cRPA(ω = 0), χAB] and the constrained self-energy
�� = �[GGW +LRFB(AB),W RPA] − �[GGW +LRFB(AB)

AB ,WAB].
Finally, we deduce the cGW one-particle part by using
Eq. (A14) and Eq. (A16). We do not include the SIC term in
Eq. (A14), since it is only useful for multiorbital Hamiltonians
with nondegenerate energy levels. Results are presented in
Sec. IV A and Sec. IV B. Here, we discuss the benchmark of
the AB Hamiltonian for Hg1201 with respect to the AE result
[32] at zero hole doping.

Results are summarized in Table V. The two-particle part
is close for both calculations: The difference in U does not
exceed ∼0.18 eV (less than 5%), and the difference in Vn

does not exceed ∼0.08 eV. As for the one-particle part, the
difference in hoppings does not exceed ∼0.02 eV, although
the value of |t3| is underestimated. The difference in values of
|U/t1| is only ∼8%, and values of |t2/t1|, V1/U and V3/V1 are
well reproduced. Thus, the overall agreement is deemed ac-
ceptable. Nonetheless, we quickly discuss the possible origin
of the small difference between our result and the all-electron
result in Ref. [32], for the AB Hamiltonian in Table V but
also the xp Hamiltonian presented earlier in Table IV. In
addition to possible differences introduced by the pseudopo-
tential approach used in our calculations, we mention that, in
the all-electron calculation, a slightly different methodology
was used: The constrained GW self-energy is calculated by
using a two-iteration scheme. First, the renormalization of the
low-energy subspace by bands outside the M space is calcu-
lated. Second, the renormalization of the low-energy subspace
by other bands inside the M space is calculated. In our cal-
culations, we do not consider this two-iteration procedure,
which is complex and computationally expensive. Instead, we

FIG. 5. Onsite energies of atomic-like MLW orbitals spanning
the M space of Ca11 at KS level, for δ = 0.0 and δ = 0.1. The
left panel shows absolute onsite energies and the KS Fermi energy.
The right panel shows onsite energies with respect to the onsite
energy for Cu3dx2−y2 (that is, the charge transfer energies between
Cu3dx2−y2 and other orbitals if we reverse the sign to plus): For
instance, the solid blue curve gives −�Exp, where �Exp is the charge
transfer energy between Cu3dx2−y2 and O2pσ orbitals. We note that
the Cu3dx2−y2 orbital has an onsite energy at ∼2.0 − 2.5 eV below
the Fermi level, because the Cu3dx2−y2 orbital is atomic-like, and
thus, has character in both the AB band (near the Fermi level) and the
bonding bands (several eV below the Fermi level). This is illustrated
by the partial density of states for the Cu3dx2−y2 (“x”) orbital of
Bi2201 in Fig. 7(c).

calculate the renormalization of the low-energy subspace by
all other bands directly.

APPENDIX B: EFFECT OF HOLE DOPING ON THE
QUASIPARTICLE ELECTRONIC STRUCTURE AND FINAL

AB HAMILTONIAN

In Sec. IV A, we showed that U/|t1| decreases when hole
doping increases, for both Hg/Ca compounds. Here, we dis-
cuss the underlying causes of this effect.

First, we discuss the starting electronic structure at KS
level, as a function of hole doping. When hole doping in-
creases, we observe the following general trends in the KS
electronic structure: (1) The absolute (i.e., not renormalized
with respect to the Fermi energy) onsite energies of Cu3d
orbitals are reduced; (2) the value of the KS Fermi energy
is reduced; (3) the absolute onsite energies of O2p orbitals
are also reduced, but the reduction is weaker than that of
Fermi energy and Cu3d orbitals. This is illustrated in the case
of Ca11 in Fig. 5 (left panel): From δ = 0.0 to δ = 0.1, the
onsite energies of Cu3d orbitals and Fermi energy decrease
concomitantly by ∼0.35 eV, whereas the decrease in onsite
energies of O2p orbitals does not exceed ∼0.15 eV. Also, we
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TABLE VI. For Hg/Ca compounds at δ = 0.0 and δ = 0.1, value
�EGW

xp of the charge transfer energy �Exp between atomic x and p
orbitals at GW level, value �E cGW −SIC

xp of �Exp in the xp Hamiltonian
at the cGW −SIC level, difference between Ux and Up in the xp
Hamiltonian, LRFB correction �μ, value �EGW +LRFB

xp of �Exp at
GW +LRFB level, and onsite bare interaction v for the AB orbital
constructed from the GW +LRFB electronic structure.

Compound Hg1201 Ca11

δ 0.0 0.1 0.0 0.1

�EGW
xp 1.89 1.69 2.02 1.88

�E cGW −SIC
xp 2.03 1.76 2.36 2.10

Ux − Up 3.16 3.39 3.42 3.12
�μ 1.10 1.05 1.50 1.15
�EGW +LRFB

xp 1.15 0.88 0.77 1.02
v 14.03 13.37 13.97 14.20

have checked that these trends are still valid in the case of
Hg1201.

Let us discuss underlying physics of (1), (2), and (3) and
possible mechanism of them. It was shown that the doped
hole primarily goes into the O2p orbital [32]. Then the re-
duction of the Coulomb energy for the Cu3dx2−y2 electrons
is −NOVd pδ/2 for the hole concentration δ and the coordina-
tion number of O around Cu NO = 4, which leads to larger
reduction than the reduction of the Coulomb energy for the
O2pσ electrons (∼Up(22/2 − (2 − δ/2)2) ∼ −2Upδ), where
Vd p and Up are estimated to be ∼2 and ∼6 eV, respectively,
according to the values given in Table IV. Presumable partial
hole doping to Cu3d orbital makes the reduction of Cu3dx2−y2

orbital even larger. This is a very rough classical estimate but
may capture the qualitative physics.

Now, we explain why (1) contributes to decrease the value
of U/|t1|. As a consequence of (1), the charge transfer energies
between O2p and Cu3d orbitals are reduced as seen in the
right panel of Fig. 5, which causes two distinct mechanisms.
(i) The O2p → Cu3d cRPA screening is stronger and the
value of R = U/v is smaller. (ii) The bare interaction v is
reduced. This is due to the delocalization of the AB MLW
orbital, which is caused by the decrease in �Exp. This mecha-
nism also contributes to decrease U (which partly depends on
v) and increase |t1| (which is stronger when the AB orbital
is delocalized). The trends (i) and (ii) lead to the decrease
in U/|t1| when hole doping increases, and these trends are
preserved at GW level. As an illustration, in the case of (ii), we
show the value �EGW

xp of �Exp at GW level in Table VI, which
decreases upon hole doping for both Hg/Ca compounds.
However, at GW + LRFB level, complex effects arise from
the LRFB correction, as shown in in Table VI. Indeed, we
show the value �EGW +LRFB

xp of �Exp at GW + LRFB level: In
the case of Ca11, (iii) �EGW +LRFB

xp is larger for δ = 0.1 than
for δ = 0.0, which breaks the trend (ii). This is caused by the
∼30% larger value of �μ at δ = 0.0 compared to δ = 0.1:
Indeed, a rough estimation of �EGW +LRFB

xp (which neglects the
renormalization factor) is given by �EGW

xp − �μ, and if �μ

is larger, then �EGW +LRFB
xp will be smaller. The value of �μ is

obtained by solving the three-orbital xp Hamiltonian, in which
two parameters mainly control the output value of �μ: (a) The

first one is the value �E cGW −SIC
xp of �Exp at cGW −SIC level.

A larger value of �E cGW −SIC
xp hinders fluctuations between x

and p orbitals, so that a larger value of �μ will be necessary
to reproduce the occupation numbers at GW level. (b) The
second one is Ux − Up, which gives a rough estimation of the
interaction energy cost to move an electron from a p orbital
to a x orbital. Similarly, a larger value of Ux − Up hinders
fluctuations, which increases the output value of �μ. And, we
note that both �E cGW −SIC

xp and Ux − Up have the largest values
in the case of Ca11 at δ = 0.0, which explains the larger value
of �μ in that case.

In the previous paragraph, we have clarified the origin of
(iii) the difference in �μ for Ca11 at δ = 0.0, which alters
the intuitive trends (i) and (ii) at GW + LRFB level compared
to KS and GW levels. Interestingly, (iii) does not alter the
fact that (iv) U/|t1| decreases when hole doping increases.
Furthermore, if we consider a starting electronic structure at
the simpler KS or GW level instead of the GW + LRFB level,
(iv) is expected to remain valid due to (i) and (ii) and the
absence of (iii). Thus, (iv) is a robust trend since it remains
valid for any level of sophistication of the starting electronic
structure.

APPENDIX C: EXPERIMENTAL UNCERTAINTY ON
ATOMIC COORDINATES FOR BI COMPOUNDS

Here, we discuss the experimental uncertainty on atomic
coordinates for Bi compounds, and the subsequent uncertainty
on effective parameters in the AB Hamiltonian and especially
U/|t1|. Indeed, we established in Sec. IV B that U/|t1| is
∼13% larger for Bi2212 with respect to Bi2201, but this result
has some uncertainty ascribed to the experimental uncertainty
of the atomic coordinates. We discuss the following results:
(1) The relative displacements of atoms along x and y direc-
tions due to the structural distortion do not affect U/|t1|. (2)
If we take into account the uncertainty range on dz

Oap (as well
as dz

buck for Bi2212), U/|t1| is still at least ∼10% larger for
Bi2212 compared to Bi2201.

a. Experimental SC phase: Structural distortion and uncer-
tainty on atomic positions. First, in the case of Bi compounds,
a structural distortion occurs in the SC phase [55,56,58–60],
which tilts BiO and SrO layers along x and y directions,
represented, respectively, by Figs. 1(a) and 1(b). This is due a
mismatch between BiO block layers and CuO2 layers [85,86].
In particular, displacements of atoms along x and y directions
create an incommensurate modulation, which lowers the sym-
metry of the crystal and requires the use of a supercell. This
multiplies the number of atoms Nat in the unit cell with respect
to the high-symmetry primitive cell. As a consequence, the
computational cost, which scales as at least N2

at, becomes
untractable even for the PP implementation. However, it is
possible to restrict to the primitive cell, by averaging displace-
ments along x and y in the primitive cell. This allows to keep a
reasonable computational cost within the PP implementation.
We use this approximation in the present paper; the atomic co-
ordinates are shown in Table VII for Bi2201 and in Table VIII
for Bi2212. In the following, we discuss two points: (b) The
effect of displacements along x and y on the AB Hamiltonian
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TABLE VII. Atomic coordinates of atoms in the primitive cell of
Bi2201, taken from Ref. [55]. Upper panel shows Cartesian atomic
coordinates; for i = Sr, Oap, Bi, OBi, dxy

i is the average displace-
ment of the corresponding atom along x and y directions (which is
zero without distortion) with respect to ideal coordinates, and dz

i is
the distance between the atom and CuO2 plane along z direction. For
in-CuO2 plane O atoms, Ref. [55] also reports a small displacement
along z, which does not exceed ∼0.1 Å and is neglected here to
preserve the spatial inversion symmetry. Lower panel shows values
of dxy

i and dz
i in Å. The lattice vectors in Cartesian coordinates are

a = ax, b = ay, and c = a/2(x + y) + czz, with a = 3.796 Å and
cz = 3.243 × a [55].

x y z

Cu 0.0 0.0 0.0
O(in-CuO2 plane) 0.5 0.0 0.0
O(in-CuO2 plane) 0.0 0.5 0.0
Sr 0.5 + dxy

Sr 0.5 + dxy
Sr +dz

Sr

Sr 0.5 − dxy
Sr 0.5 − dxy

Sr −dz
Sr

O(apical) +dxy
Oap +dxy

Oap +dz
Oap

O(apical) −dxy
Oap −dxy

Oap −dz
Oap

Bi −dxy
Bi −dxy

Bi +dz
Bi

Bi +dxy
Bi +dxy

Bi −dz
Bi

O(BiO layer) 0.5 − dxy
OBi 0.5 − dxy

OBi +dz
OBi

O(BiO layer) 0.5 + dxy
OBi 0.5 + dxy

OBi −dz
OBi

dxy
Sr 0.008 Å dz

Sr 1.748 Å
dxy

Oap 0.091 Å dz
Oap 2.585 Å

dxy
Bi 0.098 Å dz

Bi 4.531 Å
dxy

OBi 0.319 Å dz
OBi 4.580 Å

is minor, but (c, d) the effect of the uncertainty on atomic
positions along z is more important.

b. Effect of displacements dxy
i along x and y directions.

First, for Bi2201, we estimate the effect of displacements dxy
i

along x and y. We consider the crystal structure in Table VII
(i) without modification, then (ii) by setting artificially dxy

i to

TABLE VIII. Atomic coordinates of atoms in the primitive cell
of Bi2212, taken from Ref. [54]. Upper panel shows Cartesian atomic
coordinates for Ca atom and half of the Cu/O/Sr/Bi atoms in the
primitive cell; for the other half, the coordinate along z is the op-
posite. Lower panel shows values of dz

i in Å. The lattice vectors
in Cartesian coordinates are a = ax, b = ay, and c = a/2(x + y) +
czz, with a = 3.812 Å and cz = 4.021 × a [54].

x y z

Ca 0.5 0.5 0.0
Cu 0.0 0.0 +dz

Cu

O(in-CuO2 plane) 0.5 0.0 +(dz
Cu − dz

buck )
O(in-CuO2 plane) 0.0 0.5 +(dz

Cu − dz
buck )

Sr 0.5 0.5 +(dz
Cu + dz

Sr )
O(apical) 0.0 0.0 +(dz

Cu + dz
Oap)

Bi 0.0 0.0 +(dz
Cu + dz

Bi )
O(BiO layer) 0.5 0.5 +(dz

Cu + dz
OBi)

dz
Cu 1.686 Å dz

Oap 2.300 Å dz
Bi 4.415 Å

dz
buck 0.276 Å dz

Sr 1.318 Å dz
OBi 4.415 Å

TABLE IX. Effective AB Hamiltonian parameters for Bi2201,
both with (i) and without (ii) structural distortion along x and y direc-
tions. The only difference between both calculations are the values
of dxy

i in atomic coordinates from Table VII, which are unmodified
in the case of (i) and set to zero in the case of (ii).

U V1 V2 V3 V4 V5 V6

(i) 4.138 0.825 0.434 0.296 0.245 0.192 0.105
(ii) 4.012 0.771 0.390 0.260 0.213 0.166 0.090

t l
0 t1 t2 t3 t4 t5 t6

(i) − −0.543 0.093 −0.073 0.004 0.001 −0.013
(ii) − −0.543 0.100 −0.078 0.004 −0.001 −0.013

zero, to compare the AB Hamiltonian with (i) and without
(ii) structural distortion. For simplicity, we derive the AB
Hamiltonian at the GGA+cRPA level: The M space is not
preprocessed from the KS level to the GW + LRFB level.
We start from the electronic structure at the GGA level and
construct the AB MLW orbital; the outer window is the M
space minus the seven lowest bands. The one-particle part is
left at the GGA level, and we compute the two-particle part
at the cRPA level. Results are shown in Table IX. We obtain
U/|t1| = 7.62 for (i) and U/|t1| = 7.39 for (ii), so that U/|t1|
varies by only 3%. In addition, we obtain the same value of
|t1| = 0.543 eV for (i) and (ii). Thus, the effect of dxy

i on the
AB Hamiltonian is minor. We note that, in (i), dxy

OBi = 0.32
Å is relatively large but does not affect significantly the AB
Hamiltonian. This is because BiO block layers are well sep-
arated from CuO2 planes, so that the distortion in BiO layer
merely has a corrective effect on the Bi6p bands [located right
above the AB bands in Figs. 2(b) and 2(d)] and the cRPA
screening. Similarly, other displacements dxy

i � 0.1 Å have a
minor effect.

c. Uncertainty on distance dz
Oap between Cu and apical O.

Then, we estimate the effect of the uncertainty on dz
Oap. Cal-

culations in Sec. IV B consider crystal structures in Tables VII
and VIII, in which dz

Oap = 2.58 Å for Bi2201 [55], and dz
Oap =

2.30 Å for Bi2212 [54]. However, other experimental studies
on the SC phase of Bi compounds report different values of
dz

Oap, from ∼2.26 Å to ∼2.60 Å for Bi2201 [54–57] and
from ∼2.25 Å to ∼2.50 Å for Bi2212 [58,59]. To estimate
the effect of the uncertainty on dz

Oap, we perform additional
GGA+cRPA calculations by modifying artificially the value
of dz

Oap in Tables VII and VIII; other parameters are not modi-
fied. In the case of Bi2201, we consider dz

Oap = 2.53 Å; in the
case of Bi2212, we study the range dz

Oap = 2.25 Å and dz
Oap =

2.45 Å. Results are shown in Fig. 6. We observe a general
trend: U/|t1|, U , v and R increase with dz

Oap. In the case of R,
a linear extrapolation of the red dotted curve down to dz

Oap ∼
2.45 Å would suggest that at equal values of dz

Oap, R increases
(and thus, the ES decreases) when NOap decreases. Possible
causes are the following: (i) The value of dz

Oap controls the
position of Bi6p bands with respect to the Fermi level. A
larger value of dz

Oap will push the apical O atoms closer to
the BiO layer, so that the negative Madelung potential from
apical O anions felt by Bi6p electrons will be stronger. As a
consequence, Bi6p bands are destabilized and pushed farther
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FIG. 6. Values of U/|t1|, U , |t1|, onsite bare interaction v and ES ratio R = U/v as a function of dz
Oap for Bi2201 (red), Bi2212 (blue),

and Bi2212 with modified coordinates (green and yellow), at the GGA+cRPA level. Red and blue dot markers represent calculations with
experimental crystal structures in Table VII [55] for Bi2201 (red) and in Table VIII [54] for Bi2212 in which dz

buck = 0.27 Å (blue). Green
and yellow dot markers consider the same crystal structure as blue for Bi2212, but dz

buck is artificially set to zero for the green marker, and we
consider dz

buck = 0.07 Å and dz
Oap = 2.45 Å as in Ref. [58] for the yellow marker. Cross markers represent calculations with the same crystal

structures as dot markers of the same color, except dz
Oap which is artificially modified. Dotted lines show extrapolations between markers of the

same color.

from Fermi level, which may contribute to decrease the ES.
Conversely, reducing dz

Oap stabilizes Bi6p bands. In addition,
(ii) if dz

Oap increases, the negative Madelung potential from
apical O anions felt by electrons within CuO2 planes will be
weaker. This stabilizes M bands, which increases the energy
difference between M bands and empty bands, so that the ES
decreases. As a result, U/|t1| increases. We note that, in the
case of Bi2201, the variation in U/|t1| with dz

Oap is around
twice larger than that for Bi2212. This might be related to the
fact that NOap = 2 in Bi2212, whereas NOap = 1 in Bi2201.

d. Uncertainty on amplitude dz
buck of the buckling of in-plane

Cu-O-Cu bonds in Bi2212. As for the amplitude dz
buck of the

buckling of in-plane Cu-O-Cu bonds in Bi2212, we consider
dz

buck = 0.27 Å [54] in Table VIII. However, other experimen-
tal studies [58,60] report smaller values of dz

buck. For instance,
in the case of Ref. [58], we have dz

buck = 0.07 Å. Thus, we
estimate the effect of the uncertainty on dz

buck for Bi2212. We
start from the structure in Table VIII. We set dz

buck to zero, and
perform GGA+cRPA calculations at the unmodified value
dz

Oap = 2.30 Å but also at dz
Oap = 2.25 Å and dz

Oap = 2.45
Å; other parameters are not modified. Results are shown in
Fig. 6. We observe the following trend: Removing the buck-
ling decreases U/|t1|. This is mainly due to the increase in
|t1|: Hoppings along x and y are not cut off by the buckling
anymore. We also note that v increases, which contributes to
increase U . Indeed, the buckling causes a delocalization along
the z direction, as seen in Fig. 1. This delocalization along z is
suppressed when the buckling is removed.

Finally, we refine the comparison with Ref. [58] by con-
sidering the same values of dz

Oap = 2.45 Å and dz
buck = 0.07

Å. Result is shown in Fig. 6. In that case, the value of
U/|t1| ∼ 8.43 is identical to that from dz

Oap = 2.30 Å and
dz

buck = 0.27 Å [54]. That is, the decrease in dz
buck (which de-

creases U/|t1|) is compensated by the increase in dz
Oap (which

increases U/|t1|).
e. Summary and comparison of Bi compounds. Without

taking into account the uncertainty on dz
Oap and dz

buck, U/|t1|
is �10% larger for Bi2212 with respect to Bi2201. If we take
into account the uncertainty on dz

Oap and dz
buck, a reasonable

choice is to consider the calculation for Bi2212 with dz
Oap =

2.45 Å and dz
buck = 0.07 Å [58]. In that case, U/|t1| does not

change for Bi2212, so that U/|t1| is still �10% larger for

Bi2212. In addition, U/|t1| in Bi2201 may be overestimated
if we consider dz

Oap = 2.58 Å [55], so that U/|t1| is at least
∼10% larger for Bi2212.

APPENDIX D: THREE-ORBITAL HAMILTONIAN IN
COMPARISON WITH AB HAMILTONIAN

Here, prior to the derivation of the single-orbital AB
Hamiltonian in Sec. IV, we discuss the restriction of the LEH
to the single-orbital picture. To do so, we extend the AB
Hamiltonian to a three-orbital Hamiltonian, which includes B
orbitals in addition. We detail the case of Bi2201, then give
the final three-orbital Hamiltonian for all compounds.

a. Nonsuitability of the xp Hamiltonian to discuss the
restriction to the AB Hamiltonian. In Appendix A, we de-
rived the xp Hamiltonian by starting from the GW electronic
structure. Here, we quickly discuss the xp Hamiltonian from
the GW + LRFB electronic structure (same starting point as
the AB Hamiltonian). For Bi2201, we show the occupation
numbers of MLW orbitals and intraorbital bare interaction in
row (b) of Table X. The band dispersion and partial densities
of states are shown in Figs. 7(b) and 7(c). These results reveal
that the xp Hamiltonian is not comparable to the AB Hamilto-
nian.5 In fact, the x orbital in the xp Hamiltonian has different
character from the AB orbital in the AB Hamiltonian. In the
xp Hamiltonian, both x and p orbitals have partial density
of states in both AB and B bands, due to the strong x/p
hybridization. The signature of this mixing is that p orbitals
are not full (np ∼ 1.7 instead of 2.0). In particular, the x orbital
(np ∼ 1.4) does not have the purely AB character, so that it is
not comparable to the AB orbital.

5Furthermore, the modification of nx and np between rows (a)
and (b) of Table X prevents us from performing the SIC in the
derivation of the LEH. Indeed, the self-interaction is contained within
the Hartree potential at the Kohn-Sham level, so that the SIC must
consider nx and nz at the Kohn-Sham level [44]. Values of nx and
nz at the GW level are close to those at the Kohn-Sham level (the
difference is typically ∼1%), so that we may use them, as done in
Appendix A. However, nx and nz are modified in row (b), which
makes the SIC wrong.
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FIG. 7. Band structure of Bi2201, restricted to M space, for several Hamiltonians. Panel (a) shows, for the AB Hamiltonian, the band
structure of the AB subspace (in green) obtained from the GW + LRFB band structure [in black, equal to the dashed red band structure in
Fig. 2(b)] after minimization of spillage functional. We also represent the GW + LRFB(AB) band structure (in red), which includes the AB
subspace and the 22 other bands within M space, modified by disentanglement. Lowest 7 bands are excluded from the outer window in the AB
Hamiltonian, and thus, are not modified. Panel (b) shows the band structure of the three-orbital (xp) subspace obtained from the GW + LRFB
electronic structure, after minimization of the spillage functional. We stress that this subspace is rigorously the same within the xp and ABB
Hamiltonians. Panels (c, d) show the total density of states for the xp subspace, and partial densities of states for orbitals within the xp and
ABB Hamiltonians.

Let us discuss the nature of the xp Hamiltonian in more
details. The xp Hamiltonian is useful for the LRFB correction
and improvement of the starting electronic structure beyond
the quasiparticle GW approximation, for a more accurate
derivation of the LEH. In the xp Hamiltonian, the p orbitals
have some character within the AB-like band at the Fermi
level (as revealed by the partial density of states and occupa-
tion number); this partial AB character is responsible for the
role of p orbitals in the low-energy physics of the xp Hamil-
tonian. Still, it does not say anything about the importance of
bands other than the AB-like band (namely, the two B-like
bands) for the low-energy physics. As a result, it does not say
anything about the necessity to include more than one band
(and thus, one orbital) in the LEH.

TABLE X. Characteristics of MLW orbitals for Bi2201, within
xp, AB and ABB Hamiltonians. We give the total number of elec-
trons in correlated subspace, MLW orbital occupation numbers ni

and intraorbital bare interaction vi. We also give the starting point
(electronic structure before construction of MLW orbitals and disen-
tanglement). In row (a), we show the result for xp Hamiltonian from
GW electronic structure (Table IV). In row (b), we show the result
for xp Hamiltonian from GW +LRFB electronic structure. In row (c),
we show the result for AB Hamiltonian from GW +LRFB electronic
structure. In row (d), we show the result for ABB Hamiltonian from
GW +LRFB electronic structure. In row (e), we show the result for
ABB Hamiltonian from GW +LRFB(AB) electronic structure [see
Fig. 7(a)].

Starting point Hamiltonian Ne nx np vx vp

(a) GW xp 4.80 1.450 1.775 25.55 17.72
(b) GW +LRFB xp 4.80 1.505 1.7475 25.55 17.72

Ne nAB nB vAB vB

(c) GW +LRFB AB 0.80 0.80 − 14.82 −
(d) GW +LRFB ABB 4.80 0.80 2.00 13.41 14.21
(e) GW +LRFB(AB) ABB 4.80 0.80 2.00 14.77 14.76

b. AB/B transformation: From xp Hamiltonian to ABB
Hamiltonian. To compare the AB and three-orbital Hamilto-
nians, we set the condition as follows: The AB orbital must
be included in the three-orbital Hamiltonian. This can be
achieved by considering the gauge degrees of freedom in the
construction of MLW orbitals. Once the spillage functional
has been minimized [83] to extract the xp subspace [band
dispersion in Fig. 7(b)], we still have to choose the unitary
transformation U within this subspace, which yields the MLW
orbitals.

In the xp Hamiltonian, we chose U which minimizes the
spread functional on the xp subspace. Now, we impose the
following transformation, denoted as AB/B [87].6 Starting
from the xp subspace, we consider the AB band (which spans
the AB subspace) and the two other bands (B subspace) sep-
arately. We project again the initial guess for the x orbital on
the AB subspace, and the initial guesses for p orbitals on the B
subspace. Then, we minimize the spread functional separately
within each subspace; we obtain U on each subspace, yielding
one MLW orbital in AB subspace and two MLW orbitals in B
subspace. This Hamiltonian is denoted as ABB. For Bi2201,
partial densities of states within the ABB Hamiltonian are
shown in Fig. 7(d); occupation numbers and intraorbital bare
interaction are shown in row (d) of Table X. Although the total
density of states is the same as in the xp Hamiltonian (since
the correlated subspace obtained after spillage minimization
is the same), we successfully isolate the AB orbital. This is
revealed by the occupation number (nAB = 0.8 is the same
as in the AB Hamiltonian) and the partial density of states
(the AB orbital is entirely contained within the AB-like band).
Similarly, we isolate the two B orbitals, which are entirely
contained within the two B-like bands.

6The AB/B transformation has been first proposed by Hirayama
et al. [87].
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TABLE XI. Three-orbital ABB Hamiltonian. We give the total number Ne of electrons per Cu atom and two in-plane O atoms within
ABB subspace, GW +LRFB occupation numbers ni, intraorbital effective interactions Ui and bare interactions vi, cGW +LRFB screening ratio
Ri = Ui/vi for i = AB, B, and charge transfer energy �EABB. We also give estimations of the minimal effective value of the charge transfer
energy �Emin

ABB, the ratio LB = (UAB + UB)/2�Emin
ABB, and the maximal energy of the upper Hubbard band for B manifold with respect to the

Fermi level εmaxH
B = εmax

B + UB/2.

AB Hamiltonian ABB Hamiltonian

δ Ne = nAB vAB UAB Ne nAB nB vAB vB UAB UB RAB RB �EABB �Emin
ABB LB εmaxH

B

Hg1201 0.0 1.0 14.03 4.03 5.0 1.0 2.0 13.97 14.06 4.42 4.46 0.32 0.32 7.47 4.5 0.99 −4.1
Ca11 0.0 1.0 13.97 4.48 5.0 1.0 2.0 13.83 14.26 5.01 5.15 0.36 0.36 8.00 4.8 1.06 −4.3
Hg1201 0.1 0.9 13.37 4.00 4.9 0.9 2.0 13.30 13.76 4.38 4.52 0.33 0.33 7.71 4.7 0.95 −4.2
Ca11 0.1 0.9 14.20 4.22 4.9 0.9 2.0 14.10 14.20 4.70 4.80 0.33 0.34 7.96 4.6 1.03 −4.3
Bi2201 0.2 0.8 14.82 4.39 4.8 0.8 2.0 14.77 14.76 5.20 5.22 0.35 0.35 8.82 5.6 0.93 −4.6
Bi2212 0.2 0.8 14.76 4.23 4.8 0.8 2.0 14.87 14.69 5.02 4.99 0.34 0.34 8.68 5.3 0.94 −4.6

Still, this ABB Hamiltonian [row (d) of Table X] is not
completely suitable for comparison with the AB Hamiltonian
[row (c) of Table X]. Indeed, the onsite bare interaction for the
AB orbital is vAB ∼ 13.4 eV, which is underestimated with
respect to the AB Hamiltonian (vAB ∼ 14.8 eV), so that the
AB MLW orbitals in both Hamiltonians are not completely
equivalent. This comes from the difference in the AB sub-
space, encoded within the band dispersion of the AB band
shown in Figs. 7(a) and 7(b), where the band dispersions
are similar, but not identical. To solve the discrepancy in
vAB, we propose the following scheme. Instead of starting
from the GW + LRFB electronic structure, we start from the
GW + LRFB(AB) electronic structure in Fig. 7(a). Then, we
set the initial guesses, minimize the spillage functional, ex-
tract the xp subspace, and apply the AB/B transformation
to calculate MLW orbitals for the ABB Hamiltonian as de-
scribed previously. Results are given in row (e) of Table X.
Now, vAB is very close to the value for the AB Hamilto-
nian. This improvement comes from the fact that the AB
subspace within the AB Hamiltonian is already disentangled
from other bands within the GW + LRFB(AB) electronic
structure: The spillage minimization procedure is able to
pinpoint and mimick this subspace. Now, the AB MLW or-
bitals in both AB and ABB Hamiltonians are completely
equivalent.

c. Results for the ABB Hamiltonian. Now, we derive the
ABB Hamiltonian for all compounds, by considering the
following procedure. We start from the GW + LRFB(AB)
electronic structure, calculate the AB and B MLW orbitals as
described previously, and disentangle the rest of the M space
from the ABB subspace. These disentangled bands, together
with the ABB subspace and other bands outside the M space
(left at the KS level), constitute the GW + LRFB(ABB) elec-
tronic structure. We start from the latter, and calculate the
two-particle part at the cRPA level and one-particle part at the
cGW −SIC level. Importantly, the occupation numbers nAB

and nB of MLW orbitals are strictly the same as at the KS
level, so that it is possible to perform the SIC.

Results are shown in Table XI; we reproduce values of
vAB and UAB from the AB Hamiltonian in Tables I and II for
comparison. First, UAB is larger than for the AB Hamiltonian.
This does not come from the AB MLW orbital, which is
equivalent in both Hamiltonians since vAB is nearly identi-
cal. The difference comes from the cGW + LRFB screening,

which excludes the channel between AB and B orbitals within
the ABB Hamiltonian, but includes it within the AB Hamil-
tonian. This screening channel contributes to the reduction
of UAB in the AB Hamiltonian, with respect to the ABB
Hamiltonian.

Second, the charge transfer energy �EABB between the AB
and B orbitals is very large (�EABB ∼ 7.5–9.0 eV) compared
to the xp Hamiltonian (�Exp ∼ 1.8–2.6 eV in Appendix A,
Table IV). This is due to the different character of MLW
orbitals, combined to the SIC. Indeed, the update of the onsite
energies εi due to the SIC is tSIC

i = −Uini/2 [44]. For the xp
Hamiltonian, we have tSIC

x = −6.87 eV and tSIC
p = −5.49 eV,

so that the improvement of �Exp due to the SIC (before ap-
plying the renormalization factor [43]) is tSIC = tSIC

x − tSIC
p ∼

−1.37 eV, as seen in Table IV. However, for the ABB Hamil-
tonian, we have tSIC

AB = −2.08 eV and tSIC
B = −5.22 eV. As

a result, tSIC = tSIC
AB − tSIC

B ∼ +3.14 eV, which explains the
large value of �EABB within the ABB LEH compared to �Exp

within the xp LEH.
For the ABB Hamiltonian, the large �EABB suggests that

B orbitals are far below the Fermi level and play no role in
low-energy physics except for the cGW + LRFB screening
from the B orbitals, which suggests it is reasonable to exclude
B orbitals from the LEH. Still, we must take into account the
strong electronic correlation encoded within UAB and UB to
verify this. Here, we propose the following criterion: It may
be safe to exclude the B manifold from the LEH if the upper
Hubbard band from the B manifold (UHBB) remains well
below the Fermi level, and does not overlap strongly with the
lower Hubbard band from the AB manifold (LHBAB). That
is, the charge transfer energy must be larger than or similar to
the intraorbital ECR, and the insulating phase of the mother
compound should retain the purely AB-like Mott insulating
character, without B → AB charge transfer insulating
behavior.

We discuss in detail the latter point for the case of Bi2201,
before discussing other compounds. We represent in Fig. 8
the band structure of Bi2201 at the cGW −SIC level, along
with the onsite energy εi for each manifold, the charge trans-
fer energy �EABB = εAB − εB ∼ 8.8 eV, and other quantities
defined below. To quantify the competition between intraor-
bital ECR and charge transfer energy, a first possibility is to
estimate the energy of the LHBAB as εAB − UAB/2, and the
energy of the UHBB as εB + UB/2. Equivalently, we define
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FIG. 8. Band structure corresponding to the one-particle part of
the ABB LEH for Bi2201 at the cGW −SIC level (in Table XI).
We also represent the onsite energy εi, the minimum and maxi-
mum values εmin

i and εmax
i of the band energy, the partial bandwidth

Wi = εmax
i − εmin

i for each manifold, and the charge transfer energy
�EABB = εAB − εB. In addition, we show the estimations of the
minimal effective value �Emin

ABB = εmin
AB − εmax

B of the charge transfer
energy, the maximum energy of the upper Hubbard band for B man-
ifold εmaxH

B = εmax
B + UB/2, and the minimum energy of the lower

Hubbard band for AB manifold εminH
AB = εmin

AB − UAB/2.

the dimensionless ratio

L(0)
B = UAB + UB

2�EABB
, (D1)

so that L(0)
B < 1 if εB + UB/2 < εAB − UAB/2. For Bi2201,

we obtain εAB − UAB/2 ∼ −2.6 eV and εB + UB/2 ∼
−6.0 eV, so that L(0)

B ∼ 0.59 is well below 1.
However, the ratio L(0)

B in Eq. (D1) is not appropriate
enough as the criterion. For instance, it ignores the finite
bandwidths WAB ∼ 4.2 eV and WB ∼ 4.1 eV of the AB and
B manifolds at the cGW −SIC level (as seen in Fig. 8), which
are comparable to UAB ∼ 5.2 eV, UB ∼ 5.2 eV and �EABB ∼
8.8 eV. These finite bandwidths may be retained at least par-
tially by the LHBAB and UHBB when the LEH is solved, and
should be taken into account in Eq. (D1). Thus, we modify
Eq. (D1) as follows. We include the effect of WAB = εmax

AB −
εmin

AB and WB = εmax
B − εmin

B , where εmin
i (respectively, εmax

i )
is the minimum (respectively, maximum) value of the band
energy for each manifold, as defined in Fig. 8. To do so, we
replace �EABB ∼ 8.8 eV by �Emin

ABB = εmin
AB − εmax

B ∼ 5.6 eV.
Equivalently, we assume that the minimum energy of the
LHBAB is

εminH
AB = εmin

AB − UAB/2, (D2)

which is ∼ − 4.1 eV for Bi2201, and the maximum energy of
the UHBB is

εmaxH
B = εmax

B + UB/2, (D3)

which is ∼ − 4.5 eV for Bi2201. We redefine Eq. (D1) as

LB = UAB + UB

2�Emin
ABB

, (D4)

and the criterion is satisfied if LB � 1 and εmaxH
B is well

below the Fermi energy. Values of LB and εmaxH
B are shown

in Table XI. We see that εmaxH
B � −4.0 eV for all compounds,

which is well below the Fermi energy. In addition, LB � 1 for
all compounds. Thus, LHBAB and UHBB are nearly separated
and are not strongly entangled. We note the fact that LB as
defined in Eq. (D4) is an upper bound, and the true value
of LB in the practical resolution of the LEH may be lower
because of the band narrowing of each UHB and LHB in
comparison to WB or WAB due to the correlation effect as was
observed in, e.g., Ref. [88] for the two-dimensional Hubbard
model. Therefore, �Emin

ABB may be larger. In any case, the
criterion is satisfied for all compounds. This suggests it may
be appropriate to exclude the B manifold from the LEH and
restrict the present study to the AB LEH. Of course, this can
only be confirmed by solving both AB and ABB LEHs with
an accurate low-energy solver, and comparing the ground state
and value of SC order parameter for both LEHs. This issue
is left for future studies, for which the AB and ABB LEHs
provided in the Supplemental Material [51] may be used as a
base.

Finally, for the sake of completeness, we mention that the
Hund exchange energy is nonnegligible in the ABB LEH.
For all compounds, the Hund exchange between AB and B
orbitals in the unit cell is ∼0.70–0.80 eV, that is, ∼25% of
the direct interaction between AB and B orbitals in the unit
cell ∼2.3–2.8 eV. However, since the B band is completely
filled, the Hund’s rule coupling and the exchange coupling
should not play a role. Nonetheless, the Hund exchange en-
ergy is given in the Supplemental Material [51] for each ABB
Hamiltonian.

APPENDIX E: REDUCTION OF THE COMPUTATIONAL
COST OF THE GW CORRECTION OF M SPACE

Here, we propose an approximation to reduce the compu-
tational cost of the GW self-energy, without loss of accuracy.
This approximation has not been used for calculations in this
paper, but may be useful for future studies.

One of the most difficult parts of the calculation is the
GW correction of the M space: The computational cost of
the GW self-energy for the NM bands in the M space scales
as NM(NM + 1)/2, which becomes challenging for cuprates
with large NM (as an example, NM = 11 for Ca11 and 17
for Hg1201, but 23 for Bi2201 and 34 for Bi2212). For each
wave vector in the irreducible Brillouin zone, we have to com-
pute NM diagonal elements and NM(NM − 1)/2 off-diagonal
elements (ODEs) in the upper triangle; ODEs in the lower
triangle may be deduced by Hermitianity. The large compu-
tational cost comes from ODEs.

However, in practice, ODEs have a sparse structure,
especially for highly symmetric systems. Thus, it is desirable
to anticipate which ODEs are negligible, and restrict the
calculation of the GW self-energy to finite and important
ODEs. To do so, the idea is to use as a guideline the ODEs
of the Kohn-Sham exchange-correlation potential V xc. First,
matrix elements of V xc are much cheaper to calculate than
those of the GW self-energy. Second, we remark in practice
that negligible (respectively, nonnegligible) ODEs for the GW
self-energy are also negligible (respectively, nonnegligible)
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for V xc: Although GW improves exchange and correlation
beyond the Kohn-Sham level, the correction is mainly quanti-
tative and does not change the overall structure of the matrix
elements.

Thus, the procedure is the following. (1) Compute all
NM(NM + 1)/2 matrix elements for V xc; (2) determine ODEs
whose amplitude is negligible, e.g., by using a cutoff energy ε;
(3) assume these ODEs are negligible in the GW self-energy
as well; (4) calculate the GW self-energy only for diagonal
elements and nonnegligible ODEs.

We benchmarked this procedure in the case of Ca11; the
cutoff energy ε = 0.05 eV allows to reproduce the GW band
structure with excellent accuracy, while reducing the num-
ber of ODEs and computational cost by ∼40%. Thus, the
procedure can be useful for future studies of cuprates with
large NM, especially those for which N� � 2. The finite cutoff
value ε may be determined for another cuprate with small NM

(e.g., Ca11). Then, this cutoff value may be considered for the
cuprate with large NM. Of course, the procedure may also be
used for systems other than cuprates.
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