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Logarithmic entanglement scaling in dissipative free-fermion systems
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We study the quantum information spreading in one-dimensional free-fermion systems in the presence of
localized thermal baths. We employ a nonlocal Lindblad master equation to describe the system-bath interaction,
in the sense that the Lindblad operators are written in terms of the Bogoliubov operators of the closed system,
and hence are nonlocal in space. The statistical ensemble describing the steady state is written in terms of a
convex combination of the Fermi-Dirac distributions of the baths. Due to the singularity of the free-fermion
dispersion, the steady-state mutual information exhibits singularities as a function of the system parameters.
While the mutual information generically satisfies an area law, at the singular points it exhibits logarithmic
scaling as a function of subsystem size. By employing the Fisher-Hartwig theorem, we derive the prefactor of
the logarithmic scaling, which depends on the parameters of the baths and plays the role of an effective “central
charge.” This is upper bounded by the central charge governing ground-state entanglement scaling. We provide
numerical checks of our results in the paradigmatic tight-binding chain and the Kitaev chain.
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I. INTRODUCTION

The study of the interplay between the microscopic quan-
tum world and the macroscopic classical one is a fundamental
research topic in contemporary physics, although it dates back
to the first days of quantum mechanics [1,2]. Typically, the
interaction with the environment is believed to destroy gen-
uine quantum behaviors, although consensus is emerging that
this is not always the case. Dissipation-based protocols have
been devised to imprint nontrivial correlations in quantum
many-body systems (see, e.g., Refs. [3–12]). A first crucial
question is whether entanglement, which is the distinctive
feature of quantum mechanics, is robust against the presence
of the environment. Second, is it possible to enhance the
entanglement content of a quantum many-body state via an
ad hoc engineered environment? Answering these questions
is a daunting task because there is no universal approach (nei-
ther analytic nor numerical) to tackle generic open quantum
many-body systems. With this state of affairs, one has to resort
to approximate treatments. Markovian master equations, such
as the Lindblad master equation [13–15], provide some of
the most successful tools to attack open quantum many-body
systems.

Particularly important settings are provided by the class
of nonequilibrium boundary-driven quantum systems, which
have been the subject of intense research in recent years (see,
e.g., Refs. [16,17] and references therein). In this paper we
focus on the one-dimensional setup illustrated in Fig. 1: A
system of noninteracting fermions is locally coupled to ideal
thermal baths. To be specific, we focus on the tight-binding
chain and on the Kitaev chain. The fermions live on a lattice
with N sites, with either periodic boundary conditions (PBC)
or open boundary conditions (OBC). The system is put in
contact with two ideal fermionic reservoirs at temperatures

TL, TR, and with chemical potentials μL, μR. With OBC the
two baths are placed at the edges of the chain [Fig. 1(a)],
whereas with PBC they are are at the maximum distance
N/2 [Fig. 1(b)]. The interaction between the chain and the
reservoirs is treated within the formalism of the Lindblad
master equation [15]. Specifically, we employ the nonlocal
description derived in Ref. [18]. The Lindblad operators are
obtained ab initio from the microscopic system-bath interac-
tion, and are written in terms of the Bogoliubov modes of
the model without dissipation. As such, the Lindblad oper-
ators are nonlocal in real space. Interestingly, this allows to
recover the conformal field theory (CFT) description of the
chain in the low-temperature limit. Furthermore, the nonlo-
cal Lindblad approach allows to obtain a thermodynamically
consistent description of transport properties [18,19].

We are interested in the quantum correlations emerging
in the steady state of finite chains of length N , in the limit
t → ∞. The ensemble describing this state is written in
terms of a convex combination of the Fermi-Dirac distribu-
tions of the reservoirs [18]. Importantly, this ensemble is in
general different from the finite-temperature ensemble of the
underlying fermionic chain. In particular, we will show that
ground-state criticality of the free chain Hamiltonian is associ-
ated with nontrivial steady-state correlations in the dissipative
model. To monitor these correlations, we consider the quan-
tum mutual information I (A1 : A2) between two subregions A1

and A2 of the chain, defined as [20–23]

I (A1 : A2) := SA1 + SA2 − SA1∪A2 , (1)

where SA is the von Neumann entropy of the subregion A,
which is defined as

SA := −Tr[ρA ln ρA], (2)

where ρA is the reduced density matrix for subsystem A.
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FIG. 1. The setup used in this work. A one-dimensional chain
of N noninteracting fermions is put in contact with two thermal
reservoirs at temperatures TL , TR and chemical potentials μL , μR.
(a) In the case of OBC, only the sites at the edges are in contact
with the baths, and we are interested in the steady-state mutual
information I (A1 : A2) between the two connected intervals A1 and
A2 of length � and N − �, respectively. (b) In the case of PBC,
the sites in contact with the baths are at the maximum distance
N/2 and the intervals A1 and A2 are, respectively, of length � and
N/2 − �. Analytical calculations are done in the thermodynamic
limit N, � → ∞.

For pure states, the von Neumann entropy SA of a subsys-
tem quantifies its entanglement with the rest of the system.
Moreover, one has that SA = SA, with A being the complement
of A [see, for instance, Fig. 1(a)], and SA∪A = 0. However,
in the presence of an environment, the global state is mixed,
which implies that neither the von Neumann entropy nor the
mutual information are proper measures of the entanglement
shared between different regions. Still, it has been shown
recently that for out-of-equilibrium free-fermion and free-
boson models in the presence of quadratic global dissipation
the mutual information admits a hydrodynamic description
in terms of a quasiparticle picture [24–27]. Moreover, we
numerically checked that our findings remain qualitatively
valid using the fermionic entanglement negativity, which,
on the other hand, is a proper measure of entanglement
[28,29].

Both the full-system entropy, as well as the subsystem
entropies, generally exhibit volume-law scaling in the steady
state. However, if the bulk of the system is tuned to a critical
point, logarithmic corrections appear. Specifically, we show
that, for a generic subsystem A of length �, in the scaling
limit N, � → ∞ with arbitrary ratio �/N , the entropy SA is
given as

SA = α� + c(�)

3ν
ln

[
N

π
sin

(
π�

N

)]
+ O(1). (3)

The prefactor α of the volume-law term depends on the full
spectrum of the model and on the properties of the bath. A
similar volume-law scaling has been found in free-fermion
systems with localized dissipative impurities [30,31]. The
prefactor c(�) is an effective “central charge,” which contains
information only about the singularities in the single-particle
spectrum of the model. It is an even function of a parameter
� ∈ [−1, 1] which depends on the properties of the baths,
i.e., their temperatures and chemical potentials. The quantity
ν ∈ {1, 2} depends on the considered setting: for the situation
in Fig. 1(a) with OBC we have ν = 2, while for the case in
Fig. 1(b) with PBC we have ν = 1. The argument inside the

square brackets is the so-called chord length [32]. In the limit
�/N → 0, the second term in (3) becomes c/(3ν) ln(�), which
we prove analytically. On the other hand, the result for finite
ratio �/N is a conjecture inspired by the zero-temperature
CFT scaling [21]. Similar logarithmic terms as in (3) have
been found in a tight-binding model, although for different
nonequilibrium settings [33–37]. Finally, the last term O(1) is
a subleading constant, which can be calculated, at least for the
tight-binding chain, by using the Fisher-Hartwig conjecture
[38–43].

In the limit |�| → 1 one recovers the zero-temperature
result, i.e., c(�) becomes the central charge of the CFT
that describes ground-state properties of the model. Here one
has c = 1 and 1

2 for the tight-binding chain and the Kitaev
chain, respectively. On the other hand, for � → 0, which
corresponds to the high-temperature limit, c(�) vanishes.
Remarkably, for generic �, the effective central charge of
the tight-binding chain is twice that of the Kitaev model.
Moreover, we show that c(�) is always upper bounded by
the zero-temperature central charge of the models. Upon sub-
stituting the asymptotic scaling (3) in (1), one obtains that
the volume-law term cancels out, and the mutual information
exhibits a logarithmic scaling.

The structure of the paper is as follows. In Sec. II we
introduce the fermionic models we are interested in. Sec-
tion II A 3 contains the calculation of the Majorana correlation
matrix, which is important to determine entanglement proper-
ties, while the main formulas to determine the von Neumann
entropies in terms of correlation functions are reviewed in
Sec. II B. In Sec. III we summarize the treatment of thermal
environments within the nonlocal Lindblad equation, which
was derived in Ref. [18]; the main result is formula (54).
In Secs. IV and V we analytically derive Eq. (3) for the
tight-binding chain and for the Kitaev chain, respectively,
in the limit �/N → 0. The details of the computations are
deferred to Appendixes B and C, respectively. We provide
numerical benchmarks of our results in Sec. VI: in particular,
in Sec. VI A we overview the volume-law scaling of the von
Neumann entropy, in Sec. VI B we discuss the scaling of the
mutual information, and in Sec. VI C we briefly discuss the
behavior of the fermionic logarithmic negativity. Our conclu-
sions are drawn in Sec. VII. Appendix A contains a proof that
our results are not an artifact dictated by the choice of the basis
adopted to diagonalize the model.

II. MODELS AND METHODS

In this section we describe the basic framework used in this
work. We first introduce the quadratic fermionic Hamiltonians
of interest in Sec. II A. Then we review the tight-binding chain
(Sec. II A 1) and the Kitaev chain (Sec. II A 2). In Sec. II A 3
we provide some general formulas for the two-point corre-
lation of Majorana operators in the two models. These are
essential to study entanglement properties. In Sec. II B we
summarize the calculation of the von Neumann entropy via
correlation matrix techniques [44]. In Sec. III we review the
approach of Ref. [18] to derive a nonlocal Lindblad descrip-
tion of fermionic chains in contact with localized thermal
baths.
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A. Fermionic quadratic Hamiltonians

We focus on free-fermion chains [45,46]. Let S be a
quantum system on a lattice with N sites and HS its
second-quantized Hamiltonian, which can be written in terms
of fermionic raising and lowering operators a†

n, an, with
n ∈ {1, . . . , N}. We assume HS to be quadratic, i.e.,

HS =
N∑

n,m=1

[
Qnma†

nam + Pnm

2
(a†

na†
m − anam)

]
, (4)

with Q, P being N × N real matrices satisfying QT = Q and
PT = −P. It is known that HS can be written in diagonal form
as

HS = E0 +
∑

k

ωkb†
kbk, (5)

where ωk � 0 is the single-particle dispersion, E0 is an ir-
relevant constant, b†

k, bk are new fermionic operators (the
Bogoliubov modes), and the index k denotes the quasimomen-
tum. The operators bk are written as linear superpositions of
the original fermions. Specifically, one has

bk =
N∑

n=1

(Xknan + Ykna†
n), (6)

where X and Y are appropriately chosen N × N complex
matrices. For the following it is useful to define the so-called
Lieb-Schultz-Mattis matrices [45] φ, ψ as

φ := (X + Y )†, ψ := (X − Y )†. (7)

In general, these are complex N × N matrices that encode
information about the Majorana correlation functions of the
model (see Sec. II A 3).

1. Tight-binding chain

The tight-binding model is obtained from (4) with

Qnm = −Jδn,m−1 − Jδn,m+1 − hδnm, Pnm = 0, (8)

where h is an external magnetic field strength, and J is the
hopping amplitude between nearest-neighbor sites. Thus, the
Hamiltonian reads as

HS = −J
N∑

n=1

(a†
nan+1 + a†

n+1an) − h
N∑

n=1

a†
nan, (9)

where aN+1 is determined by the boundary conditions: with
OBC we are choosing aN+1 = 0, whereas with PBC we have
aN+1 = a1. For simplicity, hereafter we set J = 1 and work in
units of h̄ = kB = 1.

The single-particle dispersion relation [cf. Eq. (5)] is
given by

ωk = |h + 2 cos k|, (10)

where (n = 1, . . . , N):

k =
{

nπ/(N + 1) (OBC),
2πn/N (PBC). (11)

The functions φnk and ψnk [cf. Eq. (7)] are given by

φnk =
{√

2/(N + 1) sin(kn) (OBC),
eikn/

√
N (PBC),

(12a)

ψnk = sgn(−h − 2 cos k)φnk, (12b)

where sgn(x) is the sign function and the corresponding quasi-
momentum index has to be chosen as in (11). The ground state
of the tight-binding model is annihilated by all the Bogoliubov
operators bk [cf. Eq. (6)], and it exhibits criticality in the
conducting phase |h| � 2, where its properties are described
by a CFT [32] with central charge c = 1.

The entanglement properties of free-fermion systems are
encoded in the fermionic two-point correlation functions [47].
Let us first discuss the tight-binding chain with OBC. In the
limit N → ∞, the ground-state fermionic correlation function
C(OBC)

nm := 〈a†
nam〉 is given as [47]

C(OBC)
nm =

∫ π

−π

dk

2π
�H(kF − |k|)[eik(n−m) − eik(n+m)], (13)

where �H(·) is the Heaviside step function, and kF is the
Fermi momentum

kF := arccos

(
−h

2

)
. (14)

Performing the integral in (13), one obtains

C(OBC)
nm = sin[kF (n − m)]

π (n − m)
− sin[kF (n + m)]

π (n + m)
. (15)

The result for the infinite chain with PBC can be recovered
from (15) by taking the limit n, m → ∞ with n − m fixed,
i.e., by considering correlators in the bulk of the open chain.
Thus, only the first term in (13) survives and one obtains

C(PBC)
nm = sin[kF (n − m)]

π (n − m)
. (16)

It is useful to observe that the first term in (13) depends
only on the difference n − m, reflecting translation invariance,
and it defines a so-called Toeplitz matrix [42], with sym-
bol �H(kF − |k|). The second term in (13) depends only on
n + m, which defines a so-called Hankel matrix. Thus, the full
correlator exhibits a Toeplitz-plus-Hankel structure.

Crucially, for |h| > 2 the symbol of the correlator in (13)
is smooth as a function of k. On the other hand, for |h| < 2
it exhibits a jump discontinuity at ±kF , which is the main
signature of critical behavior. In this case we have a logarith-
mic violation of the area law in the ground-state entanglement
entropies [21,23]. In the following sections, by using the
approach of Ref. [18] we will show that in the presence of
thermal baths locally coupled to the chain, the steady-state
fermionic correlator exhibits a similar structure as in Eq. (13).
In particular, even though the symbol of the correlator is
affected by the presence of the bath, it is not smooth as a
function of k. This gives rise to logarithmic scaling of the
steady-state mutual information.

2. Kitaev chain

Let us now consider the Kitaev chain [48]. This is obtained
from (4) by choosing

Qnm = −Jδn,m−1 − Jδn,m+1 − hδn,m, (17a)

Pnm = −�δn,m−1 + �δn,m+1, (17b)

with J the hopping strength, h a magnetic field, and �

the strength of the pairing term. In the following, we will
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set � = J = 1. Thus, the Hamiltonian of the Kitaev chain
reads as

HS = −
N∑

n=1

(a†
nan+1 + a†

na†
n+1 + H.c.) − h

N∑
n=1

a†
nan. (18)

For this model we exclusively employ PBC, choosing
aN+1 = a1. The Hamiltonian (18) can be rewritten as in (5)
with single-particle dispersion

ωk =
√

h2 + 4h cos(k) + 4, (19)

where the index k is chosen as in (11) for PBC. The functions
φ jk and ψ jk [cf. Eqs. (7)] that encode the Fourier transform
and the Bogoliubov transformation needed to diagonalize (18)
are given by

φnk = eikn

√
N

, (20a)

ψnk = eiξ (k)φnk, (20b)

where we defined

eiξ (k) := −h + 2eik

ωk
(21)

and the so-called Bogoliubov angle ξ (k) ∈ R is

cos ξ (k) = − h + 2 cos k√
h2 + 4h cos k + 4

, (22a)

sin ξ (k) = 2 sin k√
h2 + 4h cos k + 4

. (22b)

It is clear that ξ (k) is continuous as a function of k, for
|h| 	= 2. For h = 2, a jump discontinuity appears at k = ±π ,
while for h = −2 it emerges at k = 0: this is the transition
between trivial (|h| > 2) and topological phase (|h| < 2). As
for the tight-binding chain (see Sec. II A 1), at |h| = 2 long-
wavelength properties of the ground state of the Kitaev chain
are described by a CFT with central charge c = 1

2 . Conse-
quently, the ground state exhibits logarithmic violations of the
area law for the entanglement entropy. Again, below we show
that the singular structure of Eqs. (22) survives in the presence
of localized baths, giving rise to logarithmic scaling of the
mutual information.

3. Majorana correlation function

To determine entanglement-related quantities, it is conve-
nient to introduce the Majorana operators [49,50]:

w2n−1 = 1√
2

(a†
n + an), w2n = i√

2
(a†

n − an). (23)

It is straightforward to write these in terms of the Bogoliubov
operators bk that diagonalize the models [cf. (5)]:[

w2n−1

w2n

]
= 1√

2

∑
k

[
φnk φ∗

nk−iψnk iψ∗
nk

][
bk

b†
k

]
, (24)

where φnk and ψnk are given in Eq. (7). For the tight-binding
chain and the Kitaev chain φnk, ψnk are reported in Eqs. (12)

and (20), respectively. One can show that the generic expecta-
tion value 〈wawb〉 is written as

〈wawb〉 = δab + i�ab

2
, (25)

where � is a 2N × 2N matrix of the form

� =

⎡⎢⎢⎣
�11 �12 . . . �1N

�21 �22 . . . �2N
...

...
. . .

...

�N1 �N2 . . . �NN

⎤⎥⎥⎦, (26)

with �nm being a 2 × 2 block defined by

�nm :=
[

0 Re[φ θ ψ†]nm

−Re[φ θ ψ†]mn 0

]
. (27)

In writing (27) we assumed the matrix Kkq := 〈b†
kbq〉 to be

diagonal and the matrix Fkq := 〈bkbq〉 to be zero, which will
turn out to be true in our formalism (see Sec. III). Here θkq is
the occupation of the Bogoliubov modes bk given by

θkq = δkq(1 − 2〈b†
kbk〉). (28)

Notice that � is a real skew-symmetric matrix of even dimen-
sion. This means that it has pairs of eigenvalues ±iνr with
νr ∈ R.

Let us now specialize the matrix � to the case of the tight-
binding chain (see Sec. II A 1). By using Eqs. (12) in (27) we
obtain

Gnm := Re[φ θ ψ†]nm = δnm − 2Cnm, (29)

where Cnm = 〈a†
nam〉 is the fermion correlation function. This

implies that

� = G ⊗
[

0 1
−1 0

]
, (30)

from which we conclude that the eigenvalues of � are ±iνr if
and only if νr are the eigenvalues of G.

Let us now consider the Kitaev chain with PBC. By using
Eqs. (20) we obtain

Re[φ θ ψ†]nm = 1

N
Re

∑
k

θkke−iξ (k)eik(n−m), (31)

where ξ (k) is defined in (21), and θkk is given in (28). Using
the fact that θkk is an even function of k and ξ (k) is an odd
one, we can write

�nm =
∫ π

−π

dk

2π

[
0 θkke−iξ (k)

−θkkeiξ (k) 0

]
eik(n−m), (32)

where we took the thermodynamic limit N → ∞. Equa-
tion (32) holds for a generic thermodynamic state, which is
characterized by the functions θkk . Like for the tight-binding
chain, the ground state of the Kitaev chain is the state annihi-
lated by all the Bogoliubov operators bk . In this case θkk = 1
[cf. (28)], and the ground state is characterized by

�(GS)
nm =

∫ π

−π

dk

2π

[
0 e−iξ (k)

−eiξ (k) 0

]
eik(n−m). (33)

In the presence of external thermal baths, the Majorana corre-
lator � is determined by (32), with θkk encoding the properties
of the baths.
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FIG. 2. Contour γ in the complex plane for λ used to compute
the von Neumann entropy of an interval [cf. Eq. (37)]. Dashed lines at
(−∞, −1 − ε] ∪ [1 + ε, ∞) denote a branch cut. Dots in the region
[−1, 1] are the zeros of D�(λ) [cf. Eq. (36)] or, equivalently, the poles
of dD�(λ)/dλ. Here we are interested in the limits ε → 0 and δ → 0.

B. Entropy in free-fermion systems

For free-fermion systems, the von Neumann entropy of a
subsystem A of length � (see Fig. 1), and the Rényi entropies
in general [47], are obtained from the Majorana correla-
tion matrix �A, which is obtained from (26) by restricting
n, m ∈ A. If ±iνr are the eigenvalues of �A, then

SA =
�∑

r=1

e(1, νr ), (34)

where we defined the function e(x, ν) as

e(x, ν) := −x − ν

2
ln

(
x − ν

2

)
− x + ν

2
ln

(
x + ν

2

)
. (35)

Notice that Eq. (34) is well defined because one can show that
−1 � νr � 1.

It is convenient to rewrite the sum in Eq. (34) as an integral
in the complex plane. To this purpose we define the determi-
nant

D�(λ) := det (λ1 − i�A). (36)

A straightforward application of Cauchy’s theorem allows to
rewrite Eq. (34) as

SA = lim
δ,ε→0+

1

4π i

∮
γ

dλ e(1 + ε, λ)
d ln D�(λ)

dλ
, (37)

where we used the fact that e(1, ν) = e(1,−ν). The con-
tour γ in the complex plane is shown in Fig. 2. Dashed
blue lines in the figure are the branch cuts of e(1 + ε, λ) at
(−∞,−1 − ε] ∪ [1 + ε,∞). The horizontal parts of the con-
tour are shifted by δ from the real axis. Finally, the function
d ln(D�)/dλ has simple poles in the interval [−1, 1] (green
dots in the figure). In the limit � → ∞ the poles become
dense, forming a new branch cut. The strategy [44] to obtain
the asymptotic scaling of SA in the limit � = |A| → ∞ is to
first obtain D� in the limit � → ∞, then using it in Eq. (37).

III. GLOBAL LINDBLAD MASTER EQUATION

To make the paper self-contained, we now recap the
formalism used to treat self-consistently thermal baths
in the Lindblad approximation, within quadratic models
[18]. Let us consider the interaction between the fermionic
chain S and the environment E (see Fig. 1). The global
system U = S ∪ E is described by the Hamiltonian
HU = HS ⊗ 1E+1S ⊗ HE + HI , where HE is the Hamiltonian
of the environment and HI models the interaction between

system and environment. We can always write HI in the form

HI =
∑

α

Oα ⊗ Rα, (38)

where Oα and Rα are Hermitian operators acting on S and
E , respectively. In the following we restrict ourselves to the
situation in which Oα acts nontrivially only on a finite number
of sites of the chain (see Fig. 1).

Given a state ρ(t ) of the entire system S ∪ E , we are
interested in the evolution of the reduced density matrix
ρS (t ) := TrE [ρ(t )]. In the Markovian regime, the dynamics is
described by a Lindblad master equation of the form [15]

dρS (t )

dt
= −i[H, ρS (t )] + D(ρS (t )), (39)

where both H and D have to be determined. Let us assume that
the environment consists of a finite number of uncorrelated
fermionic infinite thermal baths, such that

HE =
∑

α

∫
d p εα,p d†

α,pdα,p, (40)

where α is here an index that labels the bath, dα,p the
fermionic operators of the bath, and εα,p the bath dispersion.
We also consider a generic linear coupling [cf. Eq. (38)]
between the system and the baths:

Oα =
∑
j∈Iα

(a j + a†
j ), (41)

Rα =
∫

d p gα,p(dα,p + d†
α,p), (42)

where gα,p is the strength of the coupling and Iα are the sites
of S that are coupled to the bath α. Here we focus on the
situation in which each bath is coupled to a single site of the
system. For instance, for the case in Fig. 1(a), one has α = 1, 2
with I1 = {1} and I2 = {N}.

The dissipator D in Eq. (39) can be written as [18]

D(ρ) =
∑
α,k

�α,k[�α (ωk )(2bkρb†
k − {b†

kbk, ρ})

+ �α (−ωk )(2b†
kρbk − {bkb†

k, ρ})]. (43)

For simplicity we removed the subscript S in ρS . The bk’s de-
note the Bogoliubov operators that diagonalize the system [cf.
Eq. (6)], whereas ωk are the corresponding single-particle en-
ergies [cf. Eq. (5)]. Even though the interaction Hamiltonian
HI is local in space, the dissipator D(ρ) is written in terms
of nonlocal operators. In contrast, with common approaches,
the Lindblad operators are chosen ad hoc and are typically
local. Information about locality of the baths is encoded in the
functions

�α,k :=
∣∣∣∣ ∑

j∈Iα

φ jk

∣∣∣∣2

. (44)

Moreover, we have defined [15]

�α (ω) =
{

Jα (ω)[1 − fα (ω)], ω > 0
Jα (−ω) fα (−ω), ω < 0 (45)

which is written in terms of the Fermi-Dirac distribution fα
associated with the bath α at temperature Tα and chemical
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potential μα:

fα (ω) = 1

1 + eβα (ω−μα )
, βα = 1

Tα

, (46)

and the spectral density of the bath α,

Jα (ω) = π

∫
d p |gα,p|2δ(ω − εα,p). (47)

In the chosen diagonalization scheme we always have ωk � 0,
hence we can also rewrite

D(ρ) =
∑
α,k

γα,k[[1 − fα (ωk )](2bkρb†
k − {b†

kbk, ρ})

+ fα (ωk )(2b†
kρbk − {bkb†

k, ρ})], (48)

where

γα,k := Jα (ωk )�α,k . (49)

Aside from the dissipative effect encoded in D(ρ), the
presence of the baths also renormalizes the unitary part of the
Lindblad equation (39). Indeed, the effective Hamiltonian H
reads as

H =
∑

k

ω̃kb†
kbk, (50)

where the “dressed” single-particle dispersion ω̃k reads as

ω̃k = ωk

(
1 + 2

π

∑
α

�α,kP
∫ ∞

0
dε

Jα (ε)

ω2
k − ε2

)
, (51)

with P denoting Cauchy’s principal value.
Crucially, the Lindblad equation (39) is derived by using a

full secular approximation [15,18,19], which neglects rapidly
oscillating terms ∝ exp[i(ωk − ωk′ )t]. Moreover, we neglect
degeneracy in the spectrum, assuming that ωk 	= ωk′ if k 	= k′.
Both these approximations are in general uncontrolled, and
checking their validity would require an ab initio treatment of
the baths.

The master equation (39) is quadratic in the Bogoliubov
operators bk, b†

k . This means that if the state of the system is
Gaussian at a certain initial time, it will remain Gaussian at all
subsequent times. Therefore, the state ρ is completely deter-
mined by the two-point functions of the Majorana fermions
(23). Equivalently, one can use the correlators Kkq and Fkq

defined as

Kkq := Tr[ρ b†
kbq], (52a)

Fkq := Tr[ρ bkbq]. (52b)

A direct computation allows to obtain the evolution of Kkq and
Fkq as [18]

dKkq

dt
=

[
i(ω̃k − ω̃q) −

∑
α

(γα,k + γα,q)

]
Kkq(t )

+ 2δkq

∑
α

γα,k fα (ωk ), (53a)

dFkq

dt
=

[
− i(ω̃k + ω̃q) −

∑
α

(γα,k + γα,q )

]
Fkq(t ). (53b)

Here, ω̃k are the modified single-particle energies in Eq. (51),
the rates γα,k are defined in Eq. (49), and fα (ω) is the Fermi-
Dirac distribution of the bath [cf. Eq. (46)]. We anticipate that,
for the setting in Fig. 1, due to the simple structure of Eqs. (12)
and (20), the dependence on γα,k drops out. Assuming that
γα,k are not all equal to zero (which is obviously true if the
system is actually coupled to the environment), in the station-
ary limit t → ∞ we obtain

Kkq = δkq

∑
α γα,k fα (ωk )∑

α γα,k
, Fkq = 0. (54)

Thus, the correlation function in momentum space becomes
diagonal, and it is a convex combination of the Fermi-Dirac
distributions of the baths. Equation (54) is the main ingredient
to extract steady-state properties of the system (see Secs. IV
and V). Note that, if the baths are identical ( fα does not depend
on α), we obtain Kkq = δkq f (ωk ). Interestingly, even in this
situation, the statistical ensemble that describes the steady
state is not the standard finite-temperature ensemble of the
underlying free-fermion model, due to the nonzero chemical
potential in Eq. (46). As we will show in the following, this
implies that the steady-state von Neumann entropy exhibits
logarithmic additive corrections to the expected volume-law
scaling at finite temperature.

IV. SCALING OF ENTROPY IN
THE TIGHT-BINDING CHAIN

In this section we derive the scaling equation (3) of the
steady-state von Neumann entropy for a subinterval of the
tight-binding chain [cf. Eq. (9)]. A similar calculation was
performed in Refs. [33,34], but for a nonequilibrium setting
which is different from ours.

First of all we recall that, from Eq. (30), � has eigenvalues
±iνr if and only if G [cf. Eq. (29)] has eigenvalues νr . We
can exploit this fact by expressing the contour integral (37) in
terms of

B�(λ) := det(λ1 − GA), (55)

finding

SA = lim
δ,ε→0+

1

2π i

∮
γ

dλ e(1 + ε, λ)
d ln B�(λ)

dλ
, (56)

where GA is the matrix obtained from G by restricting indices
to n, m ∈ A, and � = |A|. Using the definitions of φnk and ψnk

reported in Eqs. (12), we find, in the limit N → ∞,

Gnm =
∫ π

−π

dk

2π
θ̃kk[eik(n−m) − ζeik(n+m)], (57)

where ζ = 0 and 1 correspond to PBC and OBC, respectively.
This equation defines a Toeplitz matrix for ζ = 0, whereas
one has a Toeplitz-plus-Hankel matrix [42] for ζ = 1. The so-
called symbol of Gnm is

θ̃kk := θkk sgn(−h − 2 cos k), (58)

where θkk is given in Eq. (28) and the sign function is the
same as in Eq. (12b). The function θkk encodes the information
about the steady state and is obtained from (54). The function
θ̃kk is smooth, except for the sign function which displays a
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singularity for |h| < 2, thus giving rise to logarithmic correc-
tions to the von Neumann entropy. Since the sign function
comes from the Lieb-Schultz-Mattis matrices (12), the atten-
tive reader could think that its appearance in the Majorana
correlation matrix is an artifact originated from our choice of
using the Bogoliubov modes to diagonalize the tight-binding
Hamiltonian. However, in Appendix A we show that, if one
constructs the master equation in terms of Fourier modes
(which still diagonalize the Hamiltonian, but with continuous
coefficients), then the discontinuity arises from their steady-
state correlation function. As expected, physical quantities
are not affected by this change and Eqs. (57) and (58) are
unaltered.

To extract the scaling behavior of the mutual information
(1) one has to determine the asymptotic scaling of the von
Neumann entropy SA for a subsystem A of length � → ∞.
To that purpose, we first study the asymptotic behavior of
B�(λ) ≡ D�[gλ], being the determinant of the Toeplitz (or
Toeplitz-plus-Hankel) matrix with symbol gλ(k) := λ − θ̃kk

given by

gλ(k) =
{
λ − θkk, k ∈ [−π,−kF ] ∪ [kF , π )
λ + θkk, k ∈ [−kF , kF ). (59)

Since this symbol may have jump discontinuities at ±kF ,
we use the Fisher-Hartwig theorem to extract the scaling of
D�[gλ] for � → ∞. The result is then substituted back in
Eq. (56), from which the expression of the von Neumann
entropy emerges. The details of the computation are reported
in Appendix B, where we find

SA = α� + c(�)

3ν
ln(�) + O(1), (60)

where ν = 1 for PBC and ν = 2 for OBC. The prefactor of
the linear term,

α = −
∫ π

−π

dk

2π
[Kkk ln(Kkk ) + (1 − Kkk ) ln(1 − Kkk )], (61)

is the von Neumann entropy per volume of the full system in
the limit N → ∞, i.e.,

α = lim
�→∞

SA

�
= lim

N→∞
SN

N
, (62)

where we denoted with SN the entropy of the full system.
For pure states one has either Kkk = 0 or Kkk = 1, which
implies that SN = 0 and α = 0, as it should be. This is not the
case in the presence of the environment because the state is
not pure. A similar behavior is typically observed in generic
out-of-equilibrium quadratic fermionic and bosonic systems
[24–27].

The prefactor c(�) of the logarithm is nonvanishing only
when the symbol (59) has the jump discontinuity (which hap-
pens precisely when the model is critical), and it is given by

c(�) = 3

π2

[
(1 + �)Li2

(
2�

� + 1

)
+(1 − �)Li2

(
2�

� − 1

)]
,

(63)

where � := θkk|k=kF is the steady-state density of Bogoliubov
excitations at the Fermi level, which contains information

FIG. 3. Effective central charge c(�) in Eq. (63) for the tight-
binding chain coupled to localized thermal baths. Here � ∈ [−1, 1]
encodes the information about the baths. For a single bath at the
left edge of the chain, � is given by Eq. (67). For two baths at the
edges of the chain, � is given by Eq. (71). In the limit |�| → 1, one
recovers the CFT result c = 1. For � → 0 one has c → 0, which
corresponds to a high-temperature limit.

about the environment, and

Li2(x) = −
∫ x

0
dz

ln(1 − z)

z
(64)

is the dilogarithm function [51]. This result is somewhat remi-
niscent of the effective central charge obtained in free-fermion
chains in the presence of defects [52–56]. Formally, this ex-
pression is a special symmetric case of the result obtained in
Ref. [33], which is valid for two arbitrary asymmetric jumps
in the symbol. For � → 1, which corresponds to the ground
state of the closed chain, one recovers the standard central
charge c = 1 since Li2(1) = π2/6. Instead, in the opposite
limit � → 0 one obtains that c(�) vanishes since Li2(0) = 0.
The behavior of c(�) as a function of � is illustrated in Fig. 3.

A. Single bath

To illustrate our results, we first focus on the tight-binding
chain with OBC and with only one edge coupled to a bath
with temperature TL and chemical potential μL (see Fig. 1). In
the steady state, from Eq. (54) we have

Kkq = 〈b†
kbq〉 = δkq f (ωk ), (65)

where ωk are the single-particle energies [cf. Eq. (10)], and
f (ωk ) is the Fermi-Dirac distribution describing the bath [cf.
Eq. (46)]. Equation (65) implies that the function θkk [cf. (28)]
is given by

θkk = 1 − 2 f (ωk ). (66)

Thus, we have

� = θkk|k=kF = 1 − 2 f (0) = tanh

(
− μL

2TL

)
. (67)

Notice that � depends only on the ratio μL/TL. The limit
μL/TL → 0 gives � → 0 and a vanishing c(�) (see Fig. 3), so
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that the logarithmic correction to the entropy disappears. This
regime corresponds to either infinite temperature TL → ∞ or
vanishing chemical potential μL → 0. On the other hand, for
|μL/TL| → ∞ we have |�| → 1, so that c → 1. Moreover, in
this limit Kkk → 0 or Kkk → 1, which implies that α → 0 [cf.
(61)]. Thus, we recover the ground-state scaling of the von
Neumann entropy.

B. Two baths

Let us now discuss the case with two different thermal
baths, first considering the simpler case of PBC. Under the
assumption that the spectral density J (ω) [cf. (47)] is the same
for the two baths, we have for the couplings

γL,k = γR,k = J (ωk )

N
(68)

since, from Eq. (12a), we have |φ1k|2 = |φNk|2 = 1/N . Using
Eq. (54), we therefore obtain

Kkq = δkq
fL(ωk ) + fR(ωk )

2
, (69)

θkk = 1

2

[
tanh

(
ωk − μL

2TL

)
+ tanh

(
ωk − μR

2TR

)]
. (70)

Notice that the correlator Kkq does not depend on the cou-
plings γL/R,k . Moreover, as is clear from (69), the steady-state
correlator is written in terms of the average between the
Fermi-Dirac distributions describing the baths. From Eq. (70)
we obtain

� = 1

2

[
tanh

(
− μL

2TL

)
+ tanh

(
− μR

2TR

)]
. (71)

Notice that � depends only the ratios μL/TL and μR/TR,
which is structurally similar to what we obtained in the single-
bath scenario.

In the case of OBC and baths placed at the edges of the
chain [see Fig. 1(a)], one has for the couplings

γL,k = J (ωk )
2 sin2(k)

N + 1
, (72a)

γR,k = J (ωk )
2 sin2(kN )

N + 1
. (72b)

Making use of the quantization condition on k, one can show
with a straightforward calculation that Eqs. (69), (70), and
(71) continue to remain valid.

V. SCALING OF ENTROPY IN THE KITAEV CHAIN

We now turn to the steady-state von Neumann entropy in
the Kitaev chain with PBC. The blocks of the Majorana corre-
lation matrix � are reported in Eq. (32), where we recognize a
Toeplitz structure. Given a subsystem A, we are interested in
the matrix λ1 − i�A [cf. Eq. (36)], which is then also of the
Toeplitz type. Let us define its symbol gλ(k) [cf. (32)] as

gλ(k) =
[

λ −iθkke−iξ (k)

iθkkeiξ (k) λ

]
. (73)

In contrast with the tight-binding chain, for which it was a
scalar, now the symbol is a 2 × 2 matrix. At zero temperature,
the asymptotic behavior in the large-� limit of the determinant

of the Toeplitz matrix (32) has been obtained in Ref. [57].
Here we are only interested in the logarithmic correction to
the volume-law scaling of the von Neumann entropy. Thus, we
can use the techniques of Refs. [58,59]. The idea is that since
the logarithmic correction depends only on the singularities
of the symbol, we are allowed to modify the latter, provided
that we do not change its singularity structure. This eventually
allows one to work with a scalar symbol. The computation is
rather technical and we leave the details to Appendix C. The
result is analogous to the tight-binding case:

SA = α� + c′(�)

3
ln(�) + O(1), (74)

where α is the same constant reported in (61) and c′(�) is
half of the effective central charge of the tight-binding model,
provided |h| = 2:

c′(�) = c(�)

2
. (75)

This time we have

� =
{
θkk|k=π , h = 2
θkk|k=0, h = −2 (76)

in accordance with the discussion at the end of Sec. II A 2.
Clearly, in the zero-temperature limit � → 1 we recover the
well-known central charge c = 1

2 of the critical Kitaev chain.
This result is valid for a general value of θkk , and we can

easily specialize the expression of � to the steady state (54)
of our master equation. Since with PBC the matrix φnk is
equal to the corresponding matrix for the tight-binding chain
[compare Eq. (12a) with Eq. (20a)], one finds for Kkq, θkk ,
and � the same quantities reported in Eqs. (65)–(67) and
Eqs. (69)–(71) for the single-bath and two-bath geometries,
respectively. In the case μL = μR = 0 and TL = TR = T one
recovers the correlator for the finite-temperature Kitaev (and
Ising) chain [60–62] at temperature T . For T → 0 one finds
θkk → 1, thus recovering the zero-temperature correlator of
the Kitaev chain. Importantly, the presence of μL and μR in
(70) implies that the statistical ensemble describing the steady
state is not the usual finite-temperature ensemble of the Kitaev
chain.

VI. NUMERICAL RESULTS

We now provide numerical benchmarks for the results of
Secs. IV and V. In particular, we numerically diagonalize
the Majorana correlation matrix (26) for our models and then
we use its eigenvalues to directly evaluate entropic quantities
using Eq. (34). The results are then compared to what we
derived in an analytical way. In Sec. VI A we overview the
behavior of the subsystem von Neumann entropy. Our main
results are contained in Sec. VI B, where we discuss the scal-
ing behavior of the steady-state mutual information both for
the tight-binding chain (Sec. VI B 1) and for the Kitaev chain
(Sec. VI B 2). Our numerical results confirm a logarithmic
scaling for the mutual information, being in perfect agree-
ment with the predictions of the previous sections. Finally, in
Sec. VI C we briefly argue that logarithmic scaling also occurs
for the fermionic logarithmic negativity, thus suggesting that
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FIG. 4. Volume-law scaling of the von Neumann entropy in the
open tight-binding chain with a single bath on the left edge of the
system (see Fig. 1). Subsystem A is the half chain (� = N/2). Here
we choose h = 1, μL = −1, and TL = 0.3, 0.4, 0.5. Straight lines
denote the analytic predictions for the volume-law scaling, in the
limit � → ∞ [cf. Eq. (60)]. The logarithmic correction is not clearly
visible at this scale.

the growth of the mutual information reflects a logarithmic
entanglement growth.

A. Volume-law scaling of von Neumann entropy

In the presence of the external baths, the steady-state von
Neumann entropy exhibits a volume-law scaling as α�, with
� being the size of the subsystem and α being the constant
reported in Eq. (61), which equals the density of the von
Neumann entropy of the full system. In the absence of baths,
the full system is in a pure state, and its von Neumann entropy
is zero (α = 0). The volume-law scaling in the open setting
is due to the fact that the steady state is described by a finite-
temperature-like statistical ensemble [63,64].

Here we focus on the tight-binding chain with OBC and
one thermal bath [see Fig. 1(a)]. Results for different bound-
ary conditions and for the Kitaev chain are qualitatively
similar and will not be discussed.

Figure 4 reports the von Neumann entropy SA as a function
of the chain length N , where the subsystem A is the half-
chain with � = N/2 [cf. Fig. 1(a)]. Only the left edge is in
contact with a thermal bath at chemical potential μL = −1
and temperature TL. Data in the figure correspond to different
temperatures TL. A robust growth is visible at all temperatures,
with a slope that decreases as the temperature is lowered. This
is expected since at T = 0 the scaling of the von Neumann
entropy is logarithmic with the interval size. Continuous lines
show the expected linear behavior as α� in the limit � → ∞,
with a prefactor α given by Eq. (61). We observe a qualita-
tive agreement with the theoretical predictions, at least to the
leading order in �. However, as also expected from Eq. (60),
subleading logarithmic corrections are present. To reveal them
it is convenient to use the mutual information.

B. Logarithmic scaling of mutual information

We now discuss the scaling of the steady-state mutual
information in the presence of external baths. The logarithmic

FIG. 5. Mutual information I (A1 : A2) between two intervals in
the open tight-binding chain with a thermal bath on the left edge.
Here we choose μL = −1, TL = 0.3, and h = 1. Different colors
correspond to different chain lengths N . The data are plotted versus
�/N , with � being the size of A1 [see Fig. 1(a)]. Notice the symmetry
under exchange of the two subsystems � ↔ N − �.

prefactor is determined by the singular structure of the single-
particle energy dispersion, as discussed in Secs. IV and V.

1. Tight-binding chain

For the tight-binding model of Eq. (9), we consider the
same setup as in Sec. IV A, i.e, the open chain with a thermal
bath on the left edge. We fix h = 1, μL = −1, and TL = 0.3.
Our numerical data for the mutual information I (A1 : A2)
between two complementary intervals A1 and A2 = A1 are
plotted in Fig. 5 versus �/N , with � being the size of A1.
The three different data sets correspond to different values of
N . At each fixed N , I (A1 : A2) increases upon increasing �

up to � ∼ N/2, after which it starts decreasing. The behavior
at intermediate 1 � � � N is consistent with a logarithmic
increase, as predicted in Eq. (60), which should hold in the
limit N → ∞ and then � → ∞ (with this order of limits).

Looking now at the definition of the mutual information
[cf. Eq. (1)], it is clear that, when constructing I (A1 : A2), the
volume-law terms in the entropies cancel out. To derive the
prefactor of the logarithmic scaling, we can use Eq. (60) for
each term appearing in (1). Notice that no logarithmic con-
tribution is expected from SA1∪A2 since the entropy of the full
system for large N is exactly αN , with α given by (61). Let us
also stress that, in principle, we are not allowed to use Eq. (60)
for SA2 because the size N − � of A2 is comparable with N .
To proceed, we should then conjecture a generalization for
an interval A of generic size, embedded in a finite-size chain.
Following the standard strategy for critical systems described
by CFTs, we write [65]

SA = α� + c(�)

6
ln

[
N

π
sin

(
π�

N

)]
+ O(1). (77)

Notice that the prefactor of the volume-law term is the same as
before, while in the logarithmic term of Eq. (60) we replaced

� → X�, with X� := N

π
sin

(
π�

N

)
, (78)
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FIG. 6. Mutual information I (A1 : A2) between two complemen-
tary intervals [see Fig. 1(a)] in the open tight-binding chain with a
thermal bath on the left edge. On the x axis N sin(π�/N )/π ≡ X�

is the chord length. Data are for fixed μL = −1, h = 1, and for
TL = 0.3, 0.5, while the various colors denote different N . The lines
are fits to c(�) ln(X�)/3 + b, c(�) being the effective central charge
[cf. Eq. (63)] and b a fitting constant parameter.

where X� is the so-called chord length. Equation (77) holds in
the thermodynamic limit �, N → ∞. For systems with bound-
aries, as is the case here, the actual chord length differs from
(78) by an overall factor 2, which only affects the O(1) term,
and can therefore be neglected. We conclude that

I (A1 : A2) = c(�)

3
ln

[
N

π
sin

(
π�

N

)]
+ O(1). (79)

The factor 1
3 rather than 1

6 is due to the fact that both
subsystems A1 and A2 contribute with a logarithmic term.
Importantly, Eq. (79) implies that for large �, N the data for
the mutual information should collapse on the same curve,
when plotted as a function of X�.

The validity of Eq. (79) is investigated in Fig. 6 for the
tight-binding chain with one thermal bath on the left edge.
We consider two different temperatures TL = 0.3, 0.5 at fixed
μL = −1. The mutual information I (A1 : A2) is plotted versus
X� (notice the logarithmic scale on the x axis) for several
values of N = 200, 600, 1000. For both temperatures, the data
exhibit collapse. The quality of the collapse improves upon in-
creasing N , as expected. Continuous lines are fits to Eq. (79),
where c(�) is kept fixed and given by Eq. (63), while the
additive O(1) term being the only fitting parameter. For both
temperatures, the agreement between the data and the fits is
very satisfactory.

Equation (79) also implies that, for large N , the mutual
information between the two halves of the chain scales log-
arithmically as c(�) ln(N )/3. This is shown in Fig. 7, for the
same setup as in Fig. 6. The various data sets correspond to
different temperatures of the external bath. The logarithmic
increase is clearly visible (notice the semilogarithm scale),
although oscillating corrections are present. The continuous
lines are fits to

I (A1 : A2) = a ln(N ) + b, (80)

with a, b fitting parameters. Further checks of our results
are provided in Fig. 8 where, for each temperature, we nu-

FIG. 7. Scaling of the half-chain mutual information in the open
tight-binding chain with a thermal bath of the left edge of the chain.
Here we fix μL = −1, h = 1. Different colors are for different values
of TL . Continuous lines are fits to a ln(N ) + b, with a, b fitting
parameters.

merically extract c(�) by fitting the mutual information to
Eq. (80). Symbols are the results of the fits, which are obtained
as in Fig. 7 fitting the data with N > 26. At low temper-
ature, one finds c(�) → 1, whereas c(�) vanishes in the
high-temperature limit. The continuous line is the analytic
prediction in the limit N → ∞, given by Eq. (63). The agree-
ment with the numerics is excellent.

Finally, we discuss a two-bath geometry, where the edges
of the chain are connected to two different thermal baths. We
fix h = 1 and we consider two situations: constant tempera-
ture TL = TR = 1 with μL = 0 fixed, and constant chemical
potential μL = μR = −1 with TL = 1 fixed. In Fig. 9 we plot
the numerically extracted c(�) versus μR and TR, respectively,
for the two scenarios. As for Fig. 8, the continuous line de-
notes the theoretical result in the limit N → ∞, which is in
perfect agreement with the numerics.

2. Kitaev chain

Let us now discuss the steady-state mutual information in
the Kitaev chain. Here we consider a PBC geometry, as de-
picted in Fig. 1(b). Two sites at mutual distance N/2 are put in

FIG. 8. The effective central charge c(�) versus the temperature
TL , as obtained from fits of numerical data as those in Fig. 7. Param-
eters are the same as in Fig. 7.
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FIG. 9. Logarithmic scaling of the mutual information I (A1 : A2)
in the tight-binding chain with OBC coupled to two thermal baths
at the edges. In the upper panel, we plot c(�) versus μR, for fixed
TL = TR = 1 and μL = 0. In the lower panel, we plot c(�) versus TR,
for fixed μL = μR = −1 and TL = 1. In both cases, h = 1. Numeri-
cal results for c(�) are obtained by performing a finite-size scaling
analysis for the half-chain mutual information.

contact with two external baths at temperatures TR/L and with
chemical potentials μR/L. We choose TL = TR = 1, μL = 0,
μR = 2, 4, and fix h = 2. We consider the mutual information
I (A1 : A2) between two intervals of size � and N/2 − � placed
between the baths (see Fig. 1). First, we should observe that in
constructing the mutual information (1) all the entropies (i.e.,
SA1 , SA2 , and SA1∪A2 ) contain a subleading logarithmic term.
This happens because SA1∪A2 is not the full system. As for the
tight-binding chain the volume-law terms, instead, cancel out.
The final result is

I (A1 : A2) = c′(�)

3
ln(X2�) + O(1), (81)

where X2� is the chord length in Eq. (78) (notice the factor 2),
and c′(�) = c(�)/2 is the effective central charge calculated
for the Kitaev chain [cf. Eq. (74)]. To derive Eq. (81) we used
the fact that, for all the intervals A1, A2, and A1 ∪ A2,

SW
�,N→∞−−−−→ c′(�)

3
ln(X�), W = A1(2), A1 ∪ A2. (82)

After substituting (82) in the definition of the mutual infor-
mation (1), we obtain (81). We point out that Eq. (81) holds
only for the geometry in Fig. 1(b), although it could be easily
generalized to more general settings.

The validity of Eq. (81) is numerically verified in Fig. 10,
where we plot I (A1 : A2) versus X2�. For both values of μR, the
data exhibit collapse at large �, N . Continuous lines are fits to
Eq. (81), the only fitting parameter being the O(1) constant.
The agreement between the analytic prediction in the scaling

FIG. 10. Mutual information I (A1 : A2) between two intervals in
the Kitaev chain with PBC and two external baths [see Fig. 1(b)]
versus the chord length X2� = N sin(2π�/N )/π . Here we choose
TL = TR = 1, μL = 0, and μR = 2, 4. The various symbols cor-
respond to different chain sizes N . Continuous lines are fits to
I (A1 : A2) = c(�) ln(X2�)/6 + b, with c(�) the effective central
charge, and b a fitting constant.

limit �, N → ∞ and the numerics is nearly perfect already for
relatively small chains with X2� ∼ 10.

C. Fermionic logarithmic negativity

In general, the mutual information between two subsys-
tems does not provide a measure of quantum entanglement
between them since it contains information also about clas-
sical correlations. Given A = A1 ∪ A2 in a mixed state ρA,
a proper measure of entanglement between A1 and A2

is given by the fermionic logarithmic negativity [28,29],
defined as

E (A1 : A2) = ln
∥∥ρ

R1
A

∥∥, (83)

where ‖X‖ = Tr
√

XX † is the trace norm and ρ
R1
A stands for

the operator obtained after performing a partial time-reversal
transformation on ρA with respect to A1 (notice that this is
different from the standard logarithmic negativity defined for
bosonic systems [66]). The fermionic logarithmic negativity
can be efficiently calculated numerically for fermionic Gaus-
sian states [28], and this applies in particular to our steady
state.

Let us consider, as an example, the fermionic logarith-
mic negativity between two halves of a tight-binding chain
with OBC. In the ground state of the isolated chain it is
known that the fermionic logarithmic negativity exhibits log-
arithmic scaling with a prefactor of c/4 [28]. In Fig. 11
we report an example of calculation with our steady state
in the two-bath geometry. We clearly observe logarithmic
scaling, suggesting that such a feature is of quantum nature.
However, the prefactor is not consistent with a straightfor-
ward generalization c/4 → c(�)/4, hence, further studies are
necessary in order to establish its exact value in the nonequi-
librium scenario. Similar conclusions apply for the Kitaev
chain.
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FIG. 11. Scaling of the half-chain fermionic logarithmic negativ-
ity (83) in the tight-binding chain with OBC and two thermal baths
at the edges. Here the parameters are h = 1, μL = −1, μR = −1.5,
TL = 1, TR = 1.5. The orange line is a linear fit in logarithmic scale,
while the green line is [c(�)/4] ln N + b with b a fitting constant.

VII. CONCLUSIONS

We investigated the quantum-information spreading in the
tight-binding chain and the Kitaev chain in the presence of ex-
ternal thermal baths coupled to individual sites of the chains.
To this purpose, we employed a self-consistent nonlocal Lind-
blad master equation approach, where the Lindblad operators
modeling the baths are written in terms of the Bogoliubov
modes that diagonalize the isolated system, implying that they
are, in principle, nonlocal in real space [18]. The statistical
ensemble describing the steady state is written in terms of a
convex combination of the Fermi-Dirac distributions of the
baths. We showed that the steady-state von Neumann en-
tropy of a subsystem exhibits a volume-law scaling with the
subsystem size, reflecting that the system is not in a pure
state. The mutual information exhibits an area-law scaling
for generic values of the system parameters. Interestingly, we
observe logarithmic violations of the area law in the presence
of ground-state criticality. This behavior reflects the singu-
larity of the single-particle energy dispersion of the models,
which is present at all energies. We analytically derived the
prefactor of the logarithmic growth of the mutual information,
which depends on the system and bath parameters, such as the
temperature and the chemical potential.

Let us now mention some promising directions for future
work. First of all, here we only analyzed the steady-state value
of the mutual information: it would be tempting to study the
full-time dynamics, in order to establish how the logarithmic
scaling builds up during the evolution of the system. A natural
conjecture is that the same effective central charge governs a
logarithmic increase in time, as in Ref. [34]. Our analysis may
be also extended to genuine quantum entanglement measures
for mixed states, such as the fermionic logarithmic negativity.
Finally, it would be important to check the validity of our re-
sults by comparing them with ab initio numerical simulations,
or with results obtained using different master equations. A
crucial question to address is whether the logarithmic scal-
ing of the mutual information would survive in interacting
integrable systems (or even in nonintegrable ones), or in the
presence of non-Markovian interactions with the environment.

APPENDIX A: TIGHT-BINDING MODEL IN TERMS OF
FOURIER MODES

In this Appendix we argue that the presence of the dis-
continuity in the symbol (57) is not artificially introduced by
our choice of the basis with which we diagonalized the tight-
binding Hamiltonian (9), that is performed with discontinuous
coefficients (12). Specifically, let us consider a tight-binding
chain with PBC and define Fourier modes ck through

an = 1√
N

∑
k

e−iknck . (A1)

In the basis {ck} the Hamiltonian is diagonalized, as in (5), but
with single-particle energies

ωk = −h − 2 cos(k). (A2)

The master equation of Ref. [18] can be derived in a straight-
forward way to obtain Eq. (43), but with the substitution
bk → ck . However, Eq. (48) is no longer valid because ωk

may be negative. The calculation of the steady-state corre-
lation functions can still be performed starting directly from
Eq. (43). Using the relation �α (ω) + �α (−ω) = Jα (|ω|) we
find

〈c†
kck〉 =

∑
α �α,k�α (−ωk )∑
α �α,kJα (|ωk|) =

{〈b†
kbk〉, ωk > 0

1 − 〈b†
kbk〉, ωk < 0

(A3)

where 〈b†
kbk〉 is the standard Bogoliubov correlator reported

in (54) with ωk → |ωk|. If the model is critical, then 〈c†
kck〉 is

discontinuous as a function of k.
If we now define the Majorana operators in terms of ck , we

obtain [cf. Eq. (57)]

Gnm =
∫ π

−π

dk

2π
(1 − 2〈c†

kck〉)eik(n−m), (A4)

which, in terms of 〈b†
kbk〉, becomes

Gnm =
∫ π

−π

dk

2π
sgn(ωk )(1 − 2〈b†

kbk〉)eik(n−m), (A5)

which is identical to Eq. (57). Therefore, the von Neumann
entropy is unaltered by this change of basis, as expected.

APPENDIX B: CALCULATION FOR
THE TIGHT-BINDING CHAIN

In this Appendix we show how to perform the calculation
of the steady-state von Neumann entropy for the tight-binding
chain (cf. Sec. IV).

Let us first consider the case of PBC, i.e., ζ = 0 in Eq. (57).
From that equation we obtain

λδnm − Gnm =
∫ π

−π

dk

2π
eik(n−m)gλ(k). (B1)

This defines a Toeplitz matrix, hence, we can apply the Fisher-
Hartwig theorem [38–40] to evaluate its determinant for large
�. Such theorem has been already employed in the literature
to determine the scaling behavior of the von Neumann and
Rényi entropies in the ground state of critical fermionic chains
[43,44,67]. Here we apply a specialized version in which the
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symbol gλ(k) is allowed to have only jump discontinuities at
a finite number of points kr . In order to apply the theorem one
has to rewrite gλ(k) in the form

gλ(k) = gs(k)
R∏

r=1

eibr [k−kr−π sgn(k−kr )]. (B2)

Here gs(k) is a smooth function of k, R is the number of
discontinuities of the symbol, and br, kr are real constants.
The Fisher-Hartwig theorem states that, in the limit � → ∞,
one has

D�[gλ] ∼ F [gs]
�

(
R∏

j=1

�−b2
j

)
E [gλ], (B3)

where we defined

F [gs] := exp

(∫ π

−π

dk

2π
ln gs(k)

)
. (B4)

From Eq. (37) it is clear that the first factor in (B3) gives a
volume-law von Neumann entropy, and it is not sensitive to
the singularities in the symbol gλ(k). The second factor is
responsible for the logarithmic scaling of the von Neumann
entropy and contains information about the singularities of
gλ(k). The constant E is a known function of gλ(k). In the
following, we are not considering E because we are interested
only in the linear growth of the von Neumann entropy and in
the logarithmic correction.

It is straightforward to check that in our case the symbol
gλ(k) in (59) can be written in the form (B2) with two discon-
tinuities at k1 = −kF and k2 = kF , i.e., with R = 2, and

b1 = −b2 = βλ + m, (B5)

where m is an integer and

βλ = 1

2π i
ln

(
λ − �

λ + �

)
, � := θkk|k=kF . (B6)

The function gs(k) is given by

gs(k) =
(

λ + �

λ − �

) kF
π

−1

(λ + θkk )�H(kF − |k|)

+
(

λ + �

λ − �

) kF
π

(λ − θkk )�H(|k| − kF ). (B7)

Now, we have to substitute Eqs. (B5), (B6), and (B7) in
Eq. (B3). The first factor in Eq. (B3) determines the constant
α in Eq. (60). By using (56) one obtains

α= lim
δ,ε→0+

1

4π2i

∮
γ

dλ

∫ π

−π

dk
e(1 + ε, λ)

λ + sgn(kF − |k|)θkk
, (B8)

where e(x, ν) is defined in (35), θkk in (28), and γ denotes the
contour shown in Fig. 2. This integral can be performed with
the residue theorem, leading to

α =
∫ π

−π

dk

2π
e(1, θkk ), (B9)

which is precisely the expression reported in Eq. (61).

The second factor in Eq. (B3) yields for the prefactor of the
logarithmic term [cf. Eq. (60) with ν = 1]

c(�)

3
= lim

δ,ε→0+

1

π i

∮
γ

dλ e(1 + ε, λ)
d (−β2

λ )

dλ
, (B10)

where βλ is defined in Eq. (B6) and, again, γ denotes the
“dogbone” contour in Fig. 2. We can perform an integration
by parts to obtain

c(�)

3
= lim

δ,ε→0+

1

8π3i

∮
γ

dλ ln2

(
λ + �

λ − �

)
ln

(
1 + ε + λ

1 + ε − λ

)
.

(B11)

The contribution of the circles around ±1 in γ (see Fig. 2)
vanishes in the limit ε → 0+. The integration along the hori-
zontal paths can be performed using the fact that, for δ → 0+,
one has

ln

(
x ± iδ + t

x ± iδ − t

)
→ ln

∣∣∣∣ t + x

t − x

∣∣∣∣ ∓ iπ sgn(t )�H(|t | − |x|).
(B12)

Inserting in (B11), this gives

c(�)

3
= 1

2π2

∫ �

−�

dx ln

(
� + x

� − x

)
ln

(
1 + x

1 − x

)
. (B13)

This integral can be expressed in terms of dilogarithm func-
tions (64): the result is reported in Eq. (63).

Let us now discuss the case with OBC and consider a block
of � sites starting at one edge of the chain [see Fig. 1(a)].
Now, one has ζ = 1 in the fermionic correlator (57), which
has the Toeplitz-plus-Hankel structure with the same symbol.
A version of the Fisher-Hartwig theorem for certain kinds
of Toeplitz-plus-Hankel matrices exists [42], and the analysis
can be carried out in a similar way as before. In our particular
scenario, we only have to change b2

j → b2
j/2 in Eq. (B3),

which has the effect of halving the coefficient of the loga-
rithmic term [43]. This justifies the validity of Eq. (60) with
ν = 2.

APPENDIX C: CALCULATION FOR THE KITAEV CHAIN

In this Appendix we show how to perform the calculation
of the steady-state von Neumann entropy for the Kitaev chain
with PBC (cf. Sec. V).

The starting point is the symbol reported in Eq. (73). In
order to calculate the associated Toeplitz determinant, the
idea is to modify the symbol without altering its singularity
structure, so that we can reduce to a calculation with scalar
symbols [58,59]. Let us define the modified symbol g̃λ(k) as

g̃λ(k) :=
[

λ −iθkke−i|ξ (k)|

iθkkei|ξ (k)| λ

]
, (C1)

which differs from gλ(k) because of the absolute value |ξ (k)|
in the phase factors. Its inverse g̃−1

λ (k) is

g̃−1
λ (k) = 1

λ2 − θ2
kk

[
λ iθkke−i|ξ (k)|

−iθkkei|ξ (k)| λ

]
. (C2)

Crucially, both g̃λ and its inverse are smooth functions of k.
As a consequence, in the limit � → ∞, the corresponding
Toeplitz determinants D� [̃gλ] and D� [̃g−1

λ ] are not expected
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to contain logarithmic terms. Their asymptotic behavior is in
fact determined by the Szegö-Widom theorem [68]. Given a
generic smooth symbol z(k) of a Toeplitz matrix, the Szegö-
Widom theorem gives

ln D�[z] = �

∫ π

−π

dk

2π
ln det[z(k)] + O(1). (C3)

In our case, z(k) = g̃λ(k) or z(k) = g̃−1
λ (k). Moreover, we

can use the so-called Basor localization theorem [69], which
allows us to write, in the limit � → ∞,

ln D�[gλ] = ln D�

[
gλg̃−1

λ

] − ln D�

[̃
g−1

λ

] + O(1). (C4)

Here the first contribution contains logarithmic terms,
whereas the second one gives rise to volume-law terms as in
(C3). To proceed, let us now notice that

gλg̃−1
λ = 1

λ2 − θ2
kk

[
λ2 − θ2

kkei(|ξ |−ξ ) iλθkk (e−i|ξ | − e−iξ )
iλθkk (eiξ − ei|ξ |) λ2 − θ2

kkei(ξ−|ξ |)

]
.

(C5)

If −π � k � 0, then ξ (k) � 0 and gλg̃−1
λ is the identity ma-

trix. On the other hand, if 0 < k � π , then ξ (k) < 0 and
Eq. (C5) becomes

gλg̃−1
λ = 1

λ2 − θ2
kk

[
λ2 − θ2

kke−2iξ −2λθkk sin(ξ )
−2λθkk sin(ξ ) λ2 − θ2

kke2iξ

]
. (C6)

Diagonalizing the matrix in (C6), one obtains that the eigen-
values b± are

b± =

⎡⎢⎣
√

λ2 − θ2
kk cos2(ξ ) ± |θkk sin(ξ )|√

λ2 − θ2
kk

⎤⎥⎦
2

. (C7)

One can easily verify that the corresponding eigenvectors are
smooth functions of k. Hence, a further application of Basor
localization theorem yields

ln D�

[
gλg̃−1

λ

] = ln D�[b−] + ln D�[b+] + O(1). (C8)

Here we also used that, according to the Szegö-Widom the-
orem (C3), the contribution in Eq. (C8) of the matrices that

diagonalize (C6) would be a constant that we can neglect
in the limit � → ∞. Now in (C8), D�[b±] are determinants
of Toeplitz matrices with scalar symbols. Their asymptotic
behavior for large � can be determined by using the standard
Fisher-Hartwig theorem (as in Appendix B). We obtain

ln D�[b±] = �

∫ π

−π

dk

2π
ln b±(k)

+ ln2

[√
λ2 ± |�|√
λ2 − �2

]
ln(�)

π2
+ O(1), (C9)

where � is reported in Eq. (76). Noticing that b−b+ = 1, and
using Eqs. (C3), (C4), and (C9), we get

ln D�[gλ] = �

∫ π

−π

dk

2π
ln

(
λ2 − θ2

kk

)
+ ln2

[√
λ2 + |�|√
λ2 − �2

]
2 ln(�)

π2
+ O(1). (C10)

Now we can determine the scaling of the steady-state von
Neumann entropy using Eq. (37). The first term in (C10) leads
to the coefficient of the volume-law term α, which turns out
to be the same as the tight-binding one (61). The second term
in (C10) leads instead to [cf. Eq. (74)]

c′(�)

3
= lim

δ,ε→0+

∮
γ

dλ

4π3i
ln

(
1 + ε + λ

1 + ε − λ

)
ln2

(√
λ2 + |�|√
λ2 − �2

)
.

As for the tight-binding chain, γ is the same dogbone contour
of Fig. 2. After using (B12), and proceeding as for the tight-
binding chain, we obtain

c′(�) = 3

4π2

∫ �

−�

dx ln

(
1 + x

1 − x

)
ln

(
� + x

� − x

)
. (C11)

Remarkably, Eq. (C11) is half of the result of Eq. (63) ob-
tained for the tight-binding chain [see also Eq. (B13)].
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