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Antiparticle of exciton in semimetals
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An emergent quantized field enriches quantum many-body systems. We propose an antiparticle analog of the
exciton in semimetals as an emergent collective mode in interacting electron systems. We show that interband
excitations in semimetals are generally comprised of both excitons and antiparticles of excitons. These two stand
for two distinct interband collective modes in semimetals, having different energies and opposite conserved
charges. The conserved charge here is a quantity conjugate to a joint U(1) symmetry of two electrons’ bands
associated with the interband excitations. The opposite charges foster fertile scattering processes among the
interband collective modes. In spin-polarized systems, they also suggest possible experimental detections of the
antiparticles. We clarify that the effective theory of the interband excitations is given by a generalized Klein-
Gordon theory. Our theory provides a comprehensive understanding of excitonic spectra in generic semimetals,
bringing broader insight into electronic collective phenomena in solids.
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I. INTRODUCTION

The existence of antiparticles is one of the most striking
predictions by the quantum field theory [1]. It renews the basic
concept of particles by showing that particle numbers are no
longer conserved quantities. In elementary particle physics,
every particle has a corresponding antiparticle in some forms.
Some particles are their own antiparticles, such as photons
and Higgs bosons, while others are not, such as electrons and
quarks [2]. A pair of a particle and an antiparticle can be
simultaneously created and/or annihilated. A typical example
is an annihilation of an electron-positron pair producing two
photons.

Electromagnetic and optical properties of solid-state ma-
terials are related to emergent collective modes in quantum
many-particle systems of electrons and cations. Energy scales
of the collective modes are typically much lower than those in
high-energy experiments, while effective field theories of the
emergent degrees of freedom often share rich mathematical
structures with elementary particles in high-energy physics.
Thus, it is an important quest to find collective modes in
condensed matter systems as analogs of antiparticles.

In this paper, we demonstrate universal presence of the
antiparticle analogs of excitons that are distinguishable from
their counterpart excitons and that coexist with the counterpart
excitons (see Fig. 1 and Fig. 2). In semiconductors, an exciton
is a nonrelativistic boson that describes a bound state of a
conduction-band electron and a valance-band hole. The bound
state is an eigenstate of a two-body Hamiltonian of the elec-
tron and hole that interact through the long-range Coulomb
interaction [3–5]. Excitons play crucial roles in optoelec-
tronic properties in semiconductors [6–8]. In semimetals or

*Corresponding author: rshindou@pku.edu.cn
†Corresponding author: yeyzhang@pku.edu.cn

narrow-gap semiconductors where the conduction and valance
bands overlap or nearly overlap, excitons may undergo Bose-
Einstein condensation [9–13]. The condensates are described
by a Ginzburg-Landau theory as in superconductivity [14–16].
There is no antiparticle analog in such conventional theories
of excitons.

There were attempts to define an antiparticle of the exciton
[17–21]. Excitonic spectra in the condensates [20] or under
external pumps [17,18] which induce a hopping between the
conduction and valence bands have been studied previously.
Thereby, the two-body Hamiltonian has pairs of degenerate
positive- and negative-energy eigenstates [3,4,17,18], which
are related to each other by a generic particle-hole symme-
try of the Hamiltonian. They are sometimes dubbed as pairs
of “exciton” and “antiexciton”, respectively, in the literature
[17,18], while such pairs of “two” states actually character-
ize identical physical excitations (see Appendix B). Besides,
interband excitations in semiconductors with positive and
“negative” band gaps are characterized as excitons and antiex-
citons in other literature [20,21], while coexistence of these
two kinds of interband collective modes in the same bulk has
not been explored (Appendix B).

To reveal the coexistence of the exciton and the antipar-
ticle of the exciton as two distinguishable collective modes
in semimetals, we solve the Bethe-Salpeter (BS) equation for
a two-band model with screened Coulomb interaction in two
and three dimensions (Fig. 1 and Fig. 2). An interband two-
particle Green’s function obtained from the BS equation has
a pair of two poles for the 1s exciton levels (1s hydrogen-
atom-type orbitals for the relative coordinates between an
electron and a hole). The inverse of the two-particle Green’s
function plays a role of the Lagrangian of free excitons [4].
The Lagrangian takes the form of a generalized Klein-Gordon
field theory without the Lorentz symmetry. By quantizing the
effective field theory [1], we show that the pair of the poles
can be interpreted as an exciton and an antiparticle of the
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FIG. 1. Energy-momentum (ω-q) dispersions of the s-wave exci-
ton (the red line) and antiexciton (the blue line) bands together with
an energy-momentum region of interband individual excitations (the
shaded region) in a two-band model in three dimensions given by
Eqs. (1)–(3). The momentum of the interband excitations is given
by q for kc = 0. In the case of kc �= 0, the momentum Q of the
interband excitations is given by Q = q + kc. The parameters set
in this figure are the same as in Fig. 5(a). In this paper, the energy
dispersions are always calculated perturbatively in small q around
the � point. To emphasize this point, we use more transparent colors
for the dispersions with larger q in this figure and other figures below.

exciton (antiexciton), respectively. A calculation of conserved
charge of the effective field theory shows that the exciton
and antiexciton carry opposite charges, where the conserved
charge is conjugate to a joint U(1) phase of the two bands. The
opposite charge enables pair annihilation of an exciton and an
antiexciton which produces a pair of density waves in conduc-
tion and valence bands. When the two bands have opposite
spin polarization, e.g., one band with up-spin polarization
(sz = 1/2) and the other band with down-spin polarization
(sz = −1/2), the exciton and antiexciton carry Sz = +1 and
Sz = −1. The opposite spin polarization can be utilized for
distinguishing antiexcitons from excitons experimentally in
the spin-polarized case.

The organization of this paper is as follows. In the next
section, we introduce model Hamiltonians for semimetals
studied in this paper. In Sec. III, we introduce the concept
of the antiexciton in semimetals in terms of an interband
two-particle Green’s function. In Sec. IV, we explain how
we calculate the Green’s function in a limit of dilute carrier
densities. In Sec. V, we demonstrate universal coexistence of
exciton and antiexciton states based on calculations of energy-
momentum dispersions of the interband collective modes. In
Sec. VI, we show that a “CP-violated” Klein-Gordon theory
describes a pair of an exciton and an antiexciton. In Sec. VII,
we discuss possible optical spectroscopy experiments for de-
tecting the antiexciton states in semimetals. A brief summary
and relevant experimental materials are listed in Sec. VIII. In
Appendix A, we provide technical details for calculations of
the energy-momentum dispersion of exciton and antiexciton
states in the semimetals. In Appendix B, we clarify the phys-
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FIG. 2. (a) A two-band semimetal model with kc �= 0. (b) A
semimetal with kc = 0. In a ground state, the conduction band (a
band) and valence band (b band) have Na and Nb electrons, re-
spectively. KF,a and KF,b denote the Fermi momentum of a circular
electron pocket in the a band and the Fermi momentum of a circular
hole pocket in the b band. (c, d) Two types of interband collective
modes in the semimetal with the U(1) × U(1) symmetry. (c) Exciton,
an interband collective mode in the space of |Na + 1, Nb − 1〉. A
wave function of an exciton state has a weight mainly in a region
of |k| > KF,a. (d) Antiexciton, an interband collective mode in the
space of |Na − 1, Nb + 1〉. A wave function of an exciton state has a
weight mainly in a region of |k| < KF,b.

ical difference between our concept of the antiexciton and
those in the literature [17–21].

II. MODELS OF SEMIMETALS

We study a two-band semimetal Hamiltonian with a
valence-band maximum at k = 0 and a conduction-band min-
imum at k = kc [Figs. 2(a) and 2(b)] [14,22]. The kinetic
energy part of the electronic Hamiltonian is given by

K̂0 =
∑

k

[(εa(k) − μ)a†
kak + (εb(k) − μ)b†

kbk] (1)

with

εa(k) = k2

2ma
+ Eg

2
, εb(k) = − k2

2mb
− Eg

2
. (2)

Here ma and mb are effective masses of a and b bands, re-
spectively. The reduced Planck constant h̄ is set to 1. Eg is an
energy difference between the a-band energy minimum and
the b-band energy maximum. Eg is negative for the semimetal
case. We define a†

k and ak as creation and annihilation opera-
tors for electrons of the conduction band with wave vector k +
kc, and define b†

k and bk for electrons of the valence band with
wave vector k. A charge neutrality (the electron density equals
the hole density) can be realized by a chemical potential of
μ0 = Eg(ma−mb)

2(ma+mb) . To study the interband bound states with their
crystal momenta Q around kc, we put the chemical potential
away from the charge neutrality point, μ �= μ0, where inter-
band electron-hole individual excitations have a finite gap at
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Q = kc (see Fig. 1 and Fig. 2 with Q = q + kc). The radii of
the circular Fermi surface of a and b bands are denoted as
KF,a and KF,b (KF,a �= KF,b). For clarity of presentation, we put
kc = 0 (Q = q), and choose μ > μ0 (KF,a > KF,b) henceforth.
The following argument can be directly applied to the case of
kc �= 0 [14].

Electrons in the two bands interact through the long-range
Coulomb interaction. The interaction takes the following form
in the momentum representation:

V̂ = 1

2�

∑
q

v(q)ρ̂(q)ρ̂(−q), (3)

with a total volume of the system �. Here ρ̂(q) stands for the
density operator with momentum q [14,22],

ρ̂(q) =
∑

k

(a†
k+qak + b†

k+qbk), (4)

and v(q) is the Fourier transform of the bare Coulomb poten-
tial,

v(q) =
{ 4π

q2 in three dimensions

2π
q in two dimensions.

(5)

The elementary charge e and the Coulomb constant (4πε0)−1

are set to 1. Since the Hamiltonian, K̂0 + V̂ , has no single-
particle interband hopping terms, the interacting model has a
U(1) × U(1) symmetry.

III. EXCITON AND ANTIEXCITON IN SEMIMETALS

Suppose that a many-body ground state |0〉 of the interact-
ing electron system does not break the U(1) × U(1) symmetry.
Therefore, it is in the eigenspace of total particle-number
operators of a- and b-band electrons, |Na, Nb〉, where Na and
Nb denote the electron numbers in a and b bands, respectively.
Then, the interband excited eigenstates in the semimetals
can be either in |Na + 1, Nb − 1〉 or in |Na − 1, Nb + 1〉. Ex-
citons and antiexcitons are nothing but bound states living
in the former and latter eigenspaces, respectively. These ex-
citations can be characterized by a time-ordered interband
two-particle Green’s function in the zero-temperature (T = 0)
field theory:

Gex(x − x′, t − t ′)yy′

= −(−i)2〈0|T {ax(t )b†
x+y(t )bx′+y′ (t ′)a†

x′ (t ′)}|0〉. (6)

Here the many-body ground state |0〉 is in the |Na, Nb〉 Hilbert
space. T denotes the time-ordered product [23]. ax and bx are
annihilation operators in the a and b bands. ak and bk in Eq. (1)
are Fourier transforms of ax and bx,

ax = 1√
�

∑
k

eikxak, bx = 1√
�

∑
k

eikxbk, (7)

with a total volume of the system �. y and y′ in Eq. (6)
are relative distances between the particle and hole that form
a bound state. x + mb

ma+mb
y, x′ + mb

ma+mb
y′ can be regarded as

the center-of-mass coordinates of the particle and hole. The

Fourier transform of the two-particle Green’s function is de-
fined by

Gex(q, ω)kk′ =
∫

d (t − t ′)
∫

dd (x − x′)
∫

dd y
∫

dd y′

× eiω(t−t ′ )−iq·(x−x′ )+ik·y−ik′·y′

× Gex(x − x′, t − t ′)yy′ . (8)

In the semimetals, a spectral representation of the zero-
temperature time-ordered Green’s function for the interband
excitations can be decomposed not only by the excited eigen-
states in |Na + 1, Nb − 1〉 but also by those in |Na − 1, Nb +
1〉 as

Gex(q, ω)kk′ =
∑

n

i�〈0|b†
kaq+k|n〉〈n|a†

q+k′ bk′ |0〉
ω − (En − E0) + i0+

−
∑

n′

i�〈0|a†
q+k′ bk′ |n′〉〈n′|b†

kaq+k|0〉
ω + (En′ − E0) − i0+ . (9)

Here E0 is a ground-state energy in the |Na, Nb〉 Hilbert space.
q and ω correspond to the total momentum and frequency of
the interband bound states, and k, k′ are relative momenta.
|n〉 and |n′〉 are the excited eigenstates with the momentum
q and −q and with the energy En and En′ in the eigenspaces of
|Na + 1, Nb − 1〉 and |Na − 1, Nb + 1〉, respectively. Excitons
and antiexcitons are bound states comprised of interband exci-
tations in |Na + 1, Nb − 1〉 and |Na − 1, Nb + 1〉, respectively.
In the spectral representation, they can be detected as poles
in the fourth and second quadrants in the complex-ω plane,
respectively.

In a semiconductor with Eg > 0, Na = 0, and Nb = N ,
the interband excited eigenstates are only in the space of
|1, N − 1〉, where there is no antiparticle-type exciton. Lerner
and Lozovik previously studied interband collective modes in
two-dimensional (2D) electron-hole gas (EHG) under mag-
netic field and described the collective modes in two different
field regimes as excitons and antiexcitons, respectively [20].
The 2D EHG under the field can approximately realize its
ground states either in the space of |0, N〉 (positive-band-gap
semiconductor regime) or in the space of |N, 0〉 (negative-
band-gap semiconductor regime). Interband collective modes
in these two semiconductor regimes live in |1, N − 1〉 and
in |N − 1, 1〉, which can be also regarded as excitons and
antiexcitons, respectively [20] (see Appendix B).

IV. SEMIMETALS WITH DILUTE CARRIER DENSITIES

In the dilute limit of the carrier densities, the two-particle
Green’s function can be evaluated in terms of the ladder ap-
proximation represented by the Feynman diagram in Fig. 3
[23],

Gex(x − x′, t − t ′)yy′

= Gex
0 (x − x′, t − t ′)yy′

+ i
∫

dd x
∫

dd y
∫

dt Gex
0 (x − x, t − t )yy

× w(y)Gex(x − x′, t − t ′)yy′ , (10)
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= +

FIG. 3. The Feynman diagram of the screened-ladder approx-
imation for Gex . The upper and lower solid lines with rightward
and leftward arrows are electron propagators in the b band and a
band, respectively. The double wavy line is the screened Coulomb
interaction w(y) or w(k − k′) represented by the Feynman diagram
in Fig. 4.

where Gex
0 (x − x′, t − t ′)yy′ denotes the two-particle Green’s

function in a free theory (V = 0),

Gex
0 (x − x′, t − t ′)yy′ = Ga

0(x − x′, t − t ′)

× Gb
0(x′ − x + y′ − y, t ′ − t ). (11)

Here Ga
0 and Gb

0 are single-particle Green’s functions of the a
and b bands in the free theory, respectively,

iGa
0(x − x′, t − t ′) ≡ 〈0|T {ax(t )a†

x′ (t ′)}|0〉|V =0, (12)

iGb
0(x − x′, t − t ′) ≡ 〈0|T {bx(t )b†

x′ (t ′)}|0〉|V =0. (13)

Their Fourier transforms are as follows:

Gex
0 (q, ω)kk′ = �δkk′

∫
dω1

2π
Ga

0(k + q, ω1 + ω)Gb
0(k, ω1)

= i�δkk′

{
θ (|k + q| − KF,a)θ (|k| − KF,b)

ω − [εa(k + q) − εb(k)] + i0+

− θ (KF,a − |k + q|)θ (KF,b − |k|)
ω − [εa(k + q) − εb(k)] − i0+

}
, (14)

with

Ga
0(k, ω) = θ (|k| − KF,a)

ω − εa(k) + i0+ + θ (KF,a − |k|)
ω − εa(k) − i0+ ,

Gb
0(k, ω) = θ (KF,b − |k|)

ω − εb(k) + i0+ + θ (|k| − KF,b)

ω − εb(k) − i0+ . (15)

Here KF,a and KF,b are the Fermi momenta of the circular
Fermi surfaces of the conduction band and valence band, re-
spectively [Fig. 2(b)]. w(y) in Eq. (10) stands for an effective
interaction between the electron and hole. In a semiconductor
regime (Eg > 0), it is the long-ranged Coulomb interaction.
In a semimetal regime (Eg < 0), the Coulomb interaction is
screened by carrier densities. The screened Coulomb inter-
action can be evaluated by the random phase approximation
(Fig. 4). In the approximation, the Fourier transform of w(y)
is given by a static limit of the bare polarization function

FIG. 4. Random phase approximation (RPA) for screened
Coulomb interaction. The single- and double-wavy lines are bare
(long-ranged) and screened Coulomb interactions. Solid lines of bub-
bles correspond to free single-particle Green’s functions. A bubble
with label c contains a summation of bubbles consisting of free
single-particle Green’s functions of the a and b bands (c = a, b).


0(q, ω),

w(q) = v(q)

1 − v(q)
0(0, 0)

=
{ 4π

q2−4π
0(0,0) in three dimensions

2π
q−2π
0(0,0) in two dimensions.

(16)

The bare polarization function in our two-band model is given
by


0(q, ω) =
∑

c=a,b


c
0(q, ω),


c
0(q, ω) = −i

∫∫
dω1dd k
(2π )d+1

Gc
0(k + q, ω1 + ω)Gc

0(k, ω1).

(17)

The static limit of the polarization function is given by


0(0, 0) ≡
{

− 1
4π

( 2KF,ama

π
+ 2KF,bmb

π

)
in three dimensions

− 1
2π

(
ma + mb

)
in two dimensions.

(18)

The screened Coulomb potential is given by the Thomas-
Fermi (TF) wavelength kTF as w(k) = 4π/(k2 + k2

TF) in three
dimensions and w(k) = 2π/(k + kTF) in two dimensions. The
TF wave vector is calculated as k2

TF = 2(KF,ama + KF,bmb)/π
in three dimensions and kTF = ma + mb in two dimensions.

In the momentum-frequency space, Eq. (10) takes the form
of

G̃ex(q, ω)kk′ = G̃ex
0 (q, ω)kk′ − 1

�

∑
k1k2

G̃ex
0 (q, ω)kk1

w(k1

− k2)G̃ex(q, ω)k2k′ , (19)

with i�G̃ex(q, ω)kk′ ≡ Gex(q, ω)kk′ , i�G̃ex
0 (q, ω)kk′ ≡

Gex
0 (q, ω)kk′ . Equation (19) can be written into the following

matrix form [4]:

G̃ex(q, ω)−1 = G̃ex
0 (q, ω)−1 + W, (20)

with Wkk′ ≡ �−1w(k − k′). Suppose that |φ j (q, ω)〉 and
ξ j (q, ω) are eigenvectors and eigenvalues of Eq. (20),

G̃ex(q, ω)−1|φ j (q, ω)〉 = ξ j (q, ω)|φ j (q, ω)〉. (21)

Then, the interband two-particle Green’s function is given by
the eigenvectors and eigenvalues,

G̃ex(q, ω) =
∑

j

|φ j (q, ω)〉ξ j (q, ω)−1〈φ j (q, ω)|. (22)

In the next section, we solve Eq. (21) at q = 0, where we
can employ the spherical and circular symmetry in three and
two dimensions, respectively, and use the irreducible repre-
sentations of the symmetries. From ξ j (0, ω) thus calculated,
we determine exciton and antiexciton levels at the � point.
Then we treat small q around the � point as a perturbation
and calculate band curvatures of the exciton and antiexciton
bands, using the irreducible representations at q = 0.
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Before closing this section, let us use the Feynman-
Hellman theorem and derive a useful relation between ∂ωξ j

and wave functions of exciton and antiexciton excitation at

q = 0. The ω derivative of Eq. (21) at the � point leads to
dξ j (0, ω)

dω
= 〈φ j (0, ω)|

[
dG̃ex(0, ω)−1

dω

]
|φ j (0, ω)〉, (23)

where G̃ex(0, ω)−1 and its ω derivate are given by

[G̃ex(0, ω)−1]kk′ = δkk′
{
θ (|k| − Kout )

(
ω − (εa(k) − εb(k))

)
− θ (Kin − |k|)

(
ω − (εa(k) − εb(k))

)}
+ w(k − k′)

�
,[

∂ωG̃ex(0, ω)−1
]

kk′ = δkk′{θ (|k| − Kout ) − θ (Kin − |k|)}. (24)

Here Kout ≡ max(KF,a, KF,b) = KF,a, and Kin ≡
min(KF,a, KF,b) = KF,b. From this expression, we can relate
the derivative with the momentum-space wave functions,

∂ωξ j =
∑

|k|>Kout

|〈k|φ j〉|2 −
∑

|k|<Kin

|〈k|φ j〉|2, (25)

with Kout = KF,a > Kin = KF,b.
As shown in the next section, ξ j (0, ω) as a function

of ω crosses zero at both a positive ω (ω = ω+) with
∂ωξ j (0, ω)|ω=ω+ > 0 and a negative ω (ω = −ω−) with
∂ωξ j (0, ω)|ω=−ω− < 0. The Lehmann representation dictates
that the positive zero corresponds to a bound state in |Na +
1, Nb − 1〉 (exciton) and the negative zero corresponds to a
bound state in |Na − 1, Nb + 1〉 (antiexciton). In fact, Eq. (25)
shows that the eigenvectors of the positive-ω (negative-ω)
bound states have larger spectral weight in |k| > Kout (|k| <

Kin), suggesting that the former and latter bound states are of
a†

kbk|0〉 type and of b†
kak|0〉 type, respectively [Figs. 2(c) and

2(d)].

V. ENERGIES OF INTERBAND EXCITATIONS
IN SEMIMETALS

Solving Eq. (21) in three and two dimensions is compu-
tationally expensive for general q. Thus, we first focus on
the solutions at q = 0. Gex(0, ω) has the spatially rotational
symmetry,

Gex(0, ω)kk′ = Gex(0, ω )̃k̃k
′ , (26)

where k̃ and k̃
′

are transformed into k and k′, respectively,
by the same rotation. The eigenvalue problem at the � point
is decomposed by the irreducible representations of the rota-
tional symmetry group (Appendix A). The Green’s function is
expanded by spherical harmonics in the 3D case,

−iGex(0, ω)kk′ =
∑
nlm

Ylm(θ, ϕ) fnl (ω; k) fnl (ω; k′)Y ∗
lm(θ ′, ϕ′)

ξnl (ω)
,

(27)

and by trigonometric functions in the 2D case,

−iGex(0, ω)kk′ =
∑
nm

fnm(ω; k) fnm(ω; k′)eim(ϕ−ϕ′ )

ξnm(ω)
. (28)

Here k = k(sin θ cos ϕ, sin θ sin ϕ, cos θ ) in the 3D case and
k = k(cos ϕ, sin ϕ) in the 2D case. fnl (ω; k) and fnm(ω; k)

stand for radial wave functions and Ylm(θ, ϕ) are the spher-
ical harmonics. In the 3D and 2D cases, 〈k|φ j (0, ω)〉 =

1√
�

fnl (ω; k)Ylm(θ, ϕ) and 〈k|φ j (0, ω)〉 = 1√
�

fnm(ω; k)eimϕ ,
respectively. Here j is the combination of principal quantum
number n, azimuthal quantum number l in the 3D case, and
magnetic quantum number m in the 2D case.

Figure 5 plots ξ j (0, ω) as a function of ω. Individual inter-
band excitations with q = 0 form continuum spectra in certain

(a)

(b)

FIG. 5. ξ j (q = 0, ω) as a function of ω, with ma = mb ≡ m̄,
KF ≡ (KF,a + KF,b)/2. Locations of the zeros (ξ j (q = 0, ω) = 0)
are determined by three dimensionless quantities, KF αB, Ẽg ≡
Egm̄/K2

F , and μ̃ ≡ μm̄/K2
F , where the effective Bohr radius

αB = 1/m̄. The electron rest mass me is set to 1. (a) Three-
dimensional (3D) case: eigenvalues with l = 0, m = 0 are plotted
for KF αB = KF /3.5 = 0.289, Ẽg = −0.3m̄/K2

F = −1.03, and μ̃ =
0.05m̄/K2

F = 0.172. (b) 2D case: eigenvalues with m = 0 are plot-
ted for KF αB = KF = 0.540, Ẽg = −0.3m̄/K2

F = −1.03, and μ̃ =
0.05m̄/K2

F = 0.172.
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(a)

(b)

FIG. 6. Ratios between curvatures of the s-wave exciton and
antiexciton bands and the mass of the electron and hole bands
m̄ ≡ ma = mb. The ratios are plotted as a function of a dimension-
less quantity KF αB, where KF ≡ (KF,a + KF,b)/2 and αB ≡ 1/m̄ (the
effective Bohr radius of the electron system). The exciton’s and
antiexciton’s band curvatures are defined in the expansion ω±(q)
around the � point, ω±(q) ≡ ω± + q2/(2M ). (a) The 3D case.
(b) The 2D case. In these two plots, we choose Ẽg = −1.03 and
μ̃ = 0.172.

ranges of ω, which correspond to the shaded regions in the
figure. Apart from the continuum spectra, a branch of s-wave
(l = 0) bound states in three dimensions and a branch of m =
0 bound states in two dimensions form a parabolic curve of ω

outside the shaded region. The branch crosses zero at both a
positive ω (ω = ω+) and a negative ω (ω = −ω−). The spec-
tral representation dictates that the positive zero corresponds
to a bound state in |Na + 1, Nb − 1〉 (exciton) and the negative
zero corresponds to a bound state in |Na − 1, Nb + 1〉 (antiex-
citon). Energies of excitons and antiexcitons at finite q can
be expanded as ω±(q) = ω± + q2/(2M ) to the lowest order
in q. The band curvature 1/(2M ) can be calculated from the
irreducible representations of Eq. (20) (see Appendix A). In
parameter ranges studied in this paper, the band curvatures al-
ways take negative values both for the exciton and antiexciton
bands (Figs. 1 and 6). When energies of these interband bound
states touch zero at finite q outside the energy-momentum
region of the interband individual excitations, the system can
undergo Bose-Einstein condensation. When the exciton or
antiexciton condensates, the two bound-state modes become
a Goldstone mode and a Higgs mode [24–27].

VI. EFFECTIVE FIELD INTERPRETATION

ξ j (0, ω) is an eigenvalue of the inverse of the interband
two-particle Green’s function G̃ex(0, ω)−1. To the quadratic
level in ω, it can be regarded as an effective Lagrangian for
interband collective modes at q = 0. Unlike in the semicon-
ductor case, the ω-dependent part of the G̃ex(0, ω)−1 matrix
in the semimetal case is not simply proportional to an identity
matrix. Namely, both of the terms on the right-hand side of
Eq. (9) do not vanish in the semimetal case. Thus, ξ j (0, ω)
becomes a nonlinear function of ω. The simplest effective La-
grangian for the interband collective excitations in semimetals
contains an ω2 term in addition to an ω term,

ξ j (0, ω) = γω2 + αω − β, (29)

with γ > 0 and β > 0 (see Fig. 5). Thus, the effective La-
grangian contains a second-order time derivative of a complex
scalar field ϕ(t ) for the q = 0 interband collective modes,∫

dtL =
∫

dtϕ†(t )
(−γ ∂2

t + iα∂t − β
)
ϕ(t ), (30)

with the field defined by

ϕ(t ) ≡
∑

k

∫ +∞

−∞
dt ′〈k|φ j (0, t − t ′)〉b†

k(t ′)ak(t ′). (31)

Here we omit j indices in ϕ(t ) and in the effective La-
grangian. The complex field is decomposed into two real
fields, ϕ1 and ϕ2, as ϕ ≡ ϕ1 + iϕ2. Two conjugate momenta
are introduced as π1 ≡ ∂L

∂ (∂t ϕ1 ) and π2 ≡ ∂L
∂ (∂t ϕ2 ) . This leads to

an effective Hamiltonian for the q = 0 interband collective
modes in semimetals as

H = π1∂tϕ1 + π2∂tϕ2 − L

= 1

2λ

(
π2

1 + π2
2

)+ 1

2
λη2
(
ϕ2

1 + ϕ2
2

)+ α

2γ
(π2ϕ1 − π1ϕ2).

(32)

Here λ = 2γ , and η =
√

α2

4γ 2 + β

γ
. The Hamiltonian takes the

form of two coupled harmonic oscillators and is bosonized by
two boson fields:

H = ν+a†
+a+ + ν−a†

−a−, (33)

with

a1,2 ≡
√

λη

2

(
ϕ1,2 + i

λη
π1,2

)
, a± ≡ 1√

2
(a1 ± ia2), (34)

and

ν± =
√

α2

4γ 2
+ β

γ
∓ α

2γ
. (35)

Note that, within the quadratic expansion of ξ j (0, ω) in ω, the
two zeros of ξ j (0, ω) correspond to the quantized energies of
the two bosons, ν± = ω±(> 0). This concludes that a+ and a−
boson operators represent the exciton and antiexciton annihi-
lation operators, respectively. When α �= 0, the Hamiltonian
describes two nondegenerate harmonic oscillators, whereas
the Klein-Gordon theory (the α = 0 case) describes two de-
generate harmonic oscillators [1]. Thus, we can view the
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interband collective modes in semimetals as a “CP-violated”
Klein-Gordon field without the Lorentz symmetry.

Conserved charge

The Lagrangian in Eq. (30) is invariant under a U(1)
transformation ϕ → ϕeiθ . By Noether’s theorem, it has a con-
served charge density [1,28]:

j0 = −iϕ
∂L

∂ (∂tϕ)
+ iϕ† ∂L

∂ (∂tϕ†)

= iγ [ϕ†(∂tϕ) − (∂tϕ
†)ϕ] + αϕ†ϕ. (36)

From Eq. (34), ϕ is given by a linear combination of the anni-
hilation of the exciton (a+) and the creation of the antiexciton
(a†

−):

ϕ = 1√
λη

(a+ + a†
−). (37)

a+ and a− have their dynamical evolutions in the interaction
picture for a quantum-mechanical problem: a+(t ) = a+e−iν+t ,
a−(t ) = a−e−iν−t . From Eqs. (36) and (37) together with the
time evolutions, one can readily see that the density is time in-
dependent and is given by the difference between the exciton
and antiexciton density:

j0(t ) = γ

λη
[(a†

+eiν+t + a−e−iν−t )

× (ν+a+e−iν+t − ν−a†
−eiν−t ) + H.c.]

+ α

λη
(a†

+eiν+t + a−e−iν−t )(a+e−iν+t + a†
−eiν−t )

= α + 2γ ν+
λη

a†
+a+ + α − 2γ ν−

λη
a†

−a−

+ γ (ν+ − ν−) + α

λη
[a†

+a†
−ei(ν++ν− )t + H.c.]

= a†
+a+ − a†

−a−. (38)

Here ν± = η ∓ α/(2γ ) and λ = 2γ . Thus, the particle a+
carries charge +1, while the antiparticle a− carries charge −1.

When the a-band and b-band electrons have an opposite
physical property such as spin, the conserved charge carries
the physical property. This is because a joint U(1) transforma-
tion, ak → ake

iθ
2 and bk → bke− iθ

2 , leads to ϕ → ϕeiθ with
ϕ ∝ b†a. Suppose that the a-band electrons are with spin-up
polarization along the z direction, and the b-band electrons
are with spin-down polarization. Then exciton states carry
Sz = 1 and antiexciton states carry Sz = −1. This can be also
seen from the spectral representation of the Green’s function,
Eq. (9). In this case, spin-polarized excitation spectroscopy
could distinguish exciton states from antiexciton states exper-
imentally [29,30].

VII. PHYSICAL CONSEQUENCES

The antiexciton proposed in this paper represents a distinct
interband collective excitation from its counterpart exciton
having different energies (ω+ �= ω−) and opposite physical
charges. They manifest themselves as distinct peaks in optical
spectroscopy experiments.

(a)

(b)

FIG. 7. (a) A conversion process between an exciton-antiexciton
pair and intraband excitations. ex and ex stand for an exciton and
an antiexciton, while pa and pb represent an intraband particle-hole
excitation in the a and b bands, respectively. (b) Dispersions of the
s-wave exciton (red) and antiexciton (blue) bands, plasmon band
(green), and intraband individual excitations (the grey shaded area)
around the � point in the 2D case for the same parameters as in
Fig. 5(b). The pair of the q = 0 exciton and antiexciton (the red
and blue points) can decay into (be created from) two intraband
particle-hole excitations, which can be either individual excitations
(the black points) or plasmons (the green points).

When a single interband excitation process by a photon is
allowed by the symmetry and the charge dual to the joint U(1)
phase, the optical spectroscopy experiment distinguishes the
exciton and antiexciton from each other in the form of two
distinct absorption peaks. When the direct excitation process
is prohibited by the symmetry, an exciton-antiexciton pair can
be excited by higher-order scattering processes. For example,
in the eigenspace of |Na, Nb〉, the energy-momentum conser-
vation allows the pair to decay into two intraband collective
or individual excitations [23,31] (Fig. 7), being analogous to
the electron-positron pair annihilation that releases the two
photons. The reverse process of the pair annihilation enables
conversion from two photon-excited intraband excitations into
an exciton-antiexciton pair.

Possible conversion processes of an exciton-antiexciton pair

The conversion between an exciton-antiexciton pair and
multiple intraband collective excitations or individual ex-
citations is constrained by the momentum and energy
conservation and momentum-energy dispersions of the in-
terband/intraband collective and/or individual excitations. In
this section, we discuss the conversion process based on cal-
culations of the momentum-energy dispersions of intraband
and interband collective excitations around the � point for
a specific set of parameters with ma = mb = m̄, μ > 0, and
KF,a > KF,b.

In the presence of finite KF,a and KF,b, individual excita-
tions form continuum spectra on the ω-q plane. Borders of
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+=Π

FIG. 8. Feynman diagrams of the RPA contributions to the po-
larization function 
c(q, ω) (c = a or b). The double wavy lines
represent screened Coulomb interactions given in Fig. 4. Solid lines
with labels c stand for the free single-particle Green’s functions of
the c band (c = a, b).

the continuum spectra for the intraband individual excitations
for the a and b bands are given by ω = (q2 ± 2KF,aq)/(2m)
and ω = (q2 ± 2KF,bq)/(2m), respectively [31]. Intraband
density-wave modes form momentum-energy dispersions out-
side the continuum spectra. The dispersion of the intraband
density modes can be calculated from the polarization func-
tions of the a-band and b-band densities,


c(x − x′, t − t ′)

= −i〈0|T {[ρ̂c(x, t ) − ρc
0][ρ̂c(x′, t ′) − ρc

0]}|0〉. (39)

Here ρ̂c and ρc
0 represent the c-band density operator and its

ground-state average, respectively (c = a, b). Let 
c(q, ω) be
the Fourier transform of 
c(x − x′, t − t ′). In terms of the
RPA, 
c(q, ω) is calculated as follows (Fig. 8):


c(q, ω) = 
c
0(q, ω) + 
c

0(q, ω)w(q, ω)
c
0(q, ω),

w(q, ω) = v(q)

1 − 
0(q, ω)v(q)
, (40)

where 
c
0(q, ω) and 
0(q, ω) are given by Eq. (17). Thus,

the intraband density-wave modes for the two bands share the
same denominator and the zeros of the denominator determine
the momentum-energy dispersions of the plasmon mode,

1 − 
0(q, ω)v(q) = 0. (41)

Using the Lindhard function at the limit of q → 0 for three di-
mensions and q → 0, ω → 0 for two dimensions [23,31,32],


c
0(q, ω)=

⎧⎨⎩−mcKF,c

4π2

(
2 − xc ln

( xc+1
xc−1

))
in three dimensions

− mc
2π

(
1 − |xc|√

x2
c −1

)
in two dimensions,

(42)
with xc ≡ mcω

KF,cq (c = a, b), we further take ω 
 q and expand


0(q, ω) ≡ 
a
0(q, ω) + 
b

0(q, ω) up to the fourth order of 1
xa

and 1
xb

. Then we solve Eq. (41) for ω up to the subleading
order in small q. This gives

ω =
⎧⎨⎩

√
A3
(
1 + B3

2A2
3
q2
)

in three dimensions
√

A2q
(
1 + B2

2A2
2
q
)

in two dimensions,
(43)

with

A3 =
∑

c=a,b

2K3
F,c

3πmc
, A2 =

∑
c=a,b

K2
F,c

2mc
,

B3 =
∑

c=a,b

2K5
F,c

5πm3
c

, B2 =
∑

c=a,b

3K4
F,c

8m3
c

. (44)

(a)

(b)

FIG. 9. Energy-momentum dispersions of the s-wave exciton
and antiexciton bands (the red and blue lines), plasmon bands
(the green lines), and continuum spectra of the intraband individ-
ual excitations (the grey shaded regions). The dispersions for m̄ =
ma = mb are determined by three dimensionless quantities, KF αB,
Ẽg ≡ Egm̄/K2

F , and μ̃ ≡ μm̄/K2
F , where KF ≡ (KF,a + KF,b)/2 and

the effective Bohr radius αB ≡ 1/m̄. (a) The 3D case with KF αB =
0.289, Ẽg = −1.03, and μ̃ = 0.172. (b) The 2D case with KF αB =
0.540, Ẽg = −1.03, and μ̃ = 0.172. The quantum numbers of the
s-wave exciton and antiexciton are (nlm) = (100) in the 3D case and
(nm) = (10) in the 2D case (see the text).

Figure 9 shows the region of the continuum spectra of the
intraband individual excitations, the dispersions of the plas-
mon modes, and momentum-energy dispersions of the s-wave
exciton and antiexciton bands. The band dispersions for the
exciton and antiexciton bands are calculated only around the �

point [see Eqs. (A63) and Appendix A]. The figure shows that
the plasmon oscillation in the 3D case appears at much higher
energies than the exciton and antiexciton bands. Thereby, it
is likely that the exciton-antiexciton pair in the 3D case only
decays into (is only created from) intraband individual excita-
tions. In the 2D case, the plasmon dispersion is gapless, where
an exciton-antiexciton pair decays into (is created from) either
interband individual excitations or density-wave modes.

VIII. SUMMARY

In this paper, we demonstrate the universal coexistence
of the exciton and the antiparticle analog of the exciton
(antiexciton) in semimetals as two distinguishable collective
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modes. The concept of the antiparticle of exciton in semimet-
als is introduced by a spectral representation of the interband
two-particle Green’s function, and physical differences be-
tween our concept of the antiexciton and those in literature
[17,18,20,21] are clarified. Evaluations of the Green’s func-
tion in the dilute carrier-density limit show that the exciton
and the antiexciton coexist in the interband excitation spectra
of doped semimetals in two and three dimensions. The effec-
tive Lagrangian of the exciton and antiexciton is given by the
CP-violated Klein-Gordon theory. The physical consequence
of the coexistence of exciton and antiexciton is discussed
in the optical spectroscopy experiment. Our theory is rele-
vant to interband excitation spectra in semimetal materials,
such as As, Sb, and HgTe, and electron-hole double-layer
systems such as semiconductor heterostructures [33–40] and
bilayer graphene under an external perpendicular electric field
[41–43]. Optical absorption and photoluminescence can be
experimental probes of the antiparticle analog of the exciton
in these materials [44–47].
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APPENDIX A: ENERGY BANDS OF THE EXCITON
AND ANTIEXCITON AROUND THE � POINT

In this Appendix, we explain how we diagonalize Eq. (20)
around q = 0 and obtain energy bands of the interband bound
states around the � point. For clarity of presentation, we
consider the case with KF,a > KF,b (μ > μ0). A generalization
to the other case is straightforward.

For |q| smaller than KF,a − KF,b (including q = 0), the
diagonal matrix [G̃ex

0 (q, ω)−1]kk′ has no finite matrix element
for KF,a > |k + q| and |k| > KF,b:

G̃ex
0 (q, ω)−1

kk′

= δkk′

{
ω − [εa(k + q) − εb(k)], |k + q| > KF,a

−{ω − [εa(k + q) − εb(k)]}, |k| < KF,b.

(A1)

Therefore, [G̃ex(q, ω)−1]kk′ has finite matrix elements only
within a domain of (i) |k + q| > KF,a or KF,b > |k| and (ii)
|k′ + q| > KF,a or KF,b > |k′|:

G̃ex(q, ω)−1 = G̃ex
0 (q, ω)−1 + ηW η. (A2)

Here η is a diagonal matrix,

[η]kk′ ≡ δkk′[1 − θ (KF,a − |k + q|)θ (|k| − KF,b)]. (A3)

One can readily see this from a Taylor expansion of Eq. (20)
in W for G̃ex:

G̃ex = G̃ex
0 − G̃ex

0 W G̃ex
0 + G̃ex

0 W G̃ex
0 W G̃ex

0 + · · · , (A4)

together with G̃ex
0 = ηG̃ex

0 η. In the next two sections, we diag-
onalize G̃ex,−1 within the domain specified by Eq. (A3).

1. Interband excitation energies at the � point

When q = 0, Gex(0, ω)−1 becomes real symmetric and it
has continuous spatial rotation symmetries. Equation (21) can
be block diagonalized in terms of spherical harmonics in three
dimensions and trigonometric functions in two dimensions.
This leads to Eq. (27) and Eq. (28). In this section, we will de-
scribe this deduction and how the radial functions in Eq. (27)
and Eq. (28) should be calculated. With Gex(q, ω; k, k′) ≡
�G̃ex(q, ω)kk′ , the BS equation at q = 0 is given by∫

dd k′′

(2π )d
(D(ω; k)(2π )dδ(k − k′′) + w(k − k′′))

× Gex
(
0, ω; k′′, k′) = (2π )dδ(k − k′), (A5)

and

D(ω; k) = θ (|k| − Kout )(ω − (εa(k) − εb(k)))

− θ (Kin − |k|)(ω − (εa(k) − εb(k))). (A6)

Note that k, k′, and k′′ in the equations are in a range |k| >

KF,a ≡ Kout or |k| < KF,b ≡ Kin. G̃ex(q, ω)kk′ = 0 if k or k′ is
outside the range.

a. 3D case

In the 3D case, the δ function on the right-hand side of
Eq. (A5) as well as the screened Coulomb interaction can be
decomposed in terms of the spherical harmonics,

δ(k − k′) = 1

k2
δ(k − k′)δ(cos θ − cos θ ′)δ(ϕ − ϕ′)

= 1

k2
δ(k − k′)

∑
lm

Ylm(θ, ϕ)Y ∗
lm(θ ′, ϕ′), (A7)

w(k − k′) = 4π

k2 + k′2 − 2kk′ cos γ + k2
T F

=
∑
lm

al (k, k′)
4π

2l + 1
Ylm(θ, ϕ)Y ∗

lm(θ ′, ϕ′). (A8)

Here k ≡ (k sin θ cos ϕ, k sin θ sin ϕ, k cos θ ). γ is an angle
between k and k′. Pl (cos γ ) is the Legendre polynomial (l =
0, 1, . . .). Ylm(θ, ϕ) is the spherical harmonics (m = −l,−l +
1, . . . , l). The spherical harmonics are defined with normal-
ization and completeness relations,∫ 1

−1
d (cos θ )

∫ 2π

0
dϕY ∗

lm(θ, ϕ)Yl ′m′ (θ, ϕ) = δll ′δmm′ ,∑
lm

Ylm(θ, ϕ)Y ∗
lm(θ ′, ϕ′) = δ(cos θ − cos θ ′)δ(ϕ − ϕ′).

(A9)

al (k, k′) is the coefficient of the Legendre expansion. The
lowest- and second-lowest-order coefficients are calculated as

a0(k, k′) = π

kk′
{

ln
(
(k + k′)2 + k2

T F

)
− ln

(
(k − k′)2 + k2

T F

)}
, (A10)
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a1(k, k′) = 3π

kk′

{
k2 + k′2 + k2

T F

2kk′
[

ln
(
(k + k′)2 + k2

T F

)
− ln

(
(k − k′)2 + k2

T F

)]− 2

}
. (A11)

In terms of the harmonics, the solution of Eq. (A5) is given by

Gex(0, ω; k′′, k′)

=
∑
nlm

Ylm(θ ′′, ϕ′′) fnl (ω; k′′) fnl (ω; k′)Y ∗
lm(θ ′, ϕ′)

ξnl (ω)
. (A12)

Here fnl (ω; k) and ξnl (ω) are the eigenvector and eigenvalue
of a one-dimensional integral equation,∫ ∞

0

k′2dk′

(2π )3
hl (ω; k, k′) fnl (ω; k′) = ξnl (ω) fnl (ω; k), (A13)

with

hl (ω; k, k′) ≡ D(ω; k)

k2
(2π )3δ(k − k′) + 4π

2l + 1
al (k, k′),

(A14)

and normalization and completeness relations,

∑
n

fnl (ω; k) fnl (ω; k′) = (2π )3

k2
δ(k − k′),

∫ ∞

0

k2dk

(2π )3
fnl (ω; k) fn′l (ω; k) = δnn′ . (A15)

To solve the one-dimensional integral equation numerically, k
is discretized by 2π/L with large L:∫ ∞

0
dk = 2π

L

∑
k

, δ(k − k′) = L

2π
δkk′ . (A16)

With the discretization, the integral equation takes the form of∑
k′

Hω
l,kk′V ω

nl,k′ = ξnl (ω)V ω
nl,k, (A17)

and

Hω
l,kk′ ≡ D(ω; k)δkk′ + 1

L

kk′

π

al (k, k′)
2l + 1

,

(A18)

V ω
nl,k ≡ k

2π
√

L
fnl (ω; k),

where
∑

k
V ω

nl,kV
ω

n′l,k = δnn′ and
∑
n

V ω
nl,kV

ω
nl,k′ = δkk′ .

b. 2D case

In the 2D case, the δ function and the screened Coulomb
interaction are expanded in terms of the trigonometric

functions,

δ
(
k − k′) = δ(k − k′)

k
δ(ϕ − ϕ′)

= δ(k − k′)
k

1

2π

∑
m

eim(ϕ−ϕ′ ), (A19)

w
(
k − k′) = 2π√

k2 + k′2 − 2kk′ cos (ϕ − ϕ′) + kT F

=
∑

m

Fm(k, k′)eim(ϕ−ϕ′ ), (A20)

where k ≡ (k cos ϕ, k sin ϕ), and

Fm(k, k′) =
∫ π

0
dφ

2 cos(mφ)√
k2 + k′2 − 2kk′ cos φ + kT F

. (A21)

In terms of the expansion, the solution of Eq. (A5) is given by

Gex(0, ω; k′′, k′)

=
∑
nm

fnm(ω; k′′) fnm(ω; k′)eim(ϕ′′−ϕ′ )

ξnm(ω)
. (A22)

Here fnm(ω; k) and ξnm(ω) are the eigenvector and eigenvalue
of a one-dimensional integral equation,∫ +∞

0

k′dk′

2π
hm(ω; k, k′) fnm(ω; k′) = ξnm(ω) fnm(ω; k),

(A23)

with

hm(ω; k, k′) = D(ω; k)

k
(2π )δ(k − k′) + Fm(k, k′), (A24)

and normalization and completeness relation∑
n

fnm(ω; k) fnm(ω; k′) = 2π

k
δ(k − k′),

∫ +∞

0

kdk

2π
fnm(ω; k) fn′m′ (ω, k) = δnn′ . (A25)

With the same discretization as Eq. (A16), the integral equa-
tion reduces to∑

k′
Hω

m,kk′V ω
nm,k′ = ξnm(ω)V ω

nm,k, (A26)

and

Hω
m,kk′ ≡ D(ω; k)δkk′ +

√
kk′′

L
Fm(k, k′),

(A27)

V ω
nm,k ≡

√
k

L
fnm(ω; k),

where
∑

k V ω
nm,kV

ω
n′m,k = δnn′ and

∑
n V ω

nm,kV
ω

nm,k′ = δkk′ .
Fm(k, k′) in Eq. (A21) is evaluated numerically.

In the numerical diagonalization of Eqs. (A17) and (A26),
we set a large value of L (∼300 × 2π ) and a large cutoff of
k (>15 × max(KF,a, KF,b)) so that the numerical solutions of
the eigenvalues are convergent.
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FIG. 10. Domains of G̃ex (0, ω)−1 and G̃ex (q, ω)−1. The shaded regions are excluded (a) for the domains of k and k′ in [G̃ex (0, ω)−1]kk′ ,
(b) for the domains of k and k′ in [G̃ex (q, ω)−1]kk′ , and (c) for the domains of k̃ and k̃

′
in [G̃ex (q, ω)−1]k̃k̃′ . We take q = qex in the figure. The

figures are plotted in the xy plane. For three dimensions, the y and z directions are symmetric.

2. Band curvatures of exciton and antiexciton
bands around the � point

The previous section explains how we evaluate exciton and
antiexciton energies at the � point. This section explains how
we evaluate energy-band curvatures of the exciton and antiex-
citon bands around the � point. Let us begin with Eq. (21),∑

k′
[G̃ex(q, ω)−1]kk′ 〈k′|φ j (q, ω)〉 = ξ j (q, ω)〈k|φ j (q, ω)〉.

(A28)

Suppose that the eigenvalue problem at q = 0 is solved for the
3D and 2D cases, respectively, as in the previous section:

∑
k′

[G̃ex(0, ω)−1]kk′ 〈k′|φ j (0, ω)〉 = ξ j (0, ω)〈k|φ j (0, ω)〉,

(A29)

with a normalization,

〈k|φ j (q = 0, ω)〉 =
⎧⎨⎩

1√
�

fnl (ω; k)Ylm(θ, ϕ), j = (nlm), in three dimensions

1√
�

fnm(ω; k)eimϕ, j = (nm), in two dimensions.
(A30)

The normalization gives a proper completeness relation,∑
j

〈k|φ j (0, ω)〉〈φ j (0, ω)|k′〉 = δkk′ ,

∑
k

〈φ j (0, ω)|k〉〈k|φ j′ (0, ω)〉 = δ j j′ . (A31)

To obtain the band curvature of exciton and antiexciton bands
around the � point, we consider |q| as a small quantity, ex-
pand G̃ex(q, ω)−1 in q up to the second order, and evaluate
the second-order energy correction of ξ j (q, ω): ξ j (q, ω) =
ξ j (0, ω) + b(ω)q2. By the rotational symmetry, a q-linear
energy correction is zero, while the q-quadratic energy cor-
rection depends only on the norm of q, q ≡ |q|.

Note that the domain of k and k′ for [G̃ex(0, ω)−1]kk′

[Fig. 10(a)] and that for [G̃ex(q, ω)−1]kk′ [Fig. 10(b)] are
different from each other. To rewrite this difference into a
difference in the matrix elements, we adjust the domain of
[G̃ex(q, ω)−1] into the domain of [G̃ex(0, ω)−1] by defining
the following two new variables as replacements of k and k′,
respectively:

k̃ ≡
{

k + q, |k + q| > KF,a

k, |k| < KF,b,

k̃′ ≡
{

k′ + q, |k′ + q| > KF,a

k′, |k′| < KF,b.
(A32)

In terms of the new variables, [G̃ex(q, ω)−1]k̃k̃
′ shares the iden-

tical domain [Fig. 10(c)] with [G̃ex(0, ω)−1]k̃k̃
′ : (i) |k̃| > KF,a

or KF,b > |k̃| and (ii) |k̃′| > KF,a or KF,b > |k̃′|. Let us com-
pare their matrix elements in the domain. In terms of the new
variables, G̃ex,−1 = G̃ex,−1

0 + W is given by[
G̃ex,−1

0 (q, ω)
]

k̃k̃′

= δk̃k̃′

{
ω − [εa(k̃) − εb(k̃ − q)], |k̃| > KF,a

−{ω − [εa(k̃ + q) − εb(k̃)]}, |k̃| < KF,b,
(A33)

[W ]k̃k̃′ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

w(k̃−k̃′ )
�

|k̃| > KF,a, |k̃′| > KF,a

w(k̃−k̃′ )
�

|k̃| < KF,b, |k̃′| < KF,b

w(k̃−q−k̃′ )
�

|k̃| > KF,a, |k̃′| < KF,b

w(k̃−k̃′+q)
�

|k̃| < KF,b, |k̃′| > KF,a.

(A34)

In the following, we take q = qei (ei is a unit vector along i,
i = x, y, z) and take q derivatives of the G̃ex(q, ω)−1

k̃k̃′ matrix
around the q = 0 point.

For simplicity of the presentation, let us call the new vari-
ables k̃ and k̃

′
as k and k′. The first q derivative of G̃ex(q, ω)−1

kk′

235145-11
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is given by

[F i]kk′ ≡
[
∂G̃ex(qei, ω)−1

∂q

∣∣∣∣
q=0

]
kk′

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ki
mb

|k| > KF,a, k = k′
ki
ma

|k| < KF,b, k = k′

0 |k| < KF,b, |k′| < KF,b, k �= k′

0 |k| > KF,a, |k′| > KF,a, k �= k′

1
�

∂w(k−k′+qei )
∂q |q=0 |k| < KF,b, |k′| > KF,a

1
�

∂w(k−qei−k′ )
∂q |q=0 |k| > KF,a, |k′| < KF,b,

(A35)

with

∂w(k − k′ + qei)

∂q
|q=0 =

{
− 4π×2(ki−k′

i )
(|k−k′|2+k2

T F )2 in three dimensions

− 2π

(|k−k′|+kT F )2

ki−k′
i

|k−k′| in two dimensions.
(A36)

The second q derivative of G̃ex(q, ω)−1
kk′ is given by

2[Si]kk′ ≡
[
∂2G̃ex(qei, ω)−1

∂q2

∣∣∣∣
q=0

]
kk′

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
mb

|k| > KF,a, k = k′
1

ma
|k| < KF,b, k = k′

0 |k| < KF,b, |k′| < KF,b, k �= k′

0 |k| > KF,a, |k′| > KF,a, k �= k′

1
�

∂2w(k−k′+qei )
∂q2 |q=0 |k| < KF,b, |k′| > KF,a

1
�

∂2w(k−qei−k′ )
∂q2 |q=0 |k| > KF,a, |k′| < KF,b,

(A37)

with

∂2w(k − k′ + qei )

∂q2

∣∣∣∣
q=0

= − 8π(|k − k′|2 + k2
T F

)2 + 32π (ki − k′
i )

2(|k − k′|2 + k2
T F

)3 (A38)

in three dimensions and

∂2w(k − k′ + qei )

∂q2

∣∣∣∣
q=0

= − 2π

(|k − k′| + kT F )2

1

|k − k′| + 4π

(|k − k′| + kT F )3

(ki − k′
i )

2

|k − k′|2 + 2π

(|k − k′| + kT F )2

(ki − k′
i )

2

|k − k′|3
(A39)

in two dimensions. Now that G̃ex(qei, ω)−1 is expanded in q,

[G̃ex(qei, ω)−1] = [G̃ex(0, ω)−1] + [F i]q + [Si]q2 + O(q3), (A40)

the second-order perturbation theory gives the second-order energy correction,

ξ j (qei, ω) = ξ j (0, ω) + b j (ω)q2 + O(q3). (A41)

Here b j (ω) is given by the eigenvectors and eigenvalues at q = 0 [see Eqs. (A29) and (A30)],

b j (ω) =
∑
j′ �= j

〈φ j (0, ω)|Fi|φ j′ (0, ω)〉〈φ j′ (0, ω)|Fi|φ j (0, ω)〉
ξ j (0, ω) − ξ j′ (0, ω)

+ 〈φ j (0, ω)|Si|φ j (0, ω)〉 ≡ F2 + S1. (A42)

The previous section describes how to calculate the eigenvectors and eigenvalues of the lowest-energy s-wave exciton and
antiexciton at q = 0 in the 3D case [ j ≡ (nlm) = (100)] and 2D case [ j = (nm) = (10)]. In the following, we will describe how
to calculate b(100)(ω = ±ω±) in the 3D case and b(10)(ω = ±ω±) in the 2D case.

a. 3D case

Consider the 3D case with j ≡ (nlm) and take (nlm) = (100) and ei = ez. Since ξ j (q = 0, ω = ±ω±) = 0, F2 is given by

F2 = −
∑

nlm �=(100)

∑
k1,k2,k3,k4

ξ−1
nl (0, ω)〈φ100(0, ω)|k1〉[Fz]k1k2〈k2|φnlm(0, ω)〉〈φnlm(0, ω)|k3〉[Fz]k3k4〈k4|φ100(0, ω)〉, (A43)
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at ω = ±ω±. In terms of Eq. (A30) and Y00(θ, ϕ) = 1
2
√

π
, we evaluate matrix elements of Fz by three-dimensional momentum

integrals: ∑
k1,k2

〈φ100(0, ω)|k1〉[Fz]k1k2〈k2|φnlm(0, ω)〉

=
(

2∏
i=1

∫ +∞

0

dki

(2π )3
k2

i

∫ 1

−1
d cos θi

∫ 2π

0
dϕi

)
f10(ω; k1)

1

2
√

π
�[Fz]k1k2 fnl (ω; k2)Ylm(θ2, ϕ2), (A44)

with

�[Fz]k1k2 =
(

θ (k1 − KF,a)
k1 cos θ1

mb
+ θ (KF,b − k1)

k1 cos θ1

ma

)
(2π )3

k2
1

δ(k1 − k2)
∑
lm

Ylm(θ1, ϕ1)Y ∗
lm(θ2, ϕ2)

+ 2
∑
lm

bl (k1, k2)
4π

2l + 1
Ylm(θ1, ϕ1)Y ∗

lm(θ2, ϕ2)(θ (k1 − KF,a)θ (KF,b − k2)(k1 cos θ1 − k2 cos θ2)

+ θ (k2 − KF,a)θ (KF,b − k1)(k2 cos θ2 − k1 cos θ1)). (A45)

Here k j ≡ k j (sin θ j cos ϕ j, sin θ j sin ϕ j, cos θ j ) ( j = 1, 2, 3, 4). We used the spherical expansion of Eq. (A36):

4π(|k1 − k2|2 + k2
T F

)2 =
∑

l

bl (k1, k2)Pl (cos γ ) =
∑
lm

bl (k1, k2)
4π

2l + 1
Ylm(θ1, ϕ1)Y ∗

lm(θ2, ϕ2). (A46)

The lowest- and second-lowest expansion coefficients are calculated as

b0(k1, k2) = π

k1k2

(
1

(k1 − k2)2 + k2
T F

− 1

(k1 + k2)2 + k2
T F

)
, (A47)

b1(k1, k2) = 3π

2(k1k2)2

{
ln

[
(k1 − k2)2 + k2

T F

(k1 + k2)2 + k2
T F

]
+ (k2

1 + k2
2 + k2

T F

)[ 1

(k1 − k2)2 + k2
T F

− 1

(k1 + k2)2 + k2
T F

]}
. (A48)

After the momentum integrals in Eq. (A44), only the (lm) = (10) term remains finite in Eq. (A44). With cos θ = 2
√

π
3 Y ∗

10(θ, ϕ),
the nonzero term is evaluated as

〈φ100(0, ω)|Fz|φnlm(0, ω)〉 = δl1δm0
4√
3

(
2∏

i=1

∫ +∞

0

dki

(2π )3
k2

i

)
f10(ω; k1)ρ(k1, k2) fn1(ω; k2), (A49)

with

ρ(k1, k2) =
(

θ (k1 − KF,a)

mb
+ θ (KF,b − k1)

ma

)
(2π )3 δ(k1 − k2)

k1
+ 8π

(
θ (k1 − KF,a)θ (KF,b − k2)

×
(

1

3
b1(k1, k2)k1 − b0(k1, k2)k2

)
+ θ (k2 − KF,a)θ (KF,b − k1)(b0(k1, k2)k2 − 1

3
b1(k1, k2)k1)

)
. (A50)

Then we finally have

F2 = − 1

3

(
4∏

i=1

∫ +∞

0

dki

(2π )3
k2

i

)∑
n

1

ξn1(0, ω)
f10(ω; k1)ρ(k1, k2) fn1(ω; k2) fn1(ω; k3)ρ(k3, k4) f10(ω; k4). (A51)

To numerically evaluate Eq. (A51), we use the same discretization of k as in Eq. (A16),

F2 = −1

3

∑
k1,k2,k3,k4,n

V ω
10,k1

Pk1k2V
ω

n1,k2
V ω

n1,k3
Pk3k4V

ω
10,k4

ξn1(0, ω)
= −1

3

∑
k1,k2,k3,k4

V ω
10,k1

Pk1k2 Hω,−1
1,k2k3

Pk3k4V
ω

10,k4
. (A52)

V ω
nl,k and Hω

1,kk′ are defined in Eq. (A18) and

Pk1k2 = k1k2

L(2π )2
ρ(k1, k2) =

(
θ (k1 − KF,a)

k1

mb
+ θ (KF,b − k1)

k1

ma

)
δk1k2 + 8πk1k2

L(2π )2

(
θ (k1 − KF,a)θ (KF,b − k2)

×
(

1

3
b1(k1, k2)k1 − b0(k1, k2)k2

)
+ θ (k2 − KF,a)θ (KF,b − k1)(b0(k1, k2)k2 − 1

3
b1(k1, k2)k1)

)
. (A53)
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S1 in Eq. (A42) is given by

S1 =
∑
k1,k2

〈φ100(0, ω)|k1〉[Sz]k1k2〈k2|φ100(0, ω)〉 = 1

3

∑
k1,k2

〈φ100(0, ω)|k1〉[Sz + Sx + Sy]k1k2〈k2|φ100(0, ω)〉

=
(

2∏
i=1

∫ +∞

0

dki

(2π )3
k2

i

∫ 1

−1
d cos θi

∫ 2π

0
dϕi

)
1

4π
f10(ω; k1)�S(k1, k2) f10(ω; k2), (A54)

with

�S(k1, k2) =
(

−θ (k1 − KF,a)

2mb
+ θ (KF,b − k1)

2ma

)
(2π )3

k2
1

δ(k1 − k2)
∑
lm

Ylm(θ1, ϕ1)Y ∗
lm(θ2, ϕ2)

+
∑
lm

βl (k1, k2)
4π

2l + 1
Ylm(θ1, ϕ1)Y ∗

lm(θ2, ϕ2)(θ (k1 − KF,a)θ (KF,b − k2) + θ (k2 − KF,a)θ (KF,b − k1)). (A55)

Here we used the spherical expansion of Eq. (A38):

− 4π

(|k1 − k2|2 + k2
T F )2

+ 4π × 4|k1 − k2|2/3

(|k1 − k2|2 + k2
T F )3

=
∑
lm

βl (k1, k2)
4π

2l + 1
Ylm(θ1, ϕ1)Y ∗

lm(θ2, ϕ2). (A56)

The lowest-order expansion coefficient is calculated as

β0(k1, k2) = π

3k1k2

(
1

(k1 − k2)2 + k2
T F

− 1

(k1 + k2)2 + k2
T F

)
− 2πk2

T F

3k1k2

(
1(

(k1 − k2)2 + k2
T F

)2 − 1(
(k1 + k2)2 + k2

T F

)2
)

.

(A57)

After the integration in Eq. (A54), only the (lm) = (00) term in Eq. (A55) remains finite:

S1 =
(

2∏
i=1

∫ +∞

0

dki

(2π )3
k2

i

)
f10(ω; k1)c(k1, k2) f10(ω; k2), (A58)

with

c(k1, k2) =
(

−θ (k1 − KF,a)

2mb
+ θ (KF,b − k1)

2ma

)
(2π )3 δ(k1 − k2)

k2
1

+ β0(k1, k2)(4π )(θ (k1 − KF,a)θ (KF,b − k2)

+ θ (k2 − KF,a)θ (KF,b − k1)). (A59)

To numerically evaluate Eq. (A58), we discretize k1 and k2 as in Eq. (A16),

S1 =
∑
k1,k2

V ω
10,k1

Ck1k2V
ω

10,k2
, (A60)

with

Ck1k2 ≡ k1k2

L(2π )2
c(k1, k2) =

(
−θ (k1 − KF,a)

2mb
+ θ (KF,b − k1)

2ma

)
δk1k2

+ k1k2

L(2π )2
β0(k1, k2)(4π )(θ (k1 − KF,a)θ (KF,b − k2) + θ (k2 − KF,a)θ (KF,b − k1)). (A61)

In summary, bj (ω) is given by Eqs. (A42), (A52), and (A60) at ω = ±ω±. The energy-band curvatures of the lowest s-wave
[ j = (100)] exciton and antiexciton bands at the � point can be determined by bj (+ω+) and b j (−ω−), respectively:{

ξ j (q, ω+(q)) = (ω+(q) − ω+)
[ dξ j (0,ω)

dω

]
|ω=ω+

+ b j (ω+)q2 = 0 for exciton

ξ j (q,−ω−(q)) = (−ω−(q) + ω−)
[ dξ j (0,ω)

dω

]
|ω=−ω−

+ b j (−ω−)q2 = 0 for antiexciton.
(A62)

From this, we obtain the energy-band curvatures of the exciton and antiexciton around the � point,{
ω+(q) = ω+ − b j (ω+)

[ dξ j (0,ω)
dω

]−1

|ω=ω+
q2 + · · · for exciton

ω−(q) = ω− + b j (−ω−)
[ dξ j (0,ω)

dω

]−1

|ω=−ω−
q2 + · · · for antiexciton.

(A63)
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b. 2D case

Consider the 2D case with j = (nm) and take (nm) = (10) and ei = ex. Since ξ j (0,±ω±) = 0, F2 in Eq. (A42) is given by

F2 = −
∑

nm �=10

∑
k1,k2,k3,k4

ξ−1
nm (0, ω)〈φ10(0, ω)|k1〉[Fx]k1k2〈k2|φnm(0, ω)〉〈φnm(0, ω)|k3〉[Fx]k3k4〈k4|φ10(0, ω)〉. (A64)

In terms of Eq. (A30), we evaluate the matrix elements in F2 by the 2D momentum integrals:

∑
k1,k2

〈φ10(0, ω)|k1〉[Fx]k1k2〈k2|φnm(0, ω)〉 =
(

2∏
i=1

∫ +∞

0

kidki

2π

∫ 2π

0

dϕi

2π

)
f10(ω; k1)�Fx(k1, k2) fnm(ω; k2)eimϕ2 . (A65)

Equation (A36) is decomposed in terms of the trigonometric functions,

2π

(|k1 − k2| + kT F )2

1

|k1 − k2| =
∑

m

Jm(k1, k2)eim(ϕ1−ϕ2 ),

with

Jm(k1, k2) =
∫ 2π

0

d (ϕ1 − ϕ2)

2π
e−im(ϕ1−ϕ2 ) 2π(√

k2
1 + k2

2 − 2k1k2 cos(ϕ1 − ϕ2) + kT F
)2 1√

k2
1 + k2

2 − 2k1k2 cos(ϕ1 − ϕ2)
. (A66)

Equation (A64) is calculated in terms of the expansion,

〈φ10(0, ω)|Fx|φnm(0, ω)〉

=
(

2∏
i=1

∫ +∞

0

dki

2π
ki

∫ 2π

0

dϕi

2π

)
f10(ω; k1) fnm(ω; k2)eimϕ2

{(
θ (k1 − KF,a)

mb
+ θ (KF,b − k1)

ma

)

× πδ(k1 − k2)(eiϕ1 + e−iϕ1 )
∑

m′
eim′(ϕ1−ϕ2 ) + θ (k1 − KF,a)θ (KF,b − k2)

(
k1(eiϕ1 + e−iϕ1 )

2

− k2(eiϕ2 + e−iϕ2 )

2

)∑
m′

Jm′ (k1, k2)eim′ϕ1 e−im′ϕ2 + θ (k2 − KF,a)θ (KF,b − k1)

(
k2(eiϕ2 + e−iϕ2 )

2

− k1(eiϕ1 + e−iϕ1 )

2

)∑
m′

Jm′ (k1, k2)eim′ϕ1 e−im′ϕ2

}
. (A67)

After the momentum integration in Eq. (A65), only m = ±1 terms remain finite in Eq. (A65). Since fnm(ω; k) = fn(−m)(ω; k),
ξnm(ω; k) = ξn(−m)(ω; k), and Jm(k, k′) = J−m(k, k′), the matrix elements for m = +1 and those for m = −1 are the same,

〈φ10(0, ω)|Fx|φn(±1)(0, ω)〉 =
(

2∏
i=1

∫ +∞

0

dki

2π
ki

)
f10(ω; k1)τ (k1, k2) fn1(ω; k2), (A68)

with

τ (k1, k2) =
(

θ (k1 − KF,a)

mb
+ θ (KF,b − k1)

ma

)
πδ(k1 − k2) + (θ (k1 − KF,a)θ (KF,b − k2) + θ (k2 − KF,a)

× θ (KF,b − k1))

(
k1

2
J1(k1, k2) − k2

2
J0(k1, k2)

)
. (A69)

Then we finally have

F2 = −2

(
4∏

i=1

∫ +∞

0

dki

2π
ki

)∑
n

ξ−1
n1 (0, ω) f10(ω; k1)τ (k1, k2) fn1(ω; k2) fn1(ω; k3)τ (k3, k4) f10(ω; k4). (A70)

To evaluate Eq. (A70) numerically, we discretize ki (i = 1, 2, 3, 4) as in Eq. (A16),

F2 = −2
∑

k1,k2,k3,k4,n

V ω
10,k1

Tk1k2V
ω

n1,k2
V ω

n1,k3
Tk3k4V

ω
10,k4

ξn1(0, ω)
= −2

∑
k1,k2,k3,k4

V ω
10,k1

Tk1k2 Hω,−1
1,k2k3

Tk3k4V
ω

10,k4
. (A71)
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Here V ω
nm,k and Hω

m,kk′ are defined in Eq. (A27) and

Tk1k2 ≡
√

k1k2

L
τ (k1, k2) = k1

(
θ (k1 − KF,a)

2mb
+ θ (KF,b − k1)

2ma

)
δk1k2 +

√
k1k2

L

× (θ (k1 − KF,a)θ (KF,b − k2) + θ (k2 − KF,a)θ (KF,b − k1))

(
k1

2
J1(k1, k2) − k2

2
J0(k1, k2)

)
.

S1 in Eq. (A42) is given by the 2D momentum integrals,

S1 =
∑
k1,k2

〈φ10(0, ω)|k1〉[Sx]k1k2〈k2|φ10(0, ω)〉 = 1

2

∑
k1,k2

〈φ10(0, ω)|k1〉[Sx + Sy]k1k2〈k2|φ10(0, ω)〉

=
(

2∏
i=1

∫ +∞

0

dki

2π
ki

∫ 2π

0

dϕi

2π

)
f10(ω; k1)�S(k1, k2) f10(ω; k2). (A72)

�S = �
2 (Sx + Sy) is further expanded in terms of the Fourier series,

�S(k1, k2) =
(

− θ (k1 − KF,a)

mb
+ θ (KF,b − k1)

ma

)
πδ(k1 − k2)

k1

∑
m

eim(ϕ1−ϕ2 )

+ (θ (k1 − KF,a)θ (KF,b − k2) + θ (k2 − KF,a)θ (KF,b − k1))
∑

m

Km(k1, k2)eim(ϕ1−ϕ2 ), (A73)

with Fourier coefficients

Km(k1, k2) = 1

2

∫ 2π

0

d (ϕ1 − ϕ2)

2π
e−im(ϕ1−ϕ2 )

{
2π(√

k2
1 + k2

2 − 2k1k2 cos(ϕ1 − ϕ2) + kT F
)3

− π(√
k2

1 + k2
2 − 2k1k2 cos(ϕ1 − ϕ2) + kT F

)2 1√
k2

1 + k2
2 − 2k1k2 cos(ϕ1 − ϕ2)

}
. (A74)

After the integrals over ϕ1 and ϕ2 in Eq. (A72), only the m = 0 term in Eq. (A73) remains finite,

S1 =
(

2∏
i=1

∫ +∞

0

dki

2π
ki

)
f10(ω; k1)χ (k1, k2) f10(ω; k2), (A75)

with

χ (k1, k2) =
(

−θ (k1 − KF,a)

mb
+ θ (KF,b − k1)

ma

)
πδ(k1 − k2)

k1
+ (θ (k1 − KF,a)θ (KF,b − k2)

+ θ (k2 − KF,a)θ (KF,b − k1)) × K0(k1, k2).

(A76)

To evaluate Eq. (A75) numerically, we put it in a discrete form

S1 =
∑
k1,k2

V ω
10,k1

Xk1k2V
ω

10,k2
, (A77)

where V ω
nm,k are defined in Eq. (A27) and

Xk1k2 =
√

k1k2

L
χ (k1, k2) =

(
−θ (k1 − KF,a)

2mb
+ θ (KF,b − k1)

2ma

)
δk1k2

+
√

k1k2

L
× (θ (k1 − KF,a)θ (KF,b − k2) + θ (k2 − KF,a)θ (KF,b − k1)) × K0(k1, k2). (A78)

In summary, bj (ω) is given by Eqs. (A42), (A71), and (A77) evaluated at ω = ±ω±. The energy-band curvatures of exciton and
antiexciton bands are obtained by Eqs. (A62) and (A63).

We can see from the expression in Eq. (A42) that the F2 term is always positive. Our numerical calculation shows that, in the
parameter regions we studied, the F2 term dominates over the S1 term, which makes b j (ω+) and b j (−ω−) always positive. Thus,
from Eq. (A63), we can see that the band curvatures around the � point become negative. In Fig. 6, we show the values of the
band curvatures as we vary the electron mass m̄ (ma = mb) and fix Eg and μ.
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APPENDIX B: “ANTIPARTICLE OF AN EXCITON”
IN PREVIOUS LITERATURE

“Antiexciton” had been introduced in previous theoreti-
cal literature with different definitions [17,18,20,21]. In the
following two sections, we clarify the physical difference
between our concept of the antiexciton and those in the lit-
erature.

1. “Antiparticle of an exciton” that is an identical
entity to its own counterpart exciton

Unlike the antiexciton proposed in this paper, the “antiex-
citon” introduced in some literature [17,18] characterizes
the same interband collective mode as its own counterpart
exciton. References [17,18] studied generic semiconduc-
tors without the U(1)×U(1) symmetry. An effective exciton
Hamiltonian in such a system has no U(1) symmetry and the
two-particle Green’s function has pairs of a positive-energy
pole and a negative-energy pole that are related to each other
by a generic particle-hole symmetry of the effective exciton
Hamiltonian. The literature [17,18] defines such pairs of a
positive-energy pole and a negative-energy pole as excitons
and their antiparticle counterparts (“antiexcitons”), respec-
tively. In this section, we will show that the negative-energy
pole related to the positive-energy pole by the generic particle-
hole symmetry is redundant and the two poles characterize an
identical physical excitation.

In the following, we first explain a generic particle-hole
symmetry of a free boson Hamiltonian. The symmetry relates
a pair of a positive-energy eigenstate and a negative-energy
eigenstate, while the two “states” actually characterize an
identical physical state. To see this point in a simple way,
let us begin with a general Bogoliubov–de Gennes (BdG)
Hamiltonian for free boson systems. For a later comparison
to the Bethe-Salpeter equation for excitons, we assume the
spatial translational symmetry, while the following argument
can be easily generalized into the other cases without the
translational symmetry. The Hamiltonian in the momentum
space reads

H = 1

2

∑
q

(γ†
q γ−q)

(
A(q) B(q)

B∗(−q) A∗(−q)

)(
γq

γ†
−q

)

≡ 1

2

∑
q

(γ†
q γ−q)HBdG(q)

(
γq

γ†
−q

)
. (B1)

Here γ†
q (γ−q) is an m-component vector of boson creation

(annihilation) operators with a momentum q (−q), e.g.,(
γ†

q γ−q

) ≡ (γ†
1,q · · · γ†

m,q γ1,−q · · · γm,−q

)
.

(B2)

Each component of the creation and annihilation operators
obeys the commutation relations, e.g., [γ j,q, γ

†
m,q′] = δ j,mδq,q′ .

The boson’s commutation relation leads to BT (−q) = B(q).
The Hermiticity of H results in the Hermiticity of the m × m
matrix A(q) [A(q) = A†(q)] as well as a following generic

symmetry of the 2m × 2m matrix HBdG(q),

σ1 HBdG(q)σ1 =
(

A∗(−q) B∗(−q)

B(q) A(q)

)
= H∗

BdG(−q). (B3)

Here σ1 exchanges γ†
−q (particle) and γq (hole), so that we

dub this symmetry the particle-hole symmetry. Unlike the
particle-hole symmetry for a many-body Hamiltonian [1], the
particle-hole symmetry here is only due to the Hermiticity
of H and the boson’s commutation relation. Thus, any free
boson Hamiltonians have this particle-hole symmetry in some
bases (e.g., see below for an effective exciton Hamiltonian).
To emphasize this point, we call this symmetry a generic
particle-hole symmetry.

The BdG Hamiltonian is diagonalized by a Bogoliubov
transformation T ,

T †HBdG(q)T =
(

E(q)

E(−q)

)
,(

γq

γ†
−q

)
= T

(
ηq

η†
−q

)
. (B4)

E(q) is a diagonal matrix whose diagonal elements are
eigenenergies of new boson fields ηq with the momentum q,

H = 1

2

∑
q

m∑
j=1

(E j (q)η†
j,qη j,q + E j (−q)η j,−qη

†
j,−q). (B5)

To connect the commutation relations among the old boson
fields with the commutation relations among the new boson
fields, the Bogoliubov transformation must satisfy the parau-
nitarity condition,

T †σ3T = Tσ3T † = σ3. (B6)

σ3 in the equation is a 2 × 2 diagonal Pauli matrix, taking
+1 in the hole space (γq or ηq) and −1 in the particle space

(γ†
−q or η†

−q). With the commutation relation of the new boson

fields, we have H =∑q, j E j (q)η†
j,qη j,q + const.

To facilitate a later comparison to the Bethe-Salpeter
equation for the interband excitations, let us next derive an
equation of motion of the free boson systems. The equation of
motion for the free boson fields takes the form of a generalized
Hermitian eigenvalue problem,

iσ3 ∂t

(
γq

γ†
−q

)
= HBdG(q)

(
γq

γ†
−q

)
, (B7)

with HBdG(q) = H†
BdG(q). The diagonal Pauli matrix σ3 on

the left-hand side comes from the boson’s commutation rela-
tions, [γ i,q, γ

†
j,q] = −[γ†

i,q, γ j,q] = δi, j .
The generic particle-hole symmetry of the BdG Hamil-

tonian [Eq. (B3)] formally relates a pair of positive-energy
and negative-energy eigenmodes of the equation of motion.
Suppose that the equation of motion has a solution � of a
positive energy ω and a momentum q as(

γq

γ†
−q

)
= �e−iωt (B8)
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with ωσ3� = HBdG(q)�. Such � is a column vector of T for
ηq in Eq. (B4). Then the particle-hole symmetry in Eq. (B3)
formally relates this solution with a solution of the equation of
motion at −q with a negative energy −ω,(

γ−q

γ†
q

)
= σ1�

∗eiωt . (B9)

Namely, −ωσ3(σ1�
∗) = HBdG(−q)(σ1�

∗). These two solu-
tions clearly describe an identical interband collective mode,
because the Hermitian conjugate of Eq. (B8) is nothing but
Eq. (B9).

In the following, we will review previous theories, where
the Bethe-Salpeter equation for the two-particle Green’s func-
tion always reduces to a generalized Hermitian eigenvalue
problem of Eq. (B7) together with a BdG-type Hamiltonian
[3,4,17,18]. The BdG Hamiltonian is nothing but a free boson
Hamiltonian of excitons (more generally, interband excita-
tions), and it has a generic particle-hole symmetry in a certain
basis. The symmetry comes from the Hermiticity of an orig-
inal many-body Hamiltonian of electrons and bosonic nature
of excitons. In this sense, it is equivalent to Eq. (B3). Due
to the generic particle-hole symmetry, the Green’s function
formally has pairs of a positive-energy pole (ω) at q and a
negative-energy pole (−ω) at −q that are connected to each
other by the symmetry. Some literature [17,18] defines the
positive-energy pole at ω and the negative-energy pole (−ω)
as exciton and its antiparticle counterpart (“antiexciton”), re-

spectively. However, the two poles characterize exactly an
identical physical eigenmode as in Eqs. (B8) and (B9).

To show this more explicitly, we follow Glutsch and Bech-
stedt’s papers [17,18] and add an interband hopping term into
a two-band system:

Ĥ = Ĥ0 + V̂ ,

Ĥ0 =
∑

k

[εa(k)a†
kak + εb(k)b†

kbk + �(k)a†
kbk + �∗(k)b†

kak],

(B10)

where V̂ is the same as Eq. (3). The interband hopping term
�(k) can come from an intrinsic band hybridization [3,4],
an external pump field [17,18], or spontaneous symmetry
breaking by exciton condensation [20,21]. When a Fermi level
is placed inside a band gap (see below), the Hamiltonian
describes a generic semiconductor without the U(1)×U(1)
symmetry. ak = u(k)αk + v(k)βk, bk = −v∗(k)αk + u(k)βk

with |u(k)|2 + |v(k)|2 = 1,

Ĥ0 =∑k[�+(k)α†
kαk + �−(k)β†

kβk],

with

�±(k) ≡ εa(k) + εb(k)

2
±
√

(εa(k) − εb(k))2 + 4|�(k)|2
2

.

(B11)

In terms of interaction between α and β fermions, the interac-
tion part is given by

V̂ = 1

2�

∑
q,k,k′

(2Ak,k′ (q)α†
k+qβ

†
k′βkαk′+q + Bk,k′ (q)α†

k+qα
†
−k′−q

βkβ−k′ + B∗
−k,−k′ (−q)β†

−kβ
†
k′α−k−qαk′+q) + · · ·

= 1

2�

∑
q,k,k′

(2A∗
−k,−k′ (−q)β†

−kα
†
−k′−q

α−k−qβk′ + Bk,k′ (q)α†
···α

†
···β···β··· + B∗

−k,−k′ (−q)β†
···β

†
···α···α···) + · · · , (B12)

where matrix elements of A(q) and B(q) are given by the unitary transformation; “· · · ” on the right-hand sides are those terms that
take forms of either α†α†αα or β†β†ββ, while they do not contribute to the BS equation in a semiconductor region considered
below. Note that the Hermiticity of V̂ requires Ak,k′ (q) = A∗

k′,k(q), and relates the matrix elements of the second term (α†α†ββ )
and the third term (β†β†αα) as in the equation. With the sum over q, k, and k′, we can always symmetrize B(q) such that
Bk,k′ (q) = B−k′,−k(−q).

Following the papers [17,18], we consider that �(k) results in a direct gap between the α band and β band, and we place a
chemical potential μ inside the energy gap: �+(k) > μ > �−(k) for all the k. A many-body ground state |0〉 is considered to be
adiabatically connected to this semiconductor ground state. The interband collective modes above the many-body ground state
can be analyzed by an interband two-particle Green’s function, which generally takes a 2 × 2 matrix form,

Ĝex(x − x′, t − t ′)yy′ ≡ −(−i)2

(
〈0|T {γ (x, y; t )γ †(x′, y′; t ′)}|0〉 〈0|T {γ (x, y, t )γ (x′, y′; t ′)}|0〉
〈0|T {γ †(x, y, t )γ †(x′, y′, t ′)}|0〉 〈0|T {γ †(x, y, t )γ (x′, y′, t ′)}|0〉

)
, (B13)

with γ (x, y; t ) ≡ αx(t )β†
x+y(t ) and γ †(x, y; t ) ≡ βx+y(t )α†

x (t ). The t dependence of the operators is in the Heisenberg picture.
γ (x, y) and γ †(x, y) can be regarded as annihilation and creation of excitons, respectively. Note that the α†α†ββ and β†β†αα

terms in V̂ break a U(1) symmetry of α → αeiθ and β → βe−iθ . Thereby, the interband Green’s function generally takes the
2 × 2 matrix form in the particle-hole space of the exciton fields.

After Fourier transforms of the spatial coordinates, the Green’s function is given by a function of a momentum q of the
center-of-mass coordinate between two fermions and momenta k, k′ of the relative coordinates,

Ĝex(q, t − t ′)kk′ ≡
∫

dd (x − x′)
∫

dd y
∫

dd y′e−iq·(x−x′ )+ik·y−ik′ ·y′ Ĝex(x − x′, t − t ′)yy′ , (B14)
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with

Ĝex(q, t − t ′)kk′ = −(−i)2�

( 〈0|T {αk+q(t )β†
k (t )βk′ (t ′)α†

k′+q
(t ′)}|0〉 〈0|T {αk+q(t )β†

k (t )α−k′−q(t ′)β†
−k′ (t ′)}|0〉

〈0|T {β−k(t )α†
−k−q(t )βk′ (t ′)α†

k′+q
(t ′)}|0〉 〈0|T {β−k(t )α†

−k−q(t )α−k′−q(t ′)β†
−k′ (t ′)}|0〉

)
. (B15)

Here � is the system volume.
The ground state in the noninteracting limit is a vacuum of α and β†, α|0〉V =0 = β†|0〉V =0 = 0, where the interband Green’s

function takes a diagonal form in the particle-hole space,

Ĝex
0 (q, t − t ′)kk′ = �δk,k′

(
θ (t − t ′)e−i(�+(k+q)−�−(k))(t−t ′ ) 0

0 θ (t ′ − t )ei(�+(−k−q)−�−(−k))(t−t ′ )

)
. (B16)

In the presence of V̂ of Eq. (B12), the interband two-particle Green’s function is given by a solution of the following Bethe-
Salpeter equation:

Ĝex(q, t − t ′)kk′ = Ĝex
0 (q, t − t ′)kk′ + i

�2

∑
k,k

′

∫
dt Ĝex

0 (q, t − t )kk

(
Ak,k

′ (q) Bk,k
′ (q)

B∗
−k,−k

′ (−q) A∗
−k,−k

′ (−q)

)
Ĝex(q, t − t ′)k

′
k′ . (B17)

After the Fourier transform in time, the equation reduces to a generalized Hermitian eigenvalue problem with a BdG-type
Hamiltonian HBdG(q): ∑

k

(δk,k(ωσ3 + i0+σ0) − HBdG(q)k,k)G̃ex(q, ω)k,k′ = δk,k′σ0, (B18)

with HBdG(q) = H†
BdG(q). Here the Green’s function is normalized by i�, i�G̃ex ≡ Ĝex. The BdG Hamiltonian is a free boson

Hamiltonian of excitons (interband excitations) and it takes a 2 × 2 matrix form in the particle-hole space of the exciton fields,

HBdG(q)k,k′ = δk,k′

(
�+(k + q) − �−(k)

�+(−k − q) − �−(−k)

)
− 1

�

(
Ak,k′ (q) Bk,k′ (q)

B∗
−k,−k′ (−q) A∗

−k,−k′ (−q)

)
. (B19)

σ3 on the left-hand side of Eq. (B18) is the diagonal Pauli
matrix taking +1 for the hole space of the exciton field (γ )
and −1 for the particle space of the exciton field (γ †). ωσ3 is
nothing but a Fourier transform of iσ3∂t on the left-hand side
of Eq. (B7), standing for the boson’s commutation relations of
exciton fields. Thus, solving this Bethe-Salpeter equation of
Eq. (B18) is essentially equivalent to solving the equation of
motion of Eq. (B7).

The eigenvalue problem can be solved in terms of the pa-
raunitary transformation. Suppose that the BdG Hamiltonian
is diagonalized by a paraunitary transformation of Eq. (B4).
Thereby, the diagonal elements in E(q) of Eq. (B4) are
nothing but excitation energies of interband collective and in-
dividual excitations with the momentum q. Column vectors in
T of Eq. (B4) stand for wave functions of these eigenmodes.
Due to the particle-hole mixing nature of HBdG(q), T thus
introduced comprises of both the hole-type wave functions for
η j,q and the particle-type wave functions for η†

j,−q. We dub
them � j and � j , respectively ( j = 1, 2, . . .):

T ≡ (�1 �2 · · · �1 �2 · · ·). (B20)

� j for η j,q here corresponds to � in Eq. (B8). To preserve
the boson statistics between η j,q and η†

m,q of Eq. (B4), these
wave functions are normalized with the paraunitary condition
of Eq. (B6). The orthonormalization is given by �†

mσ3� j =
δ j,m, �†

mσ3� j = −δ j,m, and �†
mσ3� j = �†

mσ3� j = 0 ( j, m =
1, 2, . . .). The completeness relation is defined by

Tσ3T † =
∑

j

� j,k�
∗
j,k′ −

∑
j

� j,k�
∗
j,k′ = σ3δk,k′ . (B21)

With these orthogonality and completeness relations, Eq. (B4)
can be rewritten into

HBdG(q)� j = σ3� jE j (q),
(B22)

HBdG(q)� j = −σ3� jE j (−q),

for j = 1, 2, . . .. Given the paraunitary transformation, the
interband Green’s function at q is obtained as a solution of
the Bethe-Salpeter equation,

G̃ex(q, ω)k,k′ =
∑

j

� j,k�
∗
j,k′

ω − Ej (q) + i0+

−
∑

j

� j,k�
∗
j,k′

ω + Ej (−q) − i0+ . (B23)

Note that, thanks to the completeness relation of Eq. (B21),
the solution satisfies a sum rule,∫ +∞

−∞

dω

2π i
G̃ex(q, ω)k,k′ (e−iω0+ − eiω0+

) = σ3δk,k′ . (B24)

The sum rule is a boundary condition in time, iG̃(q, t =
0+) − iG̃(q, t = 0−) = σ3δk,k′ . One can obtain the boundary
condition by noting 〈0|α†

kαk|0〉 = 0 and 〈0|β†
kβk|0〉 = 1. Here

|0〉 is the many-body ground state.
Like in the free boson system, the BdG Hamiltonian of

excitons, HBdG(q), has a generic particle-hole symmetry in
a certain basis:

σ1 Ĥ
∗
BdG(q)k,k′ σ1 = ĤBdG(−q)−k,−k′ . (B25)
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As was explained below Eq. (B12), the symmetry comes
from the Hermiticity of the original many-body Hamiltonian
of electrons and the bosonic nature of excitons. Due to this
generic symmetry, the BdG Hamiltonian HBdG(−q) at −q is
diagonalized by the following paraunitary transformation:

σ1T ∗σ1 = (σ1�
∗
1 σ1�

∗
2 · · · σ1�

∗
1 σ1�

∗
2 · · · ).

(B26)

This gives a solution of the interband Green’s function at −q:

G̃ex(−q, ω)k,k′ =
∑

j

σ1�
∗
j,−k� j,−k′σ1

ω − Ej (−q) + i0+

−
∑

j

σ1�
∗
j,−k� j,−k′σ1

ω + Ej (q) − i0+ . (B27)

Some previous works [17,18] in the literature [3,4,17,18] de-
fined the positive-energy poles at ω = Ej (q) as excitons and
the negative-energy poles at ω = −Ej (−q) in Eq. (B23) as
its counterpart “antiexcitons,” respectively. However, a com-
parison between Eq. (B23) and Eq. (B27) clearly shows that
the negative-energy poles are completely redundant, because
all the information of physical eigenmodes of the system is
solely encoded in the positive-energy poles of all the q. In fact,
as shown explicitly in the comparison between Eq. (B8) and
Eq. (B9), the negative-energy poles at −q with ω = −Ej (q)
characterize the same physical excitation as the positive-
energy poles at q with ω = Ej (q). The equivalence is nothing
but the equivalence between η j,q in the first term of Eq. (B5)
at q and η†

j,q in the second term of Eq. (B5) at −q.
Unlike the “antiexciton” introduced in the literature

[17,18], the |n〉 state (exciton) and the |n′〉 state (antiexci-
ton) in Eq. (9) describe two different excited eigenstates of
the two-band semimetal model. In fact, in the presence of
the U(1) × U(1) symmetry, where the two-band semimetal
model commutes with total electron numbers of the a band
and the b band, the exciton state lives in a Hilbert space
of |Na + 1, Nb − 1〉, the antiexciton state lives in a Hilbert
space of |Na − 1, Nb + 1〉, and these two spaces are decoupled
from each other in an exact diagonalization of the many-
body Hamiltonian for the semimetal model. Here Na and
Nb are the total electron numbers of the a band and the b
band, respectively, and the semimetal ground state |0〉 is in
a Hilbert space of |Na, Nb〉. Since a†b creates such an ex-
citon and annihilates such an antiexciton in the semimetal
ground state, the Green’s function of Gex(x − x′, t − t ′)yy′ ≡
〈0|T {ax(t )b†

x+y(t )bx′+y′ (t ′)a†
x′ (t ′)}|0〉 has a pole for the exciton

state in the positive-ω region and a pole for the antiexciton
state in the negative-ω region.

In summary, our paper proposed a pair of the exciton
and antiexciton as two distinct excited eigenstates above the
semimetal ground state. Physically speaking, our concept of
the antiexciton should be distinguished from “antiexciton” in
the literature [17,18], which actually describes an identical
excited eigenstate as its counterpart exciton state.

In the presence of single-particle hybridization between
the two bands, �a†b, Na − Nb becomes no longer a quan-
tum number, and excitons (interband collective modes in the
Hilbert space of |Na + 1, Nb − 1〉) and antiexcitons (interband
collective modes in the Hilbert space of |Na − 1, Nb + 1〉) will
be hybridized in general. Thus, interband collective modes

in such two-band models are no longer classified in terms of
the exciton or antiexciton proposed in our paper. Nonetheless,
when the hybridization � is much smaller than an energy
difference between original exciton and antiexciton states at
� = 0, two weakly hybridized interband collective modes
can be approximately regarded as an exciton mode and an
antiexciton mode. In this sense, our concept of the exciton
and antiexciton still provides a useful picture for distinguish-
ing the two types of interband collective modes in two-band
semimetals even with the hybridization.

2. “Antiparticle of an exciton” that does not coexist
with its counterpart exciton

Reference [20] introduced a concept of “antiexciton” in
a two-dimensional (2D) electron-hole gas (EHG) under high
magnetic field, which one could consider to share a similar
physical picture as the antiexciton proposed in this paper.
The concept was further cited in Ref. [21]. Under the mag-
netic field, the 2D EHG forms Landau levels (LLs) of an
electron-type band and a hole-type band. Though Ref. [20]
considers an effective interband hybridization by exciton con-
densation, the classification of interband collective modes for
the U(1)×U(1) symmetric case at zero temperature is approx-
imately applicable for their case.

When the lowest LL (LLL) of the electron band (a band)
is higher than the LLL of the hole band (b band) in energy
and the Fermi level is set to the middle between the two
LLLs (“small-ρ limit”), an interband collective mode in such
a positive-band-gap semiconductor regime is a bound state of
a particle in the a band and a hole in the b band; the interband
collective mode lives in a Hilbert space of |Na + 1, Nb − 1〉
(here we consider that the ground is in a Hilbert space of
|Na, Nb〉 with Na � Nb). When the LLL of the electron band
is lower than the LLL of the hole band and the Fermi level
is placed into the middle of the two LLLs (“small-(1 − ρ)
limit”), an interband collective mode in such a negative-band-
gap semiconductor regime is a bound state of a hole in the a
band and a particle in the b band; the collective mode lives
in a Hilbert space of |Na − 1, Nb + 1〉 (here we consider that
the ground is in a Hilbert space of |Na, Nb〉 with Na 
 Nb).
Lerner and Lozovik called the interband collective modes
in these positive-band-gap and negative-band-gap semicon-
ductor regimes excitons and antiexcitons, respectively, so the
concept of the antiexciton proposed in our paper shares the
similar physical picture as that of Lerner and Lozovik.

Nonetheless, unlike in the semimetal model studied in
this paper, the excitons and antiexcitons in the 2D EHG
under the field do not coexist inside the same 2D bulk. Ex-
citons exist only in the small-ρ limit and antiexcitons exist
in the small-(1 − ρ) limit. Physically speaking, the band in-
version can be induced by changing the magnetic field, so
that these two limits are realized in two different regions of
the magnetic field. On the contrary, our paper proposes the
universal coexistence of excitons and antiexcitons in the same
semimetallic bulk. The coexistence of a pair of excitons and
antiexcitons leads to two distinct absorption peaks in optical
spectroscopy experiments as well as a fertile excitonic analog
of the electron-positron pair annihilation phenomenon. These
physical consequences cannot be realized by a 2D EHG under
high magnetic field.
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