
PHYSICAL REVIEW B 106, 235143 (2022)

Holes and magnetic polarons in a triangular lattice antiferromagnet

Jasper van de Kraats ,1 Kristian K. Nielsen ,2 and Georg M. Bruun3,4,*

1Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven, The Netherlands
2Max-Planck Institute for Quantum Optics, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany
3Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University,

Ny Munkegade, DK-8000 Aarhus C, Denmark
4Shenzhen Institute for Quantum Science and Engineering and Department of Physics,

Southern University of Science and Technology, Shenzhen 518055, China

(Received 12 September 2022; revised 3 November 2022; accepted 12 December 2022; published 21 December 2022)

The intricate interplay between charge motion and magnetic order in geometrically frustrated lattices is
central for the properties of many two-dimensional quantum materials. The triangular lattice antiferromagnet is
a canonical example of a frustrated system, and here we analyze the dynamics of a hole in such a lattice focusing
on observables that have become accessible in a new generation of experiments. Using the t − J model, we solve
the problem exactly within linear spin wave theory in the limit of strong magnetic interactions, showing that the
ground state is described by a coherent state of spin waves. The derivation highlights the crucial role played by
the interaction between a static hole and the neighboring spins, which originates in the geometric frustration and
has often been omitted in earlier works. Furthermore, we show that the nonequilibrium dynamics after a hole has
abruptly been inserted at a lattice site is given by a coherent state with time-dependent oscillatory coefficients.
Physically, this describes a burst of magnetic frustration propagating through only two-thirds of the lattice sites,
since a destructive interference of spin waves leaves spins parallel to that removed by the hole unperturbed. After
the wave has propagated through the lattice, the magnetization relaxes to that of the ground state. We then use
our analytical solution to benchmark the widely used self-consistent Born approximation (SCBA) in the limit of
strong magnetic interactions, showing that it is very accurate also for a triangular lattice. The magnetic polaron
spectrum is analyzed for general magnetic interactions using the SCBA, and we compare our results with those
for a square lattice.
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I. INTRODUCTION

Understanding the competition between hole motion and
magnetic order is a major challenge. The small doping limit
of high-temperature superconductors is characterized by holes
moving in a square lattice antiferromagnet (SAFM), such
that a description of these processes constitute an important
step towards understanding these complicated materials [1–5].
Partly due to this connection, the vast majority of studies have
focused on hole dynamics in a SAFM. The properties of a
hole in other lattices is however also of fundamental interest.
It was suggested that the inherent geometrical frustration of
a two-dimensional triangular lattice leads to the formation of
a resonating valence bond state with no long-range order [6].
While such quantum liquid states may be realized for inter-
mediate coupling strengths [7], it is now widely recognized
from series expansions as well as numerical calculations that
the ground state of a triangular lattice for strong coupling
has long-range antiferromagnetic order based on the 120◦
antiferromagnetic Néel state [8–12]. The increased role of
fluctuations due to frustration has been shown to lead to inter-
esting effects on the spin wave spectrum of such a triangular
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lattice antiferromagnet (TAFM) [13,14]. It also gives rise to
perculiar properties of hole dynamics and magnetic polarons
in TAFMs [15–23]. Several compounds realize a triangular
lattice, but a microscopic description of their properties re-
mains an open question due to their complicated nature with
many unknown parameters [24–33].

Recent experiments using cold atoms in optical lattices
have provided a wealth of new information regarding the
motion of holes in fermionic spin systems [34–38]. These
experiments realize the Fermi-Hubbard model essentially per-
fectly and, moreover, their single site resolution gives access
to the real space dynamics of fermions in the lattice. A
new generation of experiments trapping bosonic [39] and
fermionic [40] atoms in triangular optical lattices promise to
provide new and detailed experimental insights into magnetic
frustration and hole dynamics. Moreover, recent breakthrough
experiments using multilayers of atomically thin van der
Waals materials have realized triangular moiré superlattices
with tuneable Hubbard parameters, thereby opening up an
exciting new platform for exploring geometrically frustrated
lattices [41–44].

Inspired by these developments, in this work we explore
the properties of a hole in a TAFM as described by the t − J
model. We show that in the limit of strong magnetic inter-
actions and within linear spin wave theory, the exact ground
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state is a coherent state describing a static hole dressed by spin
waves. The dressing is due to an interaction between the hole
and its neighboring spins coming from the geometric frustra-
tion of the lattice, and it has no analogy for a bipartite lattice.
We then extend our results to the nonequilibrium dynamics
following a hole injected into a lattice site, and show that
the resulting propagation of spin waves through the lattice is
described by a time-dependent coherent state. Interestingly,
spins parallel to the spin removed by the hole are unaffected
due to destructive interference, so that the wave of magnetic
disorder only propagates through two-thirds of the lattice.
Eventually, the magnetic disorder relaxes to that of the ground
state. Our analytical solution enables us to benchmark the
SCBA, which is known to be accurate on a square lattice, and
we show that, in the limit of strong magnetic interactions, this
holds for a triangular lattice as well. Finally, we analyze the
properties of a hole and the formation of magnetic polarons
for general interaction strengths and compare to the case of a
square lattice.

The paper is structured as follows. We formulate the model
in Sec. II and apply the slave-fermion representation together
with linear spin-wave theory. In Sec. III, we derive analytical
solutions for the ground state and the nonequilibrium dynam-
ics following a hole suddenly created at a given lattice site.
The SCBA is introduced in Sec. IV, where we compare it to
the analytical solution and use it to analyze magnetic polarons
for general interaction strengths. Finally, we conclude and
provide an outlook in Sec. V.

II. HOLE SPIN-WAVE HAMILTONIAN

We consider the t − J model with the Hamiltonian H =
Ht + HJ , where [45–47]

Ĥt = −t
∑
〈i,j〉

∑
σ

[c̃†
i,σ c̃j,σ + H.c.] (1)

describes the electron hopping. The modified creation oper-
ator c̃†

iσ = (1 − n̂i,σ̄ )ĉ†
i,σ with n̂i,σ = ĉ†

i,σ ĉi,σ the local number
operator and σ̄ the opposite spin of σ , is defined such that
Ht is restricted to the Hilbert space of singly occupied sites.
Here, ĉ†

i,σ create a fermion at lattice site i and spin σ . The
t − J model, therefore, naturally describes a system in which
the repulsion between spin 1/2 fermions is much larger than
the available energy. The second term ĤJ quantifies an anti-
ferromagnetic Heisenberg spin-exchange interaction,

ĤJ = J
∑
〈i,j〉

[
Ŝz

i Ŝz
j + 1

2

(
Ŝ+

i Ŝ−
j − Ŝ+

j Ŝ−
i

) − n̂in̂j

4

]
. (2)

Here n̂i = n̂i,↑ + n̂i,↓, and J > 0 denotes the antiferromag-
netic exchange energy. The spin operators are defined in the
Schwinger representation as

Ŝi = 1

2

∑
σσ ′

ĉ†
i,σ σσσ ′ ĉi,σ ′ (3)

with σ = (σ x, σ y, σ z ) the vector of Pauli matrices.
While the triangular lattice with antiferromagnetic cou-

pling was originally suggested to realize a resonating valence
bond ground state [6], it is now known from series expansions
as well as numerical calculations that its ground state has

FIG. 1. (a) The antiferromagnetic 120◦ Néel state in a triangular
lattice. The vectors δ+ that define gk and g̃k are shown in blue.
(b) Introducing a hole by removing a spin makes the neighboring
spins adjust their direction as indicated by the red arrows thereby
introducing magnetic frustration. Here it is assumed that the spins
exist in a much larger lattice which is not drawn.

long-range antiferromagnetic order based on the 120◦ antifer-
romagnetic Néel state [8–12]. This state may be generated in
the (x, y) plane from the ordering vector QTAFM = (4π/3, 0),
such that a spin at position ri has an angle θi = ri · QTAFM

relative to the z axis as illustrated in Fig. 1(a). The lattice may
then be subdivided into three sublattices with ordered spin
directions differing by angles of 2π/3. For the subsequent
analysis, it is convenient to perform a local coordinate rotation
by θi so that all spins point along the same local coordinate
axis. The associated SU(2) rotation matrix reads [14]

Ri =
[

cos(θi/2) sin(θi/2)
− sin(θi/2) cos(θi/2)

]
(4)

and the rotated (primed) operators are

ĉ†′
i,σ =

∑
σ ′

Ri,σσ ′ ĉ†
i,σ ′ , Ŝ′

i = R−1
i ŜiRi. (5)

Upon substitution into Eqs. (1) and (2) one obtains a rotated
t − J model for which the Néel state is now an effective ferro-
magnet. This prescription is straightforwardly applied to the
SAFM as well, with altered ordering vector QSAFM = (π, π ).
We use units where the lattice constant and h̄ both are unity.

Slave-fermion representation

To model the dynamics of the hole, we adopt a slave-
fermion representation [48–52], which describes the system
in terms of spinless fermionic holes created by the operators
ĥ†

i , and bosonic spin excitations created by the operators ŝ†
i .

We have c̃′
i,↓ = ĥ†

i ŝi and c̃′
i,↑ = ĥ†

i

√
1 − ĥ†

i ĥi − ŝ†
i ŝi, where the

square root factor ensures that c̃i,↑ is uneffective on any site
that already contains a hole or spin excitation. The spin oper-

ators are written as Ŝ+′
i =

√
1 − ĥ†

i ĥi − ŝ†
i ŝiŝi and Ŝz′

i = (1 −
ĥ†

i ĥi − 2ŝ†
i ŝi)/2. Substituting into the rotated t − J model and

truncating to second order, we obtain

ĤJ = Ĥs + J

4

∑
〈i,j〉

sin θi j[s̄iĥ
†
j ĥj − ĥ†

i ĥis̄j] (6)
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FIG. 2. (a) Spin-wave dispersion ωb
k. (b) Hole dispersion ωh

k. Both for J/|t | = 1 and t < 0.

with θi j = θi − θj. Here s̄i = ŝi + ŝ†
i , and Ĥs is the quadratic

spin-wave Hamiltonian that also appears in the usual Holstein-
Primakoff transformation on the triangular lattice. Expres-
sions for Ĥs and the hopping term Ĥt in the slave fermion
representation are given in Appendix A. Higher order con-
tributions to the Hamiltonian are neglected by assuming low
hole concentration and restricting the description to linear
spin-wave theory, which has been shown to be accurate on
the triangular lattice at low energies [14].

The second term in Eq. (6) quantifies a J-dependent in-
teraction between the holes and spin waves, which is absent
in the SAFM where θi j = ±π . Physically, we can understand
this interaction as coming from the geometric frustration on
the triangular lattice. The ordered state of any spin is stabi-
lized by the simultaneous spin exchange with its six nearest
neighbors. As we illustrate in Fig. 1, if one spin is removed
the neighboring spins will adjust their direction away from the
120◦ order to minimize the energy. This corresponds to intro-
ducing spin waves in the system, an effect that has also been
noticed in earlier theoretical studies [53,54], and has been re-
cently studied experimentally as well [55]. Indeed, inspecting
Eq. (6) shows that this interaction describes a spin excitation
arising from a purely stationary hole in the lattice. We note
that this term, which has no equivalence for a square lattice,
has been omitted in earlier works describing hole dynamics in
TAFMs using a slave-fermion representation [15,19] so that
the creation of spin waves only comes from the hopping term
Ĥt , see Appendix A. Such an approximation must be expected
to be accurate for J � t . As we shall demonstrate below, the
J-dependent interaction between the hole and the spin waves
is however important away from this regime and significantly
alters the asymptotic large J behavior of the hole. Fourier
transforming and diagonalizing the harmonic part of HJ by
the Bogoliubov transformation ŝk = ukb̂k − vkb̂†

−k, yields

Ĥ =
∑

k

ωh
kĥ†

kĥk +
∑

k

ωb
kb̂†

kb̂k

−
∑
k,q

ĥ†
k+qĥk[Vk,qb̂†

−q − Vk+q,−qb̂q]. (7)

The hole and spin-wave dispersions are

ωh
k = −3tgk, ωb

k = 3
2 J

√
(1 − gk )(1 + 2gk ), (8)

with the structure factor gk = 1/3
∑

δ+ cos(k · δ+) where δ+
denotes a set of three nearest neighbor vectors illustrated in
Fig. 1(a). These dispersions are shown in Fig. 2. Note that sign
reversal symmetry with respect to t is broken in a triangular
lattice as opposed to a square lattice. The hole dispersion term,
which is absent on a SAFM, arises from the fact that adjacent
spins on the TAFM are not antiparallel so that a hopping hole
has a nonzero chance of projecting the displaced spin into the
“correct” state that agrees with the antiferromagnetic order.
Hence even if just a single hole is present it may move across
the lattice without frustrating the antiferromagnetic structure,
which is impossible on the square lattice [19].

The vertex for the interaction between a hole and the spin
waves is

Vk,q =3
√

3i√
N

t (vqg̃k + uqg̃k+q) + 3
√

3i

4
√

N
J (uq − vq)g̃q

=V t
k,q + V J

q (9)

with g̃k = 1/3
∑

δ+ sin(k · δ+) and

uk = 1

2

√
2 + gk√

(1 − gk )(1 + 2gk )
+ 2,

vk = 1

2
sgn(−gk )

√
2 + gk√

(1 − gk )(1 + 2gk )
− 2. (10)

We see that it contains a term V t
k,q ∝ t arising from the hole

hopping as well as a term V J
q ∝ J . The latter is absent for

a SAFM and arises from the geometric frustration shown in
Fig. 1(b) as discussed above.

III. LARGE J/t LIMIT

In this section, we present analytical solutions in the limit
J/t � 1 both for the ground state and for a nonequilibrium
situation where a hole is abruptly introduced in the lattice.
The term V J

q ∝ J in Eq. (9) for the interaction vertex is clearly
crucial for the properties of the hole in this limit, where it
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dresses the hole with spin waves. When this term is omitted as
done in several previous works, the large magnetic interaction
suppresses the motion of the hole and the ground state simply
becomes a static hole surrounded by an unperturbed AF order,
as for the SAFM. We show that when it is included, the
problem can be mapped onto the well known Fröhlich model
in the limit of infinite mass, which allows for an analytic
solution describing an immobile hole surrounded by magnetic
frustrations. It is important to note that in the limit J/t � 1,
processes neglected in linear spin-wave theory will act to
further disturb the local magnetic ordering. They appear as
quartic terms in the Hamiltonian, and describe the scattering
of spin waves from the localized hole. In this work, we neglect
these higher-order corrections such that the problem remains
analytically solvable.

In the J/t � 1 limit, we can neglect Ĥt and the
Hamiltonian simplifies to

ĤJ =
∑

k

ωb
kb̂†

kb̂k −
∑
k,q

ĥ†
k+qĥk

[
V J

q b̂q + V J∗
q b̂†

q

]
. (11)

As is apparent from the real space representation of ĤJ given
by Eq. (6), the hole is now stationary in the lattice where it
emits or absorbs spin waves. Therefore, without loss of gener-
ality, we can assume the hole to be located at a certain lattice
site r. In the Hilbert space ĥ†

r |�s〉, where |�s〉 is a general
spin state of the lattice surrounding the hole, a straightfor-
ward calculation shows that the Hamiltonian in Eq. (11) is
equivalent to

ĤJ =
∑

k

[
ωb

kb̂†
kb̂k − V J

k b̂keik·r + V J∗
k b̂†

ke−ik·r]. (12)

After a gauge transform b̃k = b̂keik·r, we obtain the Fröhlich
Hamiltonian for an infinite mass impurity [56].

A. Ground state

The Fröhlich Hamiltonian for infinite mass given by
Eq. (12) can be solved analytically using the canonical trans-
formation

Ŝ = e
∑

k (α∗
k b̃†

k−αk b̃k ), (13)

where αk = V J
k /ωb

k. Indeed,

Ŝ−1ĤJ Ŝ =
∑

k

ωb
kb̃†

kb̃k + Eg (14)

with

Eg = −
∑

k

∣∣V J
k

∣∣2

ωb
k

= −0.144 J (15)

the ground state energy, where the numerical value is obtained
for an infinite lattice. The wave function of the ground state
|�r,g〉 is a multimode coherent state of spin waves,

|�r,g〉 = Ŝ|hr〉 = e− 1
2

∑
k |αk|2 e

∑
k α∗

k b̃†
k |hr〉, (16)

with |hr〉 = ĥ†
r |AF〉 where |AF〉 is the antiferromagnetic

ground state defined by b̂k|AF〉 = 0. It follows from Eq. (16)
that the ground state is an eigenfunction of bk with eigenvalue

α∗
k and that the spin-wave distribution in any given mode is

Poissonian

n̄k,g = |αk|2, σk,g = √
n̄k,g. (17)

Here n̄k,g denotes the mean spin-wave number in mode k
and σk,g the standard deviation. From Eq. (16), it is also
straightforward to compute the quasiparticle residue

Z = |〈hr|�r,g〉|2 = e− ∑
k |αk|2 = 0.8003, (18)

which quantifies the overlap of the ground state with the
state of a localized hole surrounded by unperturbed AF order.
Since Z > 0, the ground state corresponds to a well-defined
quasiparticle, i.e., a magnetic polaron with infinite mass. The
value Z = 0.8003 should be contrasted to the case of a SAFM,
where Z → 1 for J/|t | → ∞. This is because a stationary
hole introduces magnetic frustration in a TAFM as shown in
Fig. 1, in contrast to the case of a SAFM.

B. Time-dependent many-body wave function

We now show that in addition to the ground state, we
can also derive an analytical solution for the nonequilibrium
many-body dynamics after a hole is abruptly introduced at
a given lattice site. Such a quench experiment was recently
performed for a SAFM [37].

We imagine a hole created at lattice site r at time τ = 0 so
that the initial state is |hr〉 = ĥ†

r |AF〉. The subsequent evolu-
tion of this state is given by

|�r(τ )〉 = e−iĤJ τ |hr〉
= e−iEJ τ Ŝe−i

∑
k ωb

k b̃†
k b̃kτ Ŝ−1|hr〉. (19)

Equation (19) can be solved giving

|�r(τ )〉 = e−iEJ τ e− ∑
k |αk|2

(
1−e−iωb

kτ
)

× e
∑

k α∗
k

(
1−e−iωb

kτ
)

b̃†
k |hr〉. (20)

An equivalent wave function was also obtained in a different
context concerning an impurity in a Bose-Einstein condensate
[57]. Equation (20) shows that the many-body system is in
a coherent state with time-dependent coefficients. The spin-
wave number statistics is correspondingly time dependent
with

n̄k(τ ) = 2|αk|2
[
1 − cos

(
ωb

kτ
)]

, σk(τ ) =
√

n̄k(τ ). (21)

Since the oscillatory terms in Eq. (21) cancel upon integrating
over the Brillouin zone (BZ) in the large time limit τ � 1/J ,
the total number of spin waves

∑
k n̄k(τ ) in the nonequilib-

rium state approaches twice the total number in the ground
state

∑
k n̄k,g.

C. Local magnetization

We now analyze the local magnetization around the hole as
a function of the time τ after it was created. The magnetization
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of the TAFM in the absence of the hole is

MAF = 1

N

∑
r

〈AF|Ŝz′
r |AF〉 = 1

2
− 1

N

∑
r

〈AF|ŝ†
r ŝr|AF〉

= 1

2
− 1

N

∑
k

v2
k = 0.2387. (22)

As explained in Sec. II, the spin operators are rotated lo-
cally and a classical 120◦ AFM state shown in Fig. 1(a)
would give MAF = 1

2 . Equation (22) shows that quantum fluc-
tuations in the linear spin-wave theory reduce this ordering
significantly [14].

When the hole is created at site r and time τ = 0, it distorts
the magnetization in its surroundings. To quantify this, we
calculate the local magnetization at site r + d

M(τ, d) =
〈
Ŝz′

r+d

〉
r(τ )

MAF
, (23)

where 〈. . .〉r(τ ) = 〈�r(τ )| . . . |�r(τ )〉 gives the time depen-
dent expectation value. With this definition, M(τ, d) = 1 if a
spin is unaffected by the presence of the hole. After Fourier
transforming Eq. (23) to crystal momentum space, we use
that since |�r(τ )〉 is a coherent state, any spin-wave correlator
factors into a product of single operator expectation values. As
detailed in Appendix B, this gives

M(τ, d) = MAF − |Aτ,d[u] − A∗
τ,d[v]|2

MAF
, (24)

where

Aτ,d[u] = 1

N

∑
q

eiq·d√N〈b̃q〉r(τ ) uq,

Aτ,d[v] = 1

N

∑
q

eiq·d√N〈b̃q〉r(τ ) vq, (25)

and

〈b̃q〉r(τ ) = α∗
k

(
1 − e−iωb

kτ
)
. (26)

Equations (24)–(26) describe how the magnetic frustration
propagates through the lattice after the hole has been created.
For long times τ � 1/J , the oscillatory terms in Eq. (25)
cancel upon integration over the BZ so that M(τ, d) tends to
an asymptotic value. Since the magnetization only depends
on the state through 〈bq〉r(τ ), this asymptotic magnetization
in fact coincides exactly with that of the ground state polaron,
where 〈bk〉r,g = α∗

k. This is somewhat surprising since there
are twice as many spin waves in the lattice for long times as
compared to the ground state polaron. Even more explicitly,
the overlap between the time-dependent state and the polaron
ground state is |〈�r,g||�r(τ )〉|2 = Z = 0.8003 < 1 since the
time evolution just gives a phase factor, which shows the
difference between the two states. The fact that the magne-
tization for long-time matches that of the ground state is a
direct consequence of the factorization of spin-wave corre-
lators in a coherent state, which leads to cancellation of all
time-dependent phase factors. More generally, the expectation
value of any local observable, including higher order correla-
tors, will approach that obtained from the ground state in the
limit τ � 1/J .

FIG. 3. Magnetization M(τ, d) as a function of time τ for lattice
sites near the hole, indicated by a black cross. Equivalent lattice
sites have the same color. Horizontal lines show the asymptotic
limit obtained from the ground state polaron wave function given
by Eq. (16). The black horizontal arrow shows a single oscillation
period obtained from the stationary phase expansion.

In Fig. 3, the magnetization around a stationary hole is
plotted as a function of time τ after it was created. This is
obtained by numerically evaluating Eqs. (24)–(26). After the
creation of the hole, we see a 30% suppression of the mag-
netization at its nearest neighbors at time τ ∼ 2/J . After this
initial “burst” of magnetic frustration, the magnetization of
the nearest neighbors relax towards a time-independent value
coinciding with that of the ground state polaron as discussed
above. With some lag, the frustration is then carried through
to the sites further away, which show a similar initial decrease
in magnetization although with a smaller amplitude and a
subsequent relaxation to the ground state value.

Since the propagation of the magnetic frustration is carried
by spin waves, one can calculate the period TM of the oscilla-
tions seen in Fig. 3 using the stationary phase method, which
gives TM = 2π/ωk0 . Here k0 denotes the dominant stationary
points where ∇ωb

k = 0, which form an approximate circle
around the origin, see Fig. 2(a). From this, we obtain

TM = 8
√

2π

9J
. (27)

Figure 3 shows that this result is indeed confirmed by the
numerics.

Intriguingly, Fig. 3 shows that the magnetization at the
green lattice sites is unperturbed by the presence of the hole
for all times. As detailed in Appendix C, this fact follows from
the symmetry properties of the triangular lattice. Using those,
one can show that spins located at horizontal distances

dx = 3
2 n ∀ n ∈ Z (28)

do not feel any disturbing influence from the presence of the
hole. For these spins, which all point in the same direction
as the spin that was originally at the location of the hole, the
spin waves destructively interfere so that the magnetization
remains unperturbed.

To further illustrate how the magnetic frustration propa-
gates through the lattice after the hole has been created, we
plot in Fig. 4 the magnetization in a larger region around the
hole for four different values of propagation time τ . Here,
one clearly observes how a wave of disorder ripples through
the lattice. Again, the sites that obey Eq. (28) are completely
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FIG. 4. Magnetization surrounding a hole (black cross) for four different times after it was created. Each tile represents a spin and its color
gives the magnetization. White tiles have an unperturbed magnetization M(τ, d) = 1.

unaffected, such that the wave only travels through two of the
three sublattices. In the last panel of Fig. 4, the asymptotic
steady state is attained, where the spin ordering has relaxed to
the polaron ground state value.

IV. SCBA ANALYSIS

Having analyzed in detail the large J regime where hole is
stationary, we now examine general values of J/t . In this case,
the hopping of the hole driven by Ĥt will lead to additional
dressing by magnetic frustration and the problem cannot be
solved exactly.

We analyze the problem via the retarded Green’s function
of the hole, which in frequency and momentum space reads

G(k, ω) = 1

ω − ωh
k − 
(k, ω)

, (29)

where we have suppressed an infinitesimal positive imaginary
part to the frequency ω + iη+. The self-energy 
(k, ω) is cal-
culated using the self-consistent Born approximation (SCBA),
which is known to be very accurate for the equilibrium prop-
erties of a hole in a SAFM [48–51]. Recently, the accuracy of
the SCBA was established for the nonequilibrium case as well
where it was shown to agree very well with experimental data
on a SAFM [58].

In the SCBA, the self-energy is evaluated using all non-
crossing diagrams leading to the self-consistent equation


(k, ω) =
∑

q

|Vk,q|2
ω − ωb

q − ωh
k+q − 


(
k + q, ω − ωb

q

) . (30)

We solve this on a finite momentum grid by iteration starting
from 
(k, ω) = 0. The grid is created assuming a regular
hexagonal lattice of side length l , with periodic boundary con-
ditions such that the total number of independent lattice sites
equals N = 3l2 [15]. As an example, we show in Fig. 5 the
grid for the case l = 4. Due to the C3 rotation and y-inversion
symmetry of the BZ, we only need to evaluate the slice shown
in red in Fig. 5. In the numerics, we use a lattice dimension
l = 20, giving a total of 1200 spins. For convergence, we use
a broadening η+/|t | = 0.01.

A. Magnetic polarons

We now explore the properties of the hole focusing on t <

0, since the polaron is strongly suppressed except for special
points in the BZ for t > 0 [19].

In the top panel of Fig. 6(a), we plot the hole spectral
function A(k, ω) = −2ImG(k, ω) for J/|t | = 0.3 and the mo-
mentum labeled by the point M in the BZ shown in Fig. 5. We
see a clear quasiparticle peak at the energy ω/|t | � −3.84,
which we interpret as the energy of the magnetic polaron.
It turns out that this is the ground state as the polaron ener-
gies for other momenta are higher. For comparison, we also
show the spectral function for the hole in a SAFM for the
momentum k = (π/2, π/2) exhibiting a polaron peak at the
energy ω/|t | � −2.4, which also corresponds to the ground
state. Interestingly the ground state spectral functions for the
two lattices are quite similar with a clear polaron peak at low
energy, followed by a continuum with several smaller reso-
nances. These peaks have been identified as string excitations
in the case of a SAFM, corresponding to the hole oscillating
in a linear potential formed by misaligned spins in its wake

FIG. 5. Momentum grid in the BZ for l = 4 with the independent
states highlighted as red squares. The momentum states � ≡ (0, 0),
M ′ ≡ (2π/3, 0), K ≡ (4π/3, 0), and M ≡ (π,

√
π/3) are shown.

The symmetry axes of the structure factors used in deriving Eq. (28)
are shown as grey dashed lines.

235143-6



HOLES AND MAGNETIC POLARONS IN A TRIANGULAR … PHYSICAL REVIEW B 106, 235143 (2022)

FIG. 6. (a) (Top) The hole spectral functions A(k, ω) within SCBA for J/|t | = 0.3 and t < 0 for the ground state, corresponding to the
momentum M in the BZ for the TAFM and the momentum (π/2, π/2) for the SAFM. (Bottom) The spectral functions for zero momentum.
(b) and (c) respectively show the polaron dispersion in the full BZ for the SAFM with N = 162 spins and the TAFM with edge length l = 10.

[59], and in analogy we can make the same identification for
the case of the TAFM [19].

In the bottom panel of Fig. 6(a), the spectral function is
plotted for zero momentum. Again, we see clear polaron peaks
for both the TAFM and the SAFM. In addition, the spectral
function for the TAFM has a broad new resonance appearing
at ω ≈ 4.5|t | that may be interpreted as originating from the
bare hole kinetic energy, see Fig. 2(b) [19]. If the spectral
function is tracked varying the momentum from the origin �

of the BZ towards the point M on the edge, we observe that
this high energy resonance smoothly evolves into the ground
state polaron consistent with the hole dispersion.

Finally, we show in Figs. 6(b) and 6(c) the polaron
dispersions in the full BZ obtained by solving ωk − ωh

k −
Re
(k, ωk ) = 0, where ωk is the polaron energy. This illus-
trates the differences between the energy bands of the polaron
in the SAFM and the TAFM.

B. Polaron properties as a function of J/|t|
As we discussed above, there is no clear separation be-

tween a weak and a strong coupling regime for a hole in a
TAFM, since the interaction vertex given by Eq. (9) has a
term ∝ J in addition to a term ∝ t . This is in contrast to the
SAFM, where there is no interaction term ∝ J so that J/|t | �
1 corresponds to weak coupling. Therefore we study in this
section the properties of the polaron as a function of J/|t |.
This will also allow us to make an important benchmarking
of the SCBA by comparing it with the analytical solution for
J � t derived in Sec. III.

The top panel in Fig. 7 plots the polaron energy as a
function of J/|t | (t < 0) for the ground state momentum and
the momentum at the point K in the BZ, see Fig. 5. We
see that the energies depend nonmonotonically on J/|t | ex-
hibiting a maximum for intermediate values. In the limit of
large J/|t |, the SCBA predicts the polaron energies approach
the asymptotic values ωk � −0.129J and ωk � −0.133J for
the K and M points respectively. Importantly, this deviates
by less than 10% from the analytic result given by Eq. (15)
for J/|t | → ∞, which indicates that in the limit of large J
the SCBA is accurate also for the TAFM in addition to its
well-known precision for the SAFM.

In the regime J/|t | � 1, the momentum dependence of the
polaron energy can be calculated perturbatively to first order
in t from the hole kinetic energy term in Eq. (7). Since the
hole dispersion ωh

k has a minimum at the K point for t < 0,
see Fig. 2(b), the magnetic polaron also has a minimum at this
momentum for large J/|t | as can be seen from Fig. 6(c). As
a result, the ground state momentum changes discontinuously
with increasing J/|t | as is illustrated further in the inset of
Fig. 7.

The bottom panel in Fig. 7 plots the quasiparticle residues
of the polarons calculated as Zk = [1 − ∂ωRe
(k, ω)|ω=ωk ]−1

FIG. 7. The polaron energy ωk (top) and quasiparticle residue Zk

(bottom) as a function of J/|t | for t < 0. The asymptotic slope of
the dispersion for large J is shown for each mode, and the large-J
quasiparticle residue from the coherent state solution is shown as a
dotted line. The inset shows the polaron energy along the edge of
the BZ, starting from M, passing through K , and returning to M for
two values of J/|t | on either side of the crossing point of the M
and K modes, showing the discontinuous jump in the ground state
momentum.
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[56]. When J/|t | → 0, the residues go to zero reflecting that a
large hopping leads to a strongly dressed hole and an eventual
disappearance of the magnetic polaron like in the case of the
magnetic polaron in a SAFM. The residues increase with J/|t |
and converge to an asymptotic value for J/|t | � 1, which
overestimates the result Z = 0.8003 given by Eq. (18) by just
3%. In Appendix F, we show that this remarkable accuracy
of the SCBA in a TAFM with strong magnetic interactions
can can be attributed to the coherent state coefficients αk =
V J

k /ωb
k, whose absolute value is generally much smaller than

unity.

V. CONCLUSION AND OUTLOOK

We explored the equilibrium and nonequilibrium dynamics
of a hole in a triangular lattice of anti-ferromagnetic spins,
using the t − J model in a slave fermion representation and
linear spin wave theory. In the limit of strong magnetic cou-
pling, we derived an analytic solution within linear spin-wave
theory showing that the ground state is a polaron consisting
of a static hole dressed by a coherent state of spin waves,
which is a direct consequence of the geometric frustration
of the lattice. We also solved for the dynamics ensuing the
sudden creation of a hole in a give lattice site. This describes a
wave of magnetic frustration emanating from the hole, which
leaves one third of the spins in the lattice unperturbed due to
a destructive interference between the spin waves. For long
times, the magnetization relaxes to that of the ground state
polaron. We then benchmarked the SCBA against our analytic
solution showing that in addition to its well known accuracy
on a SAFM, it also gives reliable results on a TAFM in the
limit of strong magnetic interactions. The properties of the
magnetic polaron on a TAFM were finally analyzed for gen-
eral coupling strengths and compared to those on a SAFM.

Our results motivate several interesting directions for fu-
ture research. While the linear spin wave theory used here is
accurate for low energies, the corrections for higher energies
are larger in a TAFM than in a SAFM due to geometric frus-
tration [14], and it could be interesting to explore their effects
on the magnetic polaron. Also, an intriguing but challenging
question concerns the properties of a hole in a spin liquid
phase, which is predicted to exist in a triangular lattice for
intermediate values of the on-site repulsion compared to the
hopping [7], or in the presence of next-nearest neighbor mag-
netic coupling [60]. Ultimately, an experimental realization of
spin 1/2 fermions in a triangular lattice at low temperatures
using either atoms in optical lattices [39,40], electrons in
moiré superlattices [41–44], or Rydberg quantum simulators
[61] will likely result in a breakthrough regarding our under-
standing of charge motion in geometrically frustrated lattices.
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APPENDIX A: POSITION SPACE HAMILTONIAN

In this Appendix, we denote all contributions to the
second-order t − J model Hamiltonian in the slave fermion
representation explicitly. First the contribution Ĥt due to the
electron hopping is given by

Ht = t

4

∑
i

∑
δ

[ĥiĥ
†
i+δ + H.c.]

+
√

3t

4

∑
i

∑
δ+

[ĥiĥ
†
i+δ+ ŝi+δ+ + ŝ†

i ĥiĥ
†
i−δ+

− ĥiĥ
†
i−δ+ ŝi−δ+ − ŝ†

i ĥiĥ
†
i+δ+ + H.c.]. (A1)

The sum over δ represents a sum over all 6 nearest neighbor
vectors. In deriving this Hamiltonian from Eq. (1), we have
applied a local Gauge transformation ĉ†

i,σ → eiπ ĉ†
i,σ for every

spin where ix = n with n ∈ Z. This transformation flips the
sign on select nearest neighbor vectors, ensuring that the two
structure factors gk and g̃k are sufficient for expressing the
momentum space Hamiltonian. Note that the spin operators
are unaffected by this choice. The expression for HJ is given
in Eq. (6), where the quadratic contributions Ĥs are given by

Ĥs = 3J

4

∑
i

[ĥ†
i ĥi + 2ŝ†

i ŝi]

+ J

16

∑
i

∑
δ

[ŝiŝ
†
i+δ − 3ŝ†

i ŝ†
i+δ + H.c.]. (A2)

APPENDIX B: LOCAL MAGNETIZATION AFTER
CREATION OF A HOLE

In this Appendix, we derive Eq. (24) from Eq. (23). First
we write the local expectation value of the rotated spin opera-
tor into the slave-fermion representation,

〈
Ŝz′

r+d

〉
r(τ ) = 1

2
− 〈ŝ†

r+dŝr+d〉r(τ ),

= 1

2
− 1

N

∑
k,q

e−i(k−q)·(r+d)〈ŝ†
k ŝq〉r(τ ). (B1)

Upon introducing the Bogolubov transformation towards
spin-wave operators b̂k, one can rewrite to obtain〈
Sz′

r+d

〉
r(τ )

= 1

2
− 1

N

∑
k

v2
k

− 1

N

∑
k,q

e−i(k−q)·(r+d)〈b̂†
kb̂q〉r(τ )(ukuq + vkvq)

− 1

N

∑
k,q

e−i(k−q)·(r+d)vkuq(〈b̂−kb̂q〉r(τ ) + 〈b̂†
kb̂†

−q〉r(τ)).

(B2)

One recognizes the expression for MAF as given in Eq. (22)
in the first line. The dependence on r disappears after ap-
plying the gauge transform b̃k = b̂keik·r, as expected for a
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translationally invariant system,〈
Sz′

r+d

〉
r(τ ) = MAF − 1

N

∑
k,q

e−i(k−q)·d〈b̂†
kb̂q〉r(τ )(ukuq+vkvq)

− 1

N

∑
k,q

e−i(k−q)·dvkuq(〈b̂−kb̂q〉r(τ )

+ 〈b̂†
kb̂†

−q〉r(τ )). (B3)

Since the coherent state |�r(τ )〉 is an eigenstate of b̃k, with
eigenvalue α∗

k(1 − e−iωb
kτ ), the expectation values in Eq. (B3)

factor exactly with respect to the two momenta. Hence the
integrals over k and q are independent and are given by the
functions Aτ,d[u] and Aτ,d[v] as defined in Eq. (25).

APPENDIX C: ANALYSIS OF UNPERTURBED
LATTICE SITES

As one observes in Figs. 3 and 4, the presence of the
hole has no effect on the local magnetization on one of the
three sublattices. This behavior can be derived analytically by
noting that the Brillouin zone on the TAFM is exactly mir-
rored with respect to the two axes kx = 0 and ky = ±kx/

√
3

(see Fig. 5). The structure factors gk and g̃k are respectively
symmetric and asymmetric with respect to these axes, as can
be checked by computing the mirror images,

k1 =
⎛
⎝ 1

2

√
3

2√
3

2 − 1
2

⎞
⎠k, k2 =

(−1 0
0 1

)
k, (C1)

which gives gk = gk1 = gk2 and g̃k = −g̃k1 = −g̃k2 . Consider
now the integrals Aτ,d[u] and Aτ,d[v] which set the d depen-
dence of the magnetization. Excluding the d dependent phase
factor, one can use the stated properties of the structure factors
to show that the integrand is always asymmetric with respect
to the symmetry axes. Hence, for |d| = 0, the total integral
should always vanish exactly. For finite |d|, the integral will
vanish if eik·d is symmetric with respect to any of the sym-
metry axes, i.e., if eik·d = eik1·d or eik·d = eik2·d. Solving for d
will give Eq. (28), which correspondingly captures all the sites
where the symmetry of the lattice dictates that no disturbing
influence of the hole will be felt. Note that in the 120◦ Néel
AF state the sites where (28) holds correspond with the sites
where the spins are aligned with the spin that was originally
at the site of the hole, i.e., the sites where θ = Q · d = 0. We
emphasize once more that all our computations are limited to
linear spin-wave theory, and it could be the case that higher
order corrections due to spin-wave interactions will disturb
the spins at the above mentioned sites. Quantifying the size of
this correction, however, goes beyond the scope of this work.

APPENDIX D: SCBA RESULTS FOR POSITIVE t

In this section, we give some additional SCBA results for
the case t > 0. They are collected in Fig. 8, which can be
directly compared with Fig. 7. As expected, the results for
large J/t converge to the coherent state results of Sec. III with
some small error due to the SCBA approximation. In contrast
with the case t < 0, the polaron ground state is situated at
the zero momentum � regardless of the value of J , which

FIG. 8. The polaron energy ωk (top) and quasiparticle residue Zk

(bottom) as a function of J/|t | for t > 0.

matches the ground state of the uncoupled spin waves and
holes (see Fig. 2). Consequently, the t > 0 magnetic polaron
lacks a ground state crossing as was observed for negative
t . In the small to intermediate J/|t | regime the excited M ′
polaron state abruply disappears when J/t � 1. This sudden
suppression of the quasiparticle weight has been analyzed in
detail in Ref. [19], using a similar approach but neglecting
the static J-dependent spin-wave interaction. Our model re-
produces their findings, altered by a small inflection point in
the quasiparticle weight around the critical value.

APPENDIX E: J SCALING OF EXCITED
POLARON MODES

In this Appendix, we present some additional results for the
scaling of the polaron modes with J , specifically considering
the case t < 0 and the scaling of the modes � and M ′ in the
inner parts of the BZ. Scans of the polaron energy and spectral
weight similar to Fig. 7 in the main text are shown in Figs. 9(a)
and 9(b).

Consider first the M ′ mode. As briefly mentioned in the
main text, a robust quasiparticle solution already appears for
intermediate value of J , although it does not develop smoothly
into the coherent state. First around J/|t | ≈ 10, we observe
a sharp feature in which the spectral weight of the polaron
is strongly supressed. To understand this better we plot in
Fig. 9(c) the full spectral function A(ω) at the M ′ mode for
three different values of J around the suppressive feature,
denoted with I, II, and III and also shown in Fig. 9(b). For
J/|t | < 10, there exists a clear polaron solution as shown
by the red dotted line. One will note that just below this
peak there exist a couple of smaller peaks where ωk − ωh

k −
Re
(k, ωk ) approaches close to zero, but does not cross.
As J is increased the curves moves closer to zero until at
some critical value of J a zero crossing appears, leading to
new quasiparticle solutions just below the solution we have
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FIG. 9. Behavior of the magnetic polaron in all four modes highlighted in Fig. 5 as a function of J/|t |, for the case t < 0. In (a) and (b), the
polaron energy and spectral weight are shown, where each mode is distinguished with a unique color. In (c), we show the full spectral function
at the M ′ mode for three distinct values of J encoded as points I, II, and III. These are shown in (b) with vertical grey lines.

highlighted. At point II, these different closely spaced solu-
tions lead to a break-up of the quasiparticle peak, creating a
strong suppression of spectral weight as observed in Fig. 9(b).
As J is increased further, a new single peak emerges that
will subsequently develop into the coherent state, as shown
in the spectral function at point III. The � mode also shows
different nontrivial behavior. For small and intermediate val-
ues of J there exists a quasiparticle solution with low spectral
weight, also observed in Ref. [19]. As J is increased this so-
lution moves to higher energy, suggesting that it develops into
some excited polaron state. Then at some point it is damped
completely in favor of a new solution that quickly grows in
spectral weight towards the asymptotic coherent state value.
This solution however follows a similar curve as observed for
the M ′ mode, with a strong suppression of spectral weight
around J/|t | ≈ 30 before developing into the coherent state
solution outside of the range we plot. Evidently the behavior
of excited polaron modes in our model is quite complicated,
and we note that it may be influenced by finite size effects that
persist on our 1200 spin lattice.

APPENDIX F: COMPARISON SCBA WITH LARGE J LIMIT

In this Appendix, we show that the coherent state self-
energy equation reproduces the SCBA equation up to first
order in the dimensionless coefficient |αk| = |V J

k /ωb
k|. First

we can use Eq. (13) to obtain the time dependent hole Green’s
function G(τ ) = −iθ (τ )〈h|e−iHτ |h〉. Using the same tech-
niques as applied in deriving Eq. (20), we find

G(τ ) = −iθ (τ )e−iEJ τ e− ∑
k |αk|2

(
1−e−iωb

kτ
)
. (F1)

Now take the derivative with respect to τ on both sides and
Fourier transform to frequency space. Then we obtain the
following self-consistent equation for the Green’s function,

G−1(ω) = ω − EJ

1 + ∑
k

|V J
k |2

ωb
k

Gr
(
ω − ωb

k

) . (F2)

As expected the Green’s function diverges at the polaron
ground state energy ω = EJ , and is momentum independent.
From the Green’s function, we obtain a self-consistent equa-
tion for the self-energy,


r(ω) =
ω

∑
k

|V J
k |2

ωb
k

1
ω−ωb

k−
(ω−ωb
k )

+ EJ

1 + ∑
k

|V J
k |2

ωb
k

1
ω−ωb

k−
(ω−ωb
k )

. (F3)

Note that for V J
k = 0 this equation reduces trivially to the

associated SCBA equation. A Taylor expansion to first order
in αk gives


r(ω) ≈ ω
∑

k

∣∣V J
k

∣∣2

ωb
k

1

ω − ωb
k − 


(
ω − ωb

k

) + EJ (F4)

or, upon substituting EJ and rewriting


r(ω) ≈
∑

k

∣∣V J
k

∣∣2

ω − ωb
k − 


(
ω − ωb

k

)

+
∑

k

∣∣V J
k

∣∣2

ωb
k



(
ω − ωb

k

)
ω − ωb

k − 

(
ω − ωb

k

) . (F5)

The first line is just the SCBA equation (30) with t = 0. The
second line encodes higher order corrections due to crossing
diagrams neglected in the SCBA approach, which scale with
higher powers of |αk|.
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