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Doping effects in high-harmonic generation from correlated systems
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Using the one-dimensional Hubbard model, which is commonly used for describing, e.g., high-Tc super-
conducting cuprates, we study high-harmonic generation (HHG) from doped, correlated materials. Doping is
modeled by changing the number of electrons in the lattice from the conventional half-filling case. For relatively
small Hubbard U , i.e., small electron-electron correlation, we find little to no effect of doping on the dynamics
and the HHG spectra. For increasing U the degree of doping has a marked effect on the dynamics and spectra.
We explain these findings through the quasiparticle-based doublon-holon picture. The dynamics are separated
into two types, first, doublon and holon movement, and, second, doublon-holon pair creation and annihilation.
Doping results in all configurations containing doublons or holons. Those quasiparticles can move at no extra
cost in energy regardless of the correlation level. This motion at no energy cost increases the high-harmonic gain
for low- and medium-harmonic orders. We discuss that in the high-U limit, antiferromagnetic ordering becomes
increasingly unlikely with increasing doping rates and explain an associated drop in the high-order harmonics
relative to the case of half-filling.
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I. INTRODUCTION

High-harmonic generation (HHG) is a highly nonlinear,
ultrafast, attosecond to femtosecond (10−18–10−15 s) process
through which ultrashort laser pulses, with high photon energy
can be produced [1–5]. The HHG process also allows for
retrieval of spectrographic information of the generating ma-
terials at a subfemtosecond timescale [4,6–10]. A prominent
description of the HHG process in solids originates from the
Bloch-band picture and splits the dynamics into two types:
intraband and interband HHG [11,12]. The intraband HHG
arises from a charge carrier propagating through a curved
Bloch band, the underlying acceleration results in radiation.
The interband HHG is best described using the so-called
three-step model: (i) an electron is excited across a band gap,
(ii) the excited electron and created hole propagate through
their respective bands, resulting in intraband radiation, and
(iii) the hole and electron recombine thus emitting a pho-
ton with energy given by the energy difference between the
conduction and valence bands in question at the crystal mo-
mentum at the time of recombination [12].

Since the first observation of HHG from solids [5], it
has garnered much interest, as the higher particle density
as compared to gases could enable the production of higher
intensity ultrafast pulses [1,9,13–22]. Recently, research into
HHG from highly correlated materials, such as Mott insu-
lators, has received much interest both theoretically [10,23–
35] and experimentally [36–38]. The Hubbard model has
been used in this context as it captures certain aspects of the
physics in real materials [39,40]. One such class of materials
is cuprates. Cuprates contain high-temperature supercon-
ductors and therefore much research towards understanding
the mechanism leading to superconductivity in cuprates and

pushing their critical temperature higher has been done
[41,42]. As a result, it is highly interesting to elucidate the
transport properties of such materials, e.g., through HHG.
In all cuprate materials, the onsite electron repulsion plays
a significant role in the dynamics of the system. They can
therefore be described as, potentially, doped Mott insulators
[39,40]. Note that the metal-insulator transition generally hap-
pens for solids with only full, empty, or half-filled bands, i.e.,
Mott insulators are only achieved when every band is either
full, empty, or half-filled. Another group of materials, some
of which can be simulated by similar Hubbard-model-based
techniques, are the nearly one-dimensional organic charge-
transfer salts. These salts can range from Mott insulators,
through organic metals, to superconductors [43].

This leads us back to the predominant model for studying
correlated materials, the Hubbard model. Onsite electron-
electron repulsion is included through the so-called Hubbard-
U term. This model is frequently used to study HHG from
Mott insulators [10,23,24,34]. Such studies have led to a
three-step model formulated in terms of doublon and holon
quasiparticles. Doublons are doubly occupied lattice sites,
and holons are empty sites. The three steps are as follows:
(i) A doublon-holon pair is created, (ii) the created dou-
blon and holon propagate throughout the lattice, and (iii) the
doublon-holon pair recombines under emission of a high-
energy photon [24].

Studying HHG from Mott insulators requires the half-
filling assumption. However, cuprates include materials for
which the highest occupied band is far from half-filled [40].
It is noted that one-dimensional cuprate chains have been
synthesized with many different degrees of hole doping [44].
As the degree of band filling is of extreme importance to the
dynamics [43] it is of interest to go beyond the assumption of
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half-filling and address its influence on the ultrafast dynamics
in correlated materials through the nonlinear process of HHG.
Especially as half-filling is a special case in correlated ma-
terials since the ground state contains neither doublons nor
holons for U → ∞. So here we present a study of HHG
using the Hubbard model for non-half-filling cases. Our goal
is to elucidate the following questions: (i) What effects does
doping away from half-filling have on the HHG spectra? (ii)
How do the dynamics of non-half-filled bands differ from
half-filled bands? (iii) How do the changes in the dynamics
and HHG spectra relate to one another?

The paper is organized as follows. In Sec. II, the theoretical
model and numerical methods are introduced. In Sec. III, the
results are presented and analyzed and, finally, in Sec. IV
we conclude. Atomic units are used throughout unless stated
otherwise.

II. THEORETICAL MODEL AND METHODS

We work with the one-band Hubbard model on a one-
dimensional chain of L = 12 atoms with periodic boundary
conditions. We use different numbers of electrons, keeping
the number of spin-up and -down electrons equal at all times
to consider spin-neutral situations for a range of different
degrees of band filling.

In the presence of a driving laser pulse, the Hubbard model
Hamiltonian can be expressed as [45]

Ĥ = −t0
∑
i,σ

(eiaA(t )ĉ†
i+1,σ ĉi,σ + H.c.) + U

∑
i

n̂i,↑n̂i,↓, (1)

where t0 is the nearest-neighbor hopping matrix element
which, by lattice symmetry, is independent of lattice site and
hopping direction. An electromagnetic field is included via
Peierl’s phase e±iaA(t ) where a is the lattice spacing and A(t )
is the electromagnetic vector potential treated in the electric
dipole approximation, i.e., neglecting the spatial dependence
in A(t ). The fermionic creation and annihilation operators for
an electron on site i with spin σ ∈ {↑,↓} are denoted by
ĉ†

i,σ and ĉi,σ , respectively. The electron-electron correlation
is included via the Hubbard-U term. U will be treated as a
parameter. Finally, n̂i,σ = ĉ†

i,σ ĉi,σ is the number operator for
electrons on site i with spin σ . It is seen from the last term in
Eq. (1) that each doublon increases the energy in the system
by U . The values for lattice spacing and hopping term were
picked to fit those of Sr2CuO3 [46], as was done previously
in Ref. [10]. The specific values are a = 7.5589 a.u. and
t0 = 0.0191 a.u.

We use a linearly polarized, Nc = 10 cycle pulse with po-
larization direction along the lattice dimension. We use a sin2

envelope. The explicit form of the vector potential is

A(t ) = A0 cos(ωLt − Ncπ ) sin2

(
ωLt

2Nc

)
. (2)

The vector potential amplitude is given by A0 = F0/ωL =
0.194 a.u. and the angular frequency by ωL = 0.005 a.u.= 33
THz. The field strength F0 corresponds to a peak intensity of
3.3 × 1010 W/cm2.

Nonvanishing values of U lead to a Mott gap. In the
U = 0 limit, the model reduces to that describing a single
Bloch band, i.e., in this limit only intraband dynamics occur.

Note that intraband models have been successful in describing
HHG from a variety of materials [5,9,14–17,47].

The simulations are done by solving the time-dependent
Schrödinger equation via the Arnoldi-Lancoz algorithm
[48–51]. This goes for both the imaginary-time propagation
used to find the initial ground state and the real-time prop-
agation. The imaginary-time propagation continues until the
energy is converged and the electron density is translationally
symmetric. The latter is required by translation symmetry
of the lattice. We find that the symmetry requirement is the
stricter of the two when starting the imaginary-time propa-
gation from a random initial state. We test that we achieve
convergence of the real-time propagation by comparing spec-
tra and currents for increasing Krylov subspace dimension and
decreasing time step. In practice this means we use a maximal
Krylov subspace dimension of 4 and a time step of 1 a.u. In
the case of half-filling and U = 0.1t0 we needed to decrease
the time step by a factor of 10 to 0.1 a.u. in order to achieve
convergence.

We consider a target that is thin in the laser propaga-
tion direction. This allows us to neglect propagation and
phase-matching effects [52]. In this case, the generated field
is proportional to the electron acceleration, i.e., the time
derivative of the current. Therefore the spectrum S(ω) is
expressed as

S(ω) =
∣∣∣∣F

(
d

dt
j(t )

)∣∣∣∣
2

= |ω j(ω)|2, (3)

where j(ω) is the Fourier transform (F) of the current j(t ) =
〈 ĵ(t )〉. Here the current operator reads as [53]

ĵ(t ) = −iat0
∑
i,σ

(eiaA(t )ĉ†
i+1,σ ĉi,σ − H.c.). (4)

In the analysis of our results, we will utilize a separation of
the current into two parts. These are the currents associated
with the movement of doublons and holons and the current
associated with the creation or annihilation of doublon-holon
pairs. This separation is in line with the earlier mentioned
parallel to the three-step model. The creation and annihilation
dynamics are parallel to interband dynamics, and the dou-
blon and holon hopping dynamics are parallel to intraband
dynamics [23]. As the U term of Eq. (1) effectively counts
the number of doublons, this distinction is physically relevant.
Following Ref. [24], we denote these currents as jca(t ) =
〈 ĵca(t )〉 and jhop(t ) = 〈 ĵhop(t )〉 respectively. Here “ca” refers
to the creation and annihilation of doublon-holon pairs, and
“hop” refers to the current associated with the hopping of
doublons and holons. The current operator can be expressed
as ĵ(t ) = ĵca(t ) + ĵhop(t ) with [24]

ĵca(t ) = iat0
∑
i,σ

[eiaA(t )(d̂†
i,σ ĥ†

i+1,σ + ĥi,σ d̂i+1,σ ) − H.c.], (5)

ĵhop(t ) = iat0
∑
i,σ

[eiaA(t )(ĥi,σ ĥ†
i+1,σ + d̂†

i,σ d̂i+1,σ ) − H.c.], (6)

where d̂†
i,σ = ĉ†

i,σ n̂i,γ and ĥ†
i,σ = ĉi,σ (Î − n̂i,γ ) are operators

which create a doublon or holon, respectively, on site i by
creating or annihilating an electron with spin σ . Note that γ

denotes the spin, opposite to σ , and Î denotes the identity
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FIG. 1. Illustration of the separation of the dynamics into cur-
rents jca(t ) associated with the (a) annihilation and (b) creation of
doublon-holon pairs, and into currents jhop(t ) associated with the
hopping of a (c) doublon or a (d) holon. Sites are illustrated by black
circles. In each panel the upper sites are the initial configuration, and
the bottom the final configuration. The transition is created by the
operator written in the middle of each panel. A red arrow indicates
that a spin-down electron occupies the given site, similarly, a blue
arrow indicates that a spin-up electron occupies the given site.

operator. The operators achieve their function, in terms of
hopping, creation, and annihilation, by effectively doing two
things. First, they check whether an electron with spin γ is or
is not on the site in question, for doublon or holon manipula-
tion, respectively. Second, they create or annihilate an electron
with spin σ on the given site. Figure 1 illustrates examples of
the action of terms in Eqs. (5) and (6) describing the hopping
of a spin-up electron from site i to site i + 1. We see from the
figure how these operators (a) annihilate a doublon-holon pair,
(b) create a doublon-holon pair, moves (c) a doublon or (d) a
holon.

In our analysis of the results, we also consider spectra
generated from only jhop(t ) and jca(t ), respectively. Those
spectra are given by

Shop(ω) = |ω jhop(ω)|2, Sca(ω) = |ω jca(ω)|2. (7)

Although Sca(ω) and Shop(ω) can not be measured individ-
ually since S(ω) = |ω j(ω)|2 = |ω jca(ω) + ω jhop(ω)|2, these
latter spectra can still indicate the relative importance of each
mechanism.

To interpret results regarding this separation of the under-
lying dynamics, we utilize the measure

D(t ) =
∑

i

〈n̂i,↑n̂i,↓〉
L

. (8)

This D measure is the expectation value of the U term, of
Eq. (1), scaled by 1/(UL). The D measure, therefore, provides
a way to compare the effects of the U term across different
simulations. In the limit of U 	 t0, the eigenstates of Eq. (1)
become energetically separated into groups defined by the
number of doublons in the given state. Those groups are
commonly called Hubbard subbands [41,42,45]. For high U ,
changes in D(t ) therefore also indicate excitation.

We will also benefit from a measure that correlates more
directly to the probability of doublon-holon pair creation.
With that in mind, we utilize the following measure:

Paf(t ) =
〈 ∑

〈i, j〉

n̂↑,i(Î − n̂↓,i )(Î − n̂↑, j )n̂↓, j

L

〉
, (9)

which gives the probability of observing antiferromagnetic
(“af”) ordering when observing two neighboring sites at ran-
dom. Regarding the notation, i and j are nearest-neighbor
lattice site indices, denoted by 〈i, j〉. Note that antiferro-
magnetic ordering across two sites, depicted as the final
configuration in Fig. 1(a) and initial configuration in Fig. 1(b),
means there is precisely one electron on each site, and that
they have opposite spin. As doublon-holon pairs can only
be created through transitions across antiferromagnetically
ordered, nearest-neighbor sites, as depicted in Fig. 1(b), the
probability of observing sites with antiferromagnetic order is
heavily correlated to the probability of doublon-holon-pair-
creating transitions.

We will also utilize the Mott gap, which is a jump in the
chemical potential around half-filling. Adding an electron to
the system when it is less than half-filled does not require
the creation of a new doublon. In opposition, a new doublon
is created by adding an electron to the system when it is at
half-filling or above. This difference means the U term has
little to no impact on the chemical potential when adding
an electron below half-filling but a substantial impact when
adding an electron at or above half-filling. The Mott gap can
be calculated as [41,54]

�Mott(U ) = EL+1
GS (U ) + EL−1

GS (U ) − 2EL
GS(U ), (10)

where En
GS(U ) is the ground-state energy of the system con-

taining n electrons and U being the U value from the Hubbard
Hamiltonian (1). Note that n = L corresponds to half-filling.
The Mott gap in Eq. (10) is an approximation to the minimum
energy needed to create a doublon-holon pair and is calculable
without having to diagonalize the entire system. Diagonaliza-
tion of the entire system is often not tractable due to memory
constraints.

Finally, we will need some basic results regarding the
Bloch band described by the hopping term in the U = 0 limit.
In this case, the field-free tight-binding model can be solved
analytically for the ground-state energy:

En
GS(U = 0) = 2


 n−1
4 �∑

i=
− n−1
4 �

ε(ki ) (11)

ε(ki ) = −2t0 cos(kia), (12)

ki = i2π

La
, i ∈

{
0,±1, . . . ,±

(
L

2
− 1

)
,

L

2

}
. (13)

Here ε(ki ) is the energy of the Bloch state with crystal mo-
mentum ki, and n is the number of electrons in the lattice. We
assume here and throughout an equal number of spin-down
and spin-up electrons. We write the rounding up operator as
the 
�� brackets. The total energy width of the Bloch band,
commonly known as its bandwidth, is

�width = 4t0, (14)
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which corresponds to �15 harmonic orders. In the following
we will use the term energy width of the Bloch band to
describe �width to avoid any confusion with the bandwidth of
the laser pulse.

By using the hopping term in Eq. (1) and the Heisenberg
equation of motion one can then show that in the U = 0 case
the current reads as

j0(t ) = aEn
GS(U = 0) sin [aA(t )], (15)

which shows that for sufficiently small aA(t ) the current is di-
rectly proportional to the vector potential. Finally, we remark
that En

GS(U = 0) < 0 so positive A(t ) yields negative current
and vice versa.

III. RESULTS AND DISCUSSION

In this section, we present our results and analyses. We
consider four U values: U = 0.1t0, 2t0, 5t0, and 10t0, which
are picked as representative values based on a more thor-
ough parameter scan. U values up to 10t0 have been seen in
cuprates [55].

A. HHG spectra

We begin by discussing the HHG spectra for various U
values and degrees of band filling, as shown in Fig. 2. The
spectra are identical with respect to band filling around half-
filling, which is why only three of the five plotted degrees of
band filling are visible in each panel. First, we present some
important points from Fig. 2 and leave the discussion of their
origin for later to relate those observations to equations from
the previous section. We will refrain from introducing a more
qualitative picture of the results until later as we will benefit
from more results before doing so.

Figures 2(a) and 2(b) show spectra for U = 0.1t0 and 2t0,
respectively. In both cases, the changing degree of band fill-
ing has minimal impact on the spectra. The oscillations in
the U = 0.1t0 half-filled lattice spectrum which start from
around the 55th harmonic are a result of numerical uncer-
tainty. The spectra for U = 0.1t0 and 2t0 are dominated by
plateaus ending at approximately the 30th harmonic order.
Thirty harmonic orders correspond to twice the energy width
of the Bloch band, 2�width. As the U term is not diagonal in
k space it couples different states in the Bloch bands. This
means the U term can move electrons to the peaks of the
Bloch band. This means harmonics with energy correspond-
ing to �width, approximately the 15th harmonic order, can be
created through a single-electron transition. As the U term
is a two-particle operator, it can transfer two electrons in k
space at any given time. This doubles the maximal energy
gap between initial and final states which caps the harmonics
at the 30th order. Transitions with higher energy than that
are not possible by moving two electrons within the Bloch
band, so the emission of harmonics with higher energy than
2�width is unlikely. This is indicated by the plateau ending
at approximately 30 harmonic orders in both Fig. 2(a), U =
0.1t0, and 2(b), U = 2t0. For such low U the creation or
annihilation of doublons have little to no impact on the energy
associated with the transitions and therefore little to no impact
on the harmonics generated. For larger U , a relatively larger

FIG. 2. HHG spectra [Eq. (3)] for different degrees of band fill-
ing and Hubbard U . (a) U = 0.1t0, (b) U = 2t0, (c) U = 5t0, and
(d) U = 10t0. The dashed, black vertical lines indicate the U value
in terms of harmonic orders, the full black vertical lines on the left
indicate the Mott gap [see Eq. (10)], and the full black vertical lines
on the right indicate the Mott gap plus twice the energy width of the
underlying Bloch band, i.e., �Mott(U ) + 2�width.

energy is needed when creating a doublon and likewise a
relatively larger energy is released when annihilating a dou-
blon. This means that harmonics with energy below �Mott

cannot be created from doublon annihilation. Note that the
Mott gap increases with U . In both the U = 0.1t0 and 2t0
cases the Mott gap is small, �Mott = 0.07 and 2.4 harmonic
orders, respectively. For U = 5t0 [Fig. 2(c)], the Mott gap has
increased to �Mott = 9.4 harmonic orders, which coincides
nicely with the beginning of the observed spectral plateau.
The plateau then extends to around the 40th harmonic order
resulting in a total plateau length of 30 harmonic orders as
for the lower U values. While this looks similarly to the
result obtained for lower U , the physical mechanism is likely
different as the U term will dominate the electron dynamics
in this limit. The most likely mechanism is that a doublon-
holon pair is created, propagates in their respective Hubbard
subbands before recombining under emission of a harmonic
corresponding to the band gap at the recombination point,
i.e., inter-Hubbard-subband HHG. As the Hubbard subbands
are expected to have approximately the same bandwidth as
the Bloch band, that mechanism will create a plateau like
the one observed. For U = 10t0 [Fig. 2(d)] a similar plateau
can be seen from the half-filled lattice. The plateau stretches

235142-4



DOPING EFFECTS IN HIGH-HARMONIC GENERATION … PHYSICAL REVIEW B 106, 235142 (2022)

from �Mott � 25.9 harmonic orders to around 56 harmonic
orders, i.e., again by twice the energy width of the Bloch band
2�width [see the full black lines in Fig. 2(d)]. This plateau
has dropped by around nine orders of magnitude, compared
with the plateau for U = 5t0 [Fig. 2(c)]. This drop is due to
the substantially increased U value and therefore increased
�Mott. This increase means that it requires significantly more
energy to create a doublon-holon pair which makes the cre-
ation of such pairs significantly less likely. In the doped cases
there does not seem to be a plateau starting from �Mott in
Fig. 2(d) where U = 10t0. This is due to the higher-lying
plateau which starts its dropoff at around the 15th harmonic
order. The signal from this plateau does not drop to the level
of the other plateau before around the 35th harmonic order, at
which point a second plateau begins. Note that this second
plateau decreases with increasing doping rate. This second
plateau ends at approximately �Mott + 2�width and is there-
fore likely a U -induced plateau like the ones described for the
lower U = 0.1t0, 2t0, and 5t0 values. The origin of the high-
lying plateau extending to around the 15th harmonic order in
Fig. 2(d) is believed to be hopping of doublons and holons, as
it cannot be annihilation of doublons as the harmonics are well
below �Mott.

We finally note that the results observed here for U =
10t0 are in line with results observed experimentally from
single-wall carbon nanotubes in a semiconductor regime [56]
and theoretically from doped band-gap materials [57] in the
following sense. In those references, doping was observed
to increase the spectral gain for low-harmonic orders but to
decrease it for high-harmonic orders. Beyond that it was found
that interband dynamics, i.e., transitions from one Bloch band
to another, is the dominating source of HHG above the band
gap whereas intraband dynamics, i.e., transitions within a
given Bloch band, dominate below the band gap. Here, for
U = 10t0, we observe similar results in the setting of a cor-
related system in the following sense. Below �Mott, there is
a clear enhancement of the HHG spectra from doping by
around five orders of magnitude. This enhancement is so
significant that the doped systems continue to show an over-
all enhancement even beyond �Mott � 26 harmonic orders.
However, after around 35 harmonic orders the signals from
the doped systems have dropped off below the signal of the
undoped system. From then on there is a clear difference in
the height of the plateaus, ordered by the degree of doping,
so the undoped system yields around five orders of magnitude
more HHG than the doped systems. Treating �Mott as the band
gap yields a parallel between intraband and interband current
and the jhop(t ) and jca(t ) introduced in Sec. II. The hopping
current jhop(t ) does not include transitions which change the
number of doublon-holon pairs in the state. The current jhop(t )
is therefore strictly an intra-Hubbard-subband current, and
a parallel to an intraband current. Similarly, jca(t ) describes
transitions which change the number of doublon-holon pairs
and is therefore an inter-Hubbard-subband current. We will
discuss this parallel further in later sections.

B. Total current results

To provide further insight into the spectral changes dis-
played in Fig. 2, we show, in Fig. 3, the currents used to

FIG. 3. The current generated via Eq. (4), for different degrees of
band filling and Hubbard U . (a) U = 0.1t0, (b) U = 2t0, (c) U = 5t0,
and (d) U = 10t0. In all panels the vector potential is shown by the
dashed, black line and the Bloch current from the half-filled lattice
j0(t ) [Eq. (15)] is shown via the thin, gray line.

generate the spectra. The increasing importance of the de-
gree of band filling as U increases, observed in Fig. 2, holds
here too. In Fig. 3(a), where U = 0.1t0, the degree of band
filling has little impact. This is consistent with the analytical
result which is derivable for U = 0 where the Hubbard model
reduces to a tight-binding model. This tight-binding model
can be solved by employing Bloch’s theorem resulting in the
current given by Eq. (15), which is in line with observed
results.

For U = 2t0 [Fig. 3(b)], the differences between the cur-
rents for different doping levels are larger, but still show
similar behavior in terms of a drop to approximately zero
halfway through the simulation, which is consistent with ear-
lier results [32].

At higher U , the half-filled band behaves markedly differ-
ent from the others. For U = 5t0 [Fig. 3(c)], the half-filled
current oscillates at a much higher rate than the non-half-
filled bands and rises in amplitude as the pulse amplitude
increases. Furthermore, the current for the half-filled band
does not decrease at the end of the pulse. For the even higher
U of Fig. 3(d), U = 10t0, the current from the half-filled
lattice has decreased to order 10−3 a.u., which is practically
indistinguishable from 0 in the figure. In contrast to this,
the non-half-filled lattices display currents largely similar to
the U ≈ 0 currents, the most notable difference being that
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the peak amplitude has decreased by a factor of ≈2 when
comparing U = 0.1t0 and 10t0.

C. Qualitative description of the dynamics

Our understanding of the observations from Figs. 2 and
3 is best formulated in the quasiparticle picture of doublons
and holons. The U term of the Hubbard model punishes the
creation of doublons energetically. Therefore, the ground state
mainly includes the configurations with minimal doublon
count. For the half-filled lattice, this means the ground state
is dominated by configurations that have one electron on each
site. Any electron hopping, from such configurations, will
result in the creation of a doublon-holon pair. Thus, virtually
no dynamics can be induced from the ground state without the
creation of a doublon-holon pair. For high U this results in two
effects. First, the current amplitude decreases significantly
because transport is impeded by the cost in energy, �Mott(U ),
associated with the creation of a doublon-holon pair. Second,
the spectra lose gain below �Mott, but gain intensity above it,
as can be seen in Fig. 2(d).

If the band is not half-filled, all configurations will nec-
essarily have one or more doublon(s) or holon(s). Therefore,
electrons can move about the lattice without creating doublon-
holon pairs, at no energy cost, thus enabling dynamics even
in the high-U limit [see Fig. 3(d)]. Note that in dimensions
higher than one, the movement of doublons or holons will
result in spin frustrations of the lattice. The movement of dou-
blons and holons will therefore have some associated energy
cost. This energy cost originates from the hopping term and is
therefore related to the t0 value, which is small compared to
U for highly correlated materials. Spin dynamics have very
recently been observed to impact the HHG spectrum from
highly correlated materials [35,36]. For large U , the creation
and annihilation of doublon-holon pairs is associated with
large energy transitions and therefore with truly high-order
harmonics, as will be demonstrated in further detail later.

D. Doublon and holon measures

In this section, we utilize the measures of Eqs. (8) and (9) to
gain further understanding of the doublon-holon pair creation
and annihilation throughout the simulation.

1. D measure

Figure 4 shows D(t ) [see Eq. (8)] for different degrees
of band filling and U . We note immediately from all panels
that removing or adding electrons to the lattice will change
the number of doublons in the lattice. To estimate the impact
of varying band filling on D(t ) we calculated the D measure
from the state in which every possible electron configuration
is equally likely. In this case, the D measure equals n↑n↓/L2,
where n↑ and n↓ are the number of electrons in the lattice
with spin up and down, respectively. Note that n↑/L gives the
probability that an arbitrarily picked site contains a spin-up
electron and similarly for spin down, so their product gives
the probability of observing a doublon, i.e., for the site to have
both a spin-up and -down electron. This resulted in the follow-
ing values, with four electrons removed from half-filling: D =
1
9 � 0.111, with two electrons removed D = 25

144 � 0.174,

FIG. 4. The D measure of Eq. (8) for different degrees of band
filling and Hubbard U . (a) U = 0.1t0, (b) U = 2t0, (c) U = 5t0, and
(d) U = 10t0.

at half-filling D = 1
4 = 0.25, with two electrons added D =

49
144 � 0.340, and with four electrons added D = 4

9 � 0.444.
In Fig. 4(a) the D measure is plotted for U = 0.1t0. The D
values are close to constant and very close to the values given
above for equal probability of all electron configurations. This
makes sense as for U � t0 the system’s eigenvalues are close
to the Bloch states, which are the eigenstates for U = 0.
The Bloch states are completely localized in k space, so
therefore completely delocalized in real space. This delocal-
ization causes each electron configuration to be approximately
equally probable. We note from Figs. 4(b)–4(d) that the initial
ground state has decreasing D values with increasing U and
below the values from states with equal probability of all elec-
tron configurations. This is a result of the increasing energetic
cost to create doublons. Minimizing the energy of the state
implies minimizing the number of doublons, and therefore the
probability of observing configurations with a high number
of doublons. In Fig. 4(b), with U = 2t0, there is a noticeable
increase in the D values over the time interval 0.2–0.5 pulse
lengths. This increase is not present for lower- or higher-U
values. This can be explained by considering the correlation
between the number of doublons in and the energy of a given
state, as well as general features of the energy spectrum. For
low U the energy of a state is largely determined by the hop-
ping term of the Hamiltonian [Eq. (1)], whereas for higher U it
is determined by the U term. As mentioned, Bloch states, the
eigenstates of the hopping term, are delocalized in real space
and, as a result, there is little to no correlation between the
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energy and the number of doublons in the state. On the other
hand, the expectation value of the U term depends only on
the U value and the number of doublons in the state, resulting
in complete correlation between the number of doublons in
the state and the energy from the U term. This means for low
U = 0.1t0, exciting the system, i.e., increasing the energy of
the system, does not increase the number of doublons in the
state, causing D to remain virtually constant. This explains
why D is approximately constant in Fig. 4(a). For higher U
[see Figs. 4(c) and 4(d) with U = 5t0 and 10t0, respectively],
the D values are also approximately constant, despite the
high degree of correlation between the energy and doublon
count. This can be understood by considering the energy gaps
between the eigenvalues of the system. For U = 0 many of
the states are highly degenerate; see Ref. [32] for a discussion.
That degeneracy is removed when U becomes nonzero. As U
increases further the energy gaps between the states increase
steadily, resulting in relatively large energy gaps. Since the
pulse used is the same throughout this work, the degree of
system excitation decreases as U increases. So due to the
minimal degree of excitation, the D values change minimally
in both Figs. 4(c) and 4(d), despite the correlation between
energy and D value.

For U → ∞, the D measure attains the value corre-
sponding to the configurations with the minimal number of
doublons. If the lattice is half-filled or less, then there is at
minimum one site per electron and D = 0, i.e., states with no
doublons, can be achieved. When the lattice is more than or
half-filled, each added electron adds another doublon, causing
an increase in D of 1

L � 0.083. This is in line with the D values
of Figs. 4(c) and 4(d). Finally, we note that the oscillations
observed in the D values of Figs. 4(c) and 4(d) reach a local
maximum when the electric field from the pulse (not shown)
peaks, i.e., when the rate of excitation is maximal.

2. Paf measure

Here we discuss the Paf measure of Eq. (9), which is
shown in Fig. 5. As Paf is heavily dependent on the number
of electrons in the lattice it can be difficult to compare Paf

values for different degrees of band filling. In order to give an
idea of those changes in the Paf values, we give the Paf values
for states with equal probability of observing each electron
configuration. At half-filling Paf � 0.149, with two electrons
added or removed from half-filling Paf � 0.141, and with
four electrons added or removed from half-filling Paf � 0.118.
First, we note that the Paf values are virtually constant at all
times for U = 0.1t0, U = 5t0, and U = 10t0 [Figs. 5(a), 5(c),
and 5(d), respectively]. This is for the same reasons as those
explaining the equivalent observation on the D values, pre-
sented in Sec. III D 1, i.e., due to a low correlation between the
energy, doublon count, and antiferromagnetic ordering in the
initial ground state for low U , and large energy gaps between
the eigenstates, leading to a low degree of excitation, for high
U . We note, however, that the Paf values decrease in Fig. 5(b),
simultaneously with the increase in D values, between 0.2 and
0.5 pulse lengths. We understand the decrease in terms of the
increasing number of doublons resulting in fewer electrons
and sites having the possibility of being antiferromagnetically
ordered, thus decreasing Paf.

FIG. 5. The Paf measure of Eq. (9), for different degrees of band
filling and Hubbard U . (a) U = 0.1t0, (b) U = 2t0, (c) U = 5t0, and
(d) U = 10t0.

3. Summary regarding the D and Paf measures

We conclude from the observations of the previous two
subsections that for low U , i.e., U = 0.1t0, doublon-holon
pairs are being created and annihilated, but as there is little
energy involved with this process, the rates of creation and
annihilation are very close to equal. We note also, based on
the low-Paf values [see Fig. 5(a)], that the creation and annihi-
lation of doublon-holon pairs correspond to a smaller portion
of the dynamics than for higher U . For higher U , i.e., U = 5t0
and 10t0, the system is less dynamical overall, as indicated by
the currents shown in Fig. 3. The higher Paf seen in Fig. 5(d)
and increasing weakly oscillating D measure [see between
the times 0.2 and 0.8 pulse lengths in Fig. 4(d)] indicates
that doublon-holon-pair-creating or -annihilating transitions
are more prevalent. As U becomes significantly larger than t0
the interpretation of the results begins to depend significantly
on the degree of band filling. In the half-filled case there are
virtually no dynamics left in the system, but the transitions
that do happen are virtually exclusively of the doublon-holon
pair creating or annihilating type. Whereas for the non-half-
filled lattices the existence of either doublons or holons in the
ground state implies that transitions at no U -induced energy
cost are possible. Such transitions may allow the electrons to
build up momentum before interacting with other electrons.
The increased energy associated with the buildup of momen-
tum increases the probability of such interactions, resulting
in the creation of a doublon-holon pair. The existence of
doublons or holons in every electron configuration means it
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FIG. 6. The creation and annihilation current jca(t ) from Eq. (5),
and the hopping current jhop(t ) from Eq. (6), for the U = 10t0 system
for lattices with n electrons. Half-filling corresponds to n = L = 12.
The total current is shown by the full, blue curve and the vector
potential is shown by the black, dashed line. Finally, the scaled down
Bloch current is shown by the thin, gray line. The scaling factors
are given by max[| j(t )|]/|2aEGS|, (a) � 1.9 × 10−3, (b) � 0.31,
(c) � 0.52. Note that in (a), jca(t ) is identical to the total current
j(t ) on the scale of the figure.

is easier for the laser pulse to generate doublon or holon
hopping and thereby generate low-harmonic orders as can be
seen in Fig. 2(d) where U = 10t0. It also means a lower Paf

value [see Fig. 5(d)], which means less doublon-holon pair
generation and therefore less inter-Hubbard-subband HHG.
As we shall now see all of the conclusions and indications in
this section are consistent with behavior of the currents jca(t )
and jhop(t ) and the associated spectra.

E. Quasiparticle currents

To support the explanation of Sec. III C, regarding dop-
ing effects on the dynamics, and verify the points from
Sec. III D 3, we show jca(t ) [Eq. (5)] and jhop(t ) [Eq. (6)]
for U = 10t0 in Fig. 6. We only plot the currents for lattices
which are at least half-filled, due to the earlier mentioned
symmetry, and only consider U = 10t0 as the U value needs
to be significantly larger than �width in order for the doublon-
holon picture to capture the physics. In Fig. 6(a) the currents
in the half-filled lattice are shown. We note that the major-
ity of the current arises from the creation or annihilation of
doublon-holon pairs jca(t ). This finding is consistent with
the explanation described above, as for U = 10t0 the ground
state will be dominated by the antiferromagnetically ordered,
doublon-holon-pair-free configurations. From such configu-
rations any electron hopping will lead to the creation of a

doublon-holon pair. That is unlikely due to the associated
energy cost U . Note also that, in this case, the current is only
of order 10−3 a.u. For a lattice with 14 electrons [Fig. 6(b)],
the current arising from the hopping of the doublons and
holons approximately equals the current arising from creation
or annihilation of said quasiparticles. It is worth noting that
with 14 electrons in the lattice the ground state is dominated
by configurations with 2 doublons. This means there are sig-
nificantly more ways for an electron to hop resulting in the
creation of a doublon-holon pair than in a doublon hopping.
Figure 5 verifies this by showing that the probability of ob-
serving antiferromagnetic ordering is consistently higher for
states with two electrons added relative to half-filling com-
pared with the probability for observing antiferromagnetic
ordering from half-filled states from an even probability of
all configurations, i.e., Paf is consistently larger than 0.141.
Note that the result of annihilating a doublon-holon pair is an-
tiferromagnetic ordering, and inversely that antiferromagnetic
ordering is needed to facilitate doublon-holon-pair-creating
transitions (see Fig. 1). The currents in Fig. 6 are all for U =
10t0 corresponding to Fig. 5(d). We note from Fig. 5 that the
probability of observing antiferromagnetic ordering generally
increases with U . That trend is reasonable since antiferromag-
netically ordered configurations do not contain doublons and
the impact on Paf of removing or adding electrons to the lattice
increases similarly, as seen from the sizes of the gaps between
the lines in Fig. 5. If there are more possible transitions from
the ground state that may result in the creation of a doublon-
holon pair, than transitions which move doublons or holons,
then everything else being equal, jca(t ) > jhop(t ). So that
jca(t ) ≈ jhop(t ), for this lattice, indicates that hopping transi-
tions are more likely than creation or annihilation transitions
relative to the number of lattice gaps that enable the given type
of transition.

With 16 electrons in the lattice [Fig. 6(c)], the hop-
ping current is larger than the creation or annihilation
current at all times, consistent with the larger number of
doublons in the ground state. Noting the parallel between
jhop(t ) and jca(t ) to intraband and interband currents, sim-
ilar scaling between the mechanisms has been observed
from single-wall carbon nanotubes [56] and doped band-gap
materials [57].

We note that the currents in Fig. 6(a) are out of phase
with the Bloch current j0(t ) [Eq. (15)]. The currents peak
when the electric field peaks, instead of when the vector
potential peaks. That is because the ground state is dominated
by the antiferromagnetically ordered electron configurations.
Any transition from such a configuration results in the creation
of a doublon-holon pair, which, for high U , is most likely at
high laser intensity, and therefore peak electric field. Inversely,
the currents in the non-half-filled lattices are in phase with
the Bloch current. That is due to the free electrons associated
with the ever-present doublons or holons which, qualitatively,
are Bloch type, i.e., free to move about the lattice, and only
interacting with other particles via Pauli’s exclusion principle.

Finally, we note that the current amplitude scales ap-
proximately linearly with the number of electrons added or
removed from the lattice relative to half-filling, i.e., with the
number of free carriers in the form of doublons or holons. This
scaling is consistent with the Drude model.
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FIG. 7. The creation and annihilation Sca(ω) and hopping Shop(ω)
spectra [Eq. (7)] from lattices with various values of U : (a) U = 5t0,
(b) U = 10t0, (c)–(e) U = 10t0, and degrees of band filling (a)–
(c) n = 12, (d) n = 14, and (e) n = 16. The dashed, black vertical
lines indicate the U value in terms of harmonic orders, the full black
lines on the left indicate the Mott gap in terms of harmonic orders,
and the full black lines on the right indicate the Mott gap plus two
times the energy width of the Bloch band.

F. Quasiparticle spectra

In order to obtain more insight into the link between the
two types of dynamics associated with ĵca(t ) [Eq. (5)] and
ĵhop(t ) [Eq. (6)], we show spectra generated from each current
type alone in Fig. 7. We note that the sum of the spectra
from these two currents neither does nor should add up to the
spectrum generated from the total current due to interference
terms from the norm-square in Eq. (3); see text after Eq. (7).
It is, however, still reasonable to expect that general trends
concerning which harmonics are generated from which mech-
anism can be gleaned from this analysis.

For U = 5t0 [Fig. 7(a)], Sca(ω) is multiple orders of magni-
tude higher, than Shop(ω), between �Mott and �Mott + 2�width.
That is likely a result of the high number of transitions from
the dominating antiferromagnetically ordered configuration
which can only result in the production of doublon-holon
pairs. Such transitions will inevitably result in the genera-
tion of harmonics with energy above �Mott. For U = 10t0
[Fig. 7(b)], Sca(ω) is larger than Shop(ω) across the entire spec-
trum, but the difference is largest for harmonic orders 26–56,

which correspond to �Mott to �Mott + 2�width. It makes sense
that Sca(ω) dominates in that region as the plateau is generated
from the annihilation of doublon-holon pairs as described ear-
lier. When doping is introduced, the plateau becomes harder
to see as described earlier. This means the enhancement in
the inter-Hubbard-subband plateau also becomes harder to
see. However, it is still visible in Fig. 7(c) between the 40th
and 60th harmonic orders, which overlaps with the area in
which the corresponding plateau is visible in Fig. 2(d). In
Fig. 7(d) the end of the plateau is visible between the 50th
and 60th harmonic orders, which is also in agreement with
the plateau seen in Fig. 2(d). Throughout all spectra, even
outside the plateau regions, in Fig. 7, Sca(ω) � Shop(ω). As
the ground state is dominated by the antiferromagnetically
ordered configurations in all the plotted cases, the majority of
the dynamics from the initial state will be of the creating type
which causes Sca(ω) to dominate. Note also how that domina-
tion decreases outside of the plateau regions as the degree of
doping increases. This can be seen from the decreasing differ-
ence between Sca(ω) and Shop(ω) for harmonic orders outside
the plateau region, e.g., less than 15. While Sca(ω) and S(ω)
agree quite closely in the Mott-insulator limit [Fig. 7(b)], we
observe some degree of deviation as doping in increased [see
Figs. 7(c) and 7(d)]. This means that the interference between
the hopping and creation and annihilation currents increases
and has to be taken into account to describe S(ω). This is
in line with the observed increasing importance of jhop(t ) in
Fig. 6. Therefore, in the Mott-insulating limit, i.e., in the high-
U and undoped cases, the creation and annihilation dynamics
captures all the dynamics in the system rather well; see also
Refs. [23,24]. However, outside of the Mott-insulating limit,
whether that be by lower U [Fig. 7(a)] or doping away from
half-filling, creation and annihilation dynamics do not appear
to capture the total dynamics, as indicated in Fig. 6, and in
Fig. 7 by the decreasing agreement between Sca(ω) and S(ω).

IV. SUMMARY AND CONCLUSION

In this work, we have used the Hubbard model to study
HHG beyond the assumption of half-filling, corresponding to
a situation where the correlated material is doped. We have
done this to begin answering how HHG operates from highly
doped and correlated materials. In previous studies of HHG
using the Hubbard model for the half-filled case, it was shown
that increasing the Hubbard U leads to increased gain in the
HHG spectra for U � 5t0 [10]. On top of that, a parallel to the
three-step model was developed in the half-filled case based
on the creation and annihilation of doublons and holons [24].
With these facts in mind, we set out to answer the following
questions: (i) What effects does doping have on the HHG
spectra? (ii) How do the dynamics of non-half-filled bands
differ from half-filled bands? (iii) How do the changes in the
dynamics and HHG spectra relate to one another? It was found
that going beyond half-filling has little to no effect on the
spectra for low U , but that for higher U there are marked
differences. For U = 5t0 the half-filled lattice showed sig-
nificantly higher high-harmonic gain than the non-half-filled
lattices, particularly in the region between �Mott and �Mott +
2�width. For higher U the half-filled lattice dropped to be the
lattice with least harmonic gain for low to medium-harmonic
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orders but still gave the highest gain for high-harmonic orders.
This finding may be rationalized in terms of the high energy
needed to produce doublon-holon pairs. We explained this by
splitting the dynamics into two mechanisms: (i) movement of
the doublons or holons, the parallel to intraband dynamics,
and (ii) creation and annihilation of doublon-holon pairs, the
parallel to interband dynamics. For high-U values the ground
state of the Hubbard model is dominated by the configurations
with the highest probability of observing antiferromagnetic
ordering (see Fig. 5). For half-filling this results in every hop
of the electrons creating a doublon-holon pair. For high U ,
this pair creation requires a lot of energy, resulting in minimal
dynamics and thus minimal harmonic gain. For lower U , the
lower-energy cost of creating a doublon-holon pair means
that relatively more dynamics associated with the creation
and annihilation of doublon-holon pairs take place. When the
lattice is not half-filled, all configurations, and by extension,
the ground state will contain either doublons or holons. As
a result, regardless of the size of the U term, dynamics as-
sociated with the movement of doublons or holons can take
place at no extra U -induced energy cost. This absence of
an energy penalty results in the spectra being significantly
less affected by the U term and, as a result, higher-harmonic
gain in the high-U limit compared with the half-filled case
was observed below the Mott gap. For harmonic orders above
the Mott gap, the presence of doublons or holons in all con-
figurations of the doped systems makes doublon-holon pair
creation less likely than in the half-filled case. This results in
lower inter-Hubbard-subband gain and therefore lower HHG
signal than in the nondoped case. We substantiated this expla-
nation by investigating the currents associated with the two
mechanisms in the high-U limit. In the half-filled case, there
is significantly less current than in the non-half-filled cases,
and it is dominated by the creation and annihilation current.
In the non-half-filled cases, the current associated with the
movements of the doublons or holons becomes increasingly
important, with the total current rising in amplitude accord-
ingly. We analyzed spectra generated from the hopping and
creation and annihilation currents only. We found that in the
half-filling case, increasing U leads to the majority of the
spectral gain being formed through creation and annihilation
dynamics. We further identified a plateau between �Mott and
�Mott + 2�width, which we explain through the ability of the
U terms to take two electrons from the peak to the bottom
of the Bloch band described by the hopping term. In this

region of the spectrum it was found that creation and an-
nihilation of doublon-holon pairs is giving the dominating
contribution to the HHG. We explain this via the earlier men-
tioned parallel to the interband and intraband-based three-step
model.

In conclusion, this study shows that the degree of band
filling is of immense importance to the gain in HHG for
highly correlated materials. In cases with doping away from
the half-filling situation, the doping-induced enhancement
of the HHG spectra extends to the lowest harmonic or-
ders and can be enhanced by as much as 10 orders of
magnitude. The significant enhancement is a very clear
signature of the sensitive, ultrafast response of correlated elec-
tron dynamics to extreme nonperturbative driving by intense
laser pulses.

This work focused on effects of doping on HHG from
highly correlated systems. As such, it raises a number of
interesting future research questions. Some of these relate to
the approximations introduced in dealing with the numeri-
cal scaling of the Hubbard model, e.g., the lattice size and
dimensionality, the single Bloch-band approximation, and in-
cluding only hopping and onsite interactions. Going beyond
these approximations would allow elucidation of surface ef-
fects on HHG, of the interplay between interband dynamics
in the Bloch picture, and the correlated creation-annihilation
dynamics of doublon-holon pairs. In particular, the one-
dimensional description used in this study means that when
two electrons meet they can only pass one another by creating
a doublon. In two or three dimensions this is not so. It may
also be of interest to look at the effects of doping on the spin
and spinon dynamics and its potential impact on the HHG
spectra, particularly with the recent results on spin-charge
coupling and its significant effect on the HHG spectra in mind
[35,36]. Such studies would likely require including a spin-
spin interaction to the Hamiltonian. Another topic concerns
the study of doping effects on the dispersion of the doublon
and holon quasiparticles, and its relation to the HHG spectra.
One might be able to gain insight into that dispersion from
the currents in the system, especially the jhop(t ) as it relates
directly to the movement of quasiparticles through the system.
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