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Correlated insulating states in carbon nanotubes controlled by magnetic field
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We investigate competing insulating phases in nearly metallic zigzag carbon nanotubes, under conditions
where an applied magnetic flux approximately closes the single-particle gap in one valley. Recent experiments
have shown that an energy gap persists throughout magnetic field sweeps where the single-particle picture
predicts that the gap should close and reopen. Using a bosonic low-energy effective theory to describe the
interplay between electron-electron interactions, spin-orbit coupling, and magnetic field, we obtain a phase
diagram consisting of several competing insulating phases that can form in the vicinity of the single-particle
gap closing point. We characterize these phases in terms of spin-resolved charge polarization densities, each of
which can independently take one of two possible values consistent with the mirror symmetry of the system,
or can take an intermediate value through a spontaneous mirror symmetry breaking transition. In the mirror
symmetry breaking phase, adiabatic changes of the orbital magnetic flux drive charge and spin currents along
the nanotube. We discuss the relevance of these results to recent and future experiments.
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I. INTRODUCTION

Carbon nanotubes (CNTs) offer a versatile platform for
studying the exotic quantum many-body physics of one-
dimensional (1D) electronic systems. A variety of intriguing
phenomena have been observed, including Wigner crystal
formation [1] and possible Luttinger liquid behavior [2],
strong [3], and spatially resolved [4] electron-phonon cou-
pling [5,6], and highly efficient multiple carrier generation
through photoexcitation cascade [7]. Despite the extremely
weak spin-orbit coupling (SOC) in graphene, the parent ma-
terial for CNTs, remarkably strong SOC has been observed
[8,9] and exploited for spin qubit operation [10–12] while
also providing means for efficient spin relaxation [13–16] and
nanomechanical coupling [17].

At the single-particle level, the electronic structure of a
CNT is determined by its diameter, d , and chirality, i.e., the
orientation of the honeycomb lattice of carbon atoms rela-
tive to the nanotube axis [18]. Here we focus on nominally
metallic zigzag CNTs, as illustrated in Fig. 1(a). In such
CNTs, the combination of quantization of the circumferential
wave vector kc and curvature-induced strain yield low-energy
one-dimensional subbands with small gaps that decay sys-
tematically with CNT diameter as ∼1/d2 (see Fig. 1(b) and
Refs. [19,20]). By applying a magnetic flux, �, through the
nanotube, these 1D subbands can be shifted relative to the
Dirac points of the underlying two-dimensional graphene dis-
persion, in principle allowing the gap to be closed in one
valley at a critical value of the applied flux, �c [Figs. 1(b)
and 1(c)].

Intriguingly, experiments on ultraclean, suspended small-
gap CNTs have shown that while the gap can be tuned by

applied flux, the minimal gap achieved during continuous
sweeps (where the gap first shrinks and then grows again)
generically retains a significant nonzero value (of order a few
tens of meV) [21]. This failure of the single-particle picture
to account for the observed behavior suggests that electron-
electron interactions (which are essentially unscreened at
charge neutrality in suspended devices) may dramatically
transform the nature of the ground state in this regime.
Theoretical studies have predicted various interaction-driven
insulating states in carbon nanotubes [22–27].

In this work, we investigate the effects of electron-electron
interactions on the ground states of nominally metallic carbon
nanotubes. We find that the system obtains one of several com-
peting insulating ground states, controlled by the interplay
between spin-orbit coupling, magnetic field, and interactions.
To characterize these states we introduce the “spin-resolved
charge polarization densities,” Pσ . Here, σ =↑,↓ indicates
the spin direction relative to the quantization axis along the
nanotube, which we denote by x̂. The spin-resolved polar-
ization densities are illustrated schematically in Fig. 1(d). In
preserving the mirror symmetry of the zigzag nanotube [re-
flection across a mirror plane Mx that bisects the longitudinal
bonds shown in red in Fig. 1(a)], each polarization component
can obtain one of two possible values, 0 or 1/2. In the absence
of interactions, these two cases correspond to Wannier centers
for spin-up and spin-down electrons positioned on the longi-
tudinal (red) or “diagonal” (blue) bonds of the CNT shown
in Fig. 1(a). We further show that under certain conditions,
states which spontaneously break the mirror symmetry may
be favored, where P↑,↓ are neither 0 nor 1/2. To the best of
our knowledge, this is the first prediction and discussion of
a possible mirror symmetry breaking phase promoted by the
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FIG. 1. Competing insulating phases of a nearly metallic zigzag
carbon nanotube (CNT). (a) Geometry of the CNT. A magnetic flux
� threaded through the CNT tunes the one-dimensional electronic
subband dispersion [(b) and (c)]. Filled (empty) circles indicate A (B)
sites. (b) Two-dimensional graphene Brillouin zone and low-energy
dispersion, with the lowest one-dimensional sub-band sections of the
CNT indicated. While geometric quantization of the circumferential
wave number kc would suggest that the CNT should be metallic, cur-
vature of the CNT offsets the subbands from the Dirac points (dashed
lines), leading to a small single-particle gap that can be controlled by
the flux, �. (c) Lowest subband dispersion relations in valleys K and
K ′, at zero flux (� = 0) and near the critical flux (� ≈ �c). Our
analysis focuses on the effective one-dimensional system comprised
of the low-energy modes for � ≈ �c, highlighted by the green box.
(Here we assume that the zero flux gap due to curvature/strain is
larger than the SOC strength.) (d) Distinct insulating phases are
characterized by the spin-resolved charge polarization densities, P↑
and P↓, shown here with a relative offset of one half unit cell as in
the phase realized at large spin-orbit coupling, λ, see Fig. 2(a).

interplay of Coulomb interactions and spin-orbit coupling in
CNTs.

II. PHYSICAL PICTURE

Before beginning our detailed analysis, we give a sim-
ple physical picture that helps to motivate our results. As
discussed, for example, in the supplementary material of
Ref. [28] and illustrated in Figs. 1(a) and 1(d), the single-
particle electronic states in one valley of a zigzag CNT,
for each spin species, can be described via a mapping to
the Su-Schrieffer-Heeger (SSH) model of polyacetylene [29].
In Fig. 1(a), we identify two types of bonds: “longitudinal
bonds” that run parallel to the nanotube axis (shown in red
color) and “diagonal bonds” which have components oriented
around its circumference (shown in blue). The low-energy
electronic states in the K and K ′ valleys are described by
large values of the circumferential wave-vector component kc

[Fig. 1(b)].
Fixing kc to the value corresponding to K or K ′ yields an

effective 1D tight binding model [Fig. 1(d)] with alternating
hopping amplitudes t� and td arising from the longitudinal and
diagonal bonds, respectively. For a flat sheet of graphene and

in the absence of a magnetic field, the hopping amplitudes
are identical along all bonds. For the CNT, the combina-
tion of phases arising from circumferential motion (kc �= 0),
curvature-induced strain, magnetic flux, and spin-orbit cou-
pling affects the interference between amplitudes for hopping
along the two diagonal bonds entering each site; in particular,
this allows the magnitude of the hopping amplitude td (�) in
the effective 1D model to be tuned by the flux �.

Using the flux tunability of td (�), various regimes of ef-
fective dimerization can be explored. For a noninteracting
system, these correspond to cases where the Wannier centers
for electrons in the low-energy spin-up and spin-down bands
can independently be centered either on the longitudinal or the
diagonal bonds. In a many-body setting at charge neutrality,
these situations correspond to insulating phases with charge
polarization densities Pσ for spin-up (σ = ↑) and spin-down
(σ = ↓) electrons taking values 0 or 1/2 (in units of the
electron charge, e), see Fig. 1(d). With interactions there is an
additional possibility of spontaneous mirror symmetry break-
ing, where at least one of the Pσ ’s takes a value different from
0 and 1/2. Moreover, interactions can shift phase boundaries
and renormalize energy gaps, the spin-orbit coupling, and the
orbital moments in each valley. Below we treat the interacting
problem in detail and map out the resulting phase diagram of
the system (see Fig. 2).

III. MODEL

To analyze the low-energy behavior of the system, we use
a one-dimensional continuum model. The model describes the
(spinful) electrons in the lowest energy sub-band of a single
valley, in which the single-particle gap is nearly closed by an
applied magnetic flux [shaded panel in Fig. 1(c)]. Within this
model the Hamiltonian takes the form (with h̄ = 1 throughout,
unless otherwise noted):

H =
∫

dx

[
−v

∑
σ,r

rψ†
rσ i∂xψrσ −

∑
σ,r

(hσ + μ)ρrσ

+
∑

σ

2v

d
(λσ − f )(iψ†

RσψLσ + H.c.)

]
+ Hint, (1)

where v is the Fermi velocity, d is the nanotube’s diameter,
ψ†

rσ (ψrσ ) is the creation (annihilation) operator of a left
(r = L) or right (r = R) moving electron with spin σ = ↑,↓
at position x, ρrσ = ψ†

rσψrσ , and Hint describes the electron-
electron interaction, to be defined below. (When it is not used
as a subscript, we assign σ = +1 for spin up and σ = −1 for
spin down; similarly, we let r = + for right movers and r = −
for left movers and r̄ = −r.) The coefficient 2v

d (λσ − f ) is
the spin-dependent mass arising due to a combination of spin-
orbit coupling, λ, and the normalized orbital flux, f = �−�c

2π h̄/e .
The Zeeman energy due to the application of the axial field is
denoted by h, and μ is the chemical potential.

The CNT is invariant under a mirror reflection Mx with
respect to a plane perpendicular to the nanotube axis that
passes through the middle of the longitudinal bonds (red color
in Fig. 1). To see how this symmetry is manifested in our
description, it is helpful to recall that, microscopically, the
right- and left-mover single-particle states have a pseudospin
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structure described by particular sets of amplitudes on the A
and B sublattices of carbon atoms. Specifically, due to the
zigzag CNT’s geometry and for our choice of basis, these
amplitudes correspond to the eigenstates of the second (i.e., y)
Pauli matrix in the sublattice space; consequently, electronic
states supported on the A and B sublattices are created by the
operators ψ

†
Aσ = 1√

2
(ψ†

Rσ + ψ
†
Lσ ), ψ

†
Bσ = − 1

i
√

2
(ψ†

Rσ − ψ
†
Lσ ),

respectively. Noting that the A and B sublattices are inter-
changed by the mirror operation Mx, ψ

†
A ↔ ψ

†
B, the relations

above determine that this symmetry acts as ψRσ → iψLσ ,
ψLσ → −iψRσ . It is straightforward to check that all terms
in Eq. (1) are invariant under this symmetry.

We describe the electron-electron Coulomb interaction,
which we assume to be screened by a nearby metallic gate,1

via

Hint = 1

2

∑
αβ

∫
dx

∫
dx′Uαβ (x − x′) :ρα (x)ρβ (x′):, (2)

where α, β = {A, B} are sublattice indices, ρα (x) =∑
σ ψ†

α,σ ψα,σ , and :O: denotes normal ordering of the
operator O relative to the (noninteracting) Fermi sea.
Here UAA(x − x′) = UBB(x − x′) describes the interaction
between two electrons on the same sublattice, whereas
UAB(x − x′) = UBA(x − x′) is the interaction between
electrons on different sublattices.

To treat the interacting system, we bosonize the Hamil-
tonian in Eq. (1) following the standard procedure [30]. We
first introduce canonical bosonic fields θσ , φσ , satisfying the
commutation relations [φσ (x), θσ ′ (x′)] = iπδσσ ′�(x′ − x) +
iπ (1 − δσσ ′ ). The electronic field operator is written as ψrσ =

1√
2πd

ei(θσ +rφσ ), and the density of the electrons with spin σ is
given by

ρσ = 1

π
∂xφσ . (3)

We decompose the Hamiltonian into four contributions:

H = H0 + HZ + Hλ, f + HBS, (4)

where H0 captures the electronic kinetic energy (neglect-
ing spin-orbit coupling and orbital coupling to the applied
magnetic flux) as well as the forward scattering part of the
electron-electron interaction, HZ describes the Zeeman cou-
pling and chemical potential, Hλ, f captures the spin-orbit and
orbital magnetic couplings, and HBS captures the backscatter-
ing part of the electron-electron interaction.

For analyzing the bosonized Hamiltonian, it is convenient
to introduce spin (s) and charge (c) fields: φ j = 1√

2
(φ↑ +

η jφ↓) and θ j = 1√
2
(θ↑ + η jθ↓), where j = c, s and ηc = +1,

ηs = −1. In terms of these new fields, we have [30]

H0 =
∑
j=c,s

v j

2π

∫
dx

[
Kj (∂xθ j )

2 + 1

Kj
(∂xφ j )

2

]
, (5)

1While our analysis does not depend on the detailed functional
forms of the interaction potentials UAA(x − x′) and UAB(x − x′),
screening is important to ensure that the interaction parameter U+
defined below Eq. (5) is finite.

with v j = v(1 + U+(1+η j )/2 +U−η j

πv
)1/2 and Kj = v/v j , where

U± = 1
2

∫
dx(UAA ± UAB). The interaction U+ corresponds to

forward-scattering processes and is typically larger than U−
by a factor of the order of d/a, where a is the lattice spacing
[31]. The Zeeman and chemical potential terms are given by

HZ = −
∫

dx

(
μ

√
2

π
∂xφc + h

√
2

π
∂xφs

)
, (6)

while the mass terms due to spin-orbit coupling and the mag-
netic flux are written as

Hλ, f = − 2v

πd2

∫
dx[λ sin(

√
2φs) sin(

√
2φc)

+ f cos(
√

2φs) cos(
√

2φc)]. (7)

Finally, the backscattering interaction terms are given by

HBS = v

πd2

∫
dx[gs cos(2

√
2φs) − gc cos(2

√
2φc)], (8)

where gs = gc = U−
2πv

> 0. In the following, we study the in-
sulating ground states realized in this model as λ, f , h, and μ

are tuned.

IV. POLARIZATION

The insulating states of the nanotube are most conve-
niently characterized by the values of the electric polarizations
[32–36] of spin up and spin down electrons. A boundary be-
tween two states with different polarizations hosts a fractional
charge and/or fractional spin, equal to the difference of the
polarization densities in the two states.

Our goal in this section is to relate the spin-resolved po-
larization densities {Pσ } of an insulating state to its bosonized
description, in which the fields φσ are pinned to certain val-
ues. Heuristically, a relation between Pσ and 〈φσ 〉 can be
derived by noting that, in the bosonized description, the charge
densities are given by Eq. (3). Therefore the total charge of
spin σ at the boundary between two insulating phases where
φσ is pinned to φ1,σ and φ2,σ is given by 〈∫ dxρσ (x)〉 =
1
π
〈φ2,σ − φ1,σ 〉, where the integral is performed over a region

that includes the boundary. On the other hand, since by def-
inition ∂xPσ = 〈ρσ 〉, we infer that Pσ = 1

π
〈φσ 〉 + P0, where

P0 is a constant. Notice that, since 〈φσ 〉 in an insulator is
defined modulo π , Pσ is defined up to an integer [32]. Within
our conventions, under mirror reflection Mx, φσ → −φσ . It
is therefore natural to choose P0 = 0, such that under Mx,
Pσ → −Pσ . With this choice, we express Pσ in terms of the
charge and spin fields as

P↑ = 1

π
√

2
(φc + φs),

P↓ = 1

π
√

2
(φc − φs). (9)

There are two distinct values for Pσ that are invariant under
Mx: Pσ = 0 and 1/2 (mod 1). As noted in Ref. [28], this
implies that there are four different band insulating phases that
respect the mirror symmetry. These phases can be accessed by
tuning the axial magnetic field and (in principle) the spin-orbit
coupling. In the presence of interactions, phases that break the
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FIG. 2. Correlated insulating phases of a zigzag carbon nanotube, described the Hamiltonian in Eqs. (4) to (8). (a) Phase diagram as a
function of orbital magnetic flux f ∝ � − �c and spin-orbit coupling, λ, at zero Zeeman field and chemical potential, h = μ = 0. Gapped
phases that respect the mirror symmetry of the CNT are labeled by corresponding values of the spin-resolved polarization densities, P↑ =

1
π

√
2
(φc + φs ) and P↓ = 1

π
√

2
(φc − φs ). Due to electron-electron interactions, a mirror symmetry breaking (MSB) phase appears over a finite

range of flux and spin-orbit coupling. The polarization densities take nonuniversal values within the MSB phase. Adiabatically changing the
flux along the dashed line within this phase drives spin and charge currents through the CNT, realizing a magnetoelectric effect. (b) Four
representative snapshots of the potential landscape for the spin and charge fields, φs and φc, resulting from spin-orbit coupling and the orbital
magnetic flux, Hλ, f in Eq. (7), and backscattering interactions, HBS in Eq. (8). Blue (red) colors represented lower (higher) potential. The
parameters used in the plots are: gc = gs = λ/3 and f = −2λ, −1.17λ, 1.17λ, 2λ for the points denoted by the red circle, blue square, purple
diamond, and green star, respectively. The corresponding points in the phase diagram in panel (a) are marked by the colored symbols. Locations
of the potential minima are marked by red crosses; points separated by (π, π ) represent equivalent physical states. Red arrows indicate the
direction of motion of the potential minima as the flux f is scanned across the dashed line through the MSB phase, revealing how charge
and spin are driven through the CNT as f is varied adiabatically. (c) Motion of the minima along the dashed line in (a). Points in the white
region correspond to physically distinct states. Notice that the minimum corresponding to the red circles remains at (0, π ) throughout the phase
characterized by (P↑, P↓) = (1/2, 1/2), and similarly for the minimum corresponding to the green star.

mirror symmetry spontaneously are also possible. Below, we
study the phase diagram of the system with interactions, using
the polarization densities {Pσ } to label the distinct phases.

V. PHASE DIAGRAM

As a first step, we focus on the phase diagram as a function
of the two mass terms, f and λ, at charge neutrality, μ = 0,
and in the absence of a Zeeman field, h = 0 (the effect of the
Zeeman coupling h will be considered below). At the point
λ = f = 0, the coupling between the spin and charge fields
in Eq. (7) vanishes, and the spin and charge sectors decouple
from each other. In the charge sector, the Hamiltonian is of
the standard sine-Gordon form. The term proportional to gc

in Eq. (8) is relevant for repulsive interactions (Kc < 1). This
term pins 2

√
2φc to zero (mod 2π ) and opens a charge gap,

�c ∼ v
d g

1
2−2Kc
c . We consider the case where φc is pinned to zero

here; it is straightforward to check that other choices (e.g.,
2
√

2φc = 2π ) lead to identical physical predictions, and in
fact correspond to the same ground state. However, with λ = 0
the system is SU(2) symmetric (recall that for now, we are
considering h = 0); in this case gs is marginally irrelevant [30]
and the fixed point is given by gs = 0, Ks = 1. Therefore the
spin sector is gapless at the point μ = h = λ = f = 0.

A. Phases along the flux axis: f �= 0, λ = 0

We now consider the effect of the mass terms λ and f ,
keeping for simplicity h = 0. Turning on f �= 0 opens a gap

in the spectrum, whose scaling with f depends on the inter-
action strength [37]. We may use the fact that φc is pinned to
zero to replace cos(

√
2φc) in Eq. (7) by its expectation value

(reduced from 1 due to the fluctuations of φc). The remaining
cos(

√
2φs) is relevant, and gives rise to a spin gap � f ∼

v
d | f |2/3,2 up to logarithmic corrections (due to the presence of
the marginally irrelevant gs term). The value obtained by φs

depends on the sign of f : to minimize the energy,
√

2φs = 0
(mod 2π ) for f > 0 and

√
2φs = π (mod 2π ) for f < 0.

Using the relations between φc, φs, and Pσ in Eq. (9), we
find that the phase obtained for λ = 0, f �= 0 is described by
P↑ = P↓ = 0 for f > 0, or P↑ = P↓ = 1/2 (mod 1) for f <

0. This behavior is as expected based on the analogy to the
SSH model described in Sec. II and in Ref. [28], in which
the Wannier centers of spin-up and spin-down electrons would
both be located either on the horizontal or the diagonal bonds
of the zigzag CNT [see Fig. 1(a)].

B. Phases along the axis f = 0, λ �= 0

We now investigate the effect of spin-orbit coupling, fo-
cusing on the axis f = 0, λ �= 0. First consider the limit of
very strong spin-orbit coupling, |λ| � gc,s (i.e., where the
backscattering interactions HBS can be neglected). For λ > 0,

2Unlike Ref. [37], here we are assuming that the charge mode is
gapped due to the gc (backscattering) term, resulting in a different
scaling of the gap with f .
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φc and φs become pinned to values such that sin(
√

2φc) =
sin(

√
2φs) = ±1, i.e.,

√
2φc = √

2φs = π/2 (mod 2π ) or√
2φc = √

2φs = 3π/2 (mod 2π ). These values correspond
to spin-resolved polarization densities P↑ = 1/2, P↓ = 0 (mod
1), as shown in Fig. 1(d); in the SSH analogy, spin-orbit cou-
pling produces opposite dimerization patterns for spin-up and
spin-down electrons [28]. For λ < 0, P↑ and P↓ are reversed.

Now consider the opposite limit, where a very weak spin-
orbit coupling is introduced on top of the gapless state at
μ = h = λ = f = 0. Since φc is pinned to zero by HBS as
described above, the λ sin(

√
2φs) sin(

√
2φc) term in Hλ, f may

appear to be unimportant. However, to second order in λ,
after integrating out the fluctuations of the massive φc field,
we obtain a correction to gs of the form δgs ∼ |A|λ2, where
A ∼ Kc ln(gcKc). This correction breaks the SU(2) symmetry
in the spin sector, and makes gs marginally relevant.3 As
a result, a gap �λ ∼ v

d exp(−1/
√

2gsδgs) opens in the spin
sector, and 2

√
2φs is pinned to a value (2m + 1)π , where m is

an integer.
In order to interpret the gapped phase that arises

for f = 0, 0 < |λ| � gc,s, we examine the sublattice
magnetization operator: Os = ∑

σ σ (ψ†
AσψAσ − ψ

†
Bσ ψBσ ) ∼

− 4
d sin(

√
2φs) cos(

√
2φc). This operator is odd under mirror

symmetry. In the f = 0, 0 < |λ| � 1 phase, 〈Os〉 �= 0, and
mirror symmetry is spontaneously broken. Notice that de-
pending on whether m is an even or an odd integer, the sign
of 〈Os〉 is either negative or positive, respectively. These two
possibilities reflect the two expected degenerate ground states
that arise from spontaneously breaking the mirror symmetry.

To analyze how the large and small |λ| limits are con-
nected, notice that both the backscattering interaction term
and the spin-orbit term are minimized for

√
2φs = π/2 (mod

π ), just as in the strong spin-orbit phase described above. Thus
φs may remain constant throughout the parameter regime
between the small and large |λ| limits. However, when the
spin-orbit interaction is the dominant energy scale,

√
2φc be-

comes pinned to ±π/2 (depending on whether the integer m
defined above is even or odd), rather than to 0 as in the small
spin-orbit limit. Therefore, due to the competition between the
gc term in HBS and the λ term in Hλ, f , we expect

√
2φc to

continuously change from 0 to ±π/2 as |λ| is increased from
0. Correspondingly, the polarization densities evolve con-
tinuously from P↑ = ±1/4, P↓ = ∓1/4 to P↑ = 1/2, P↓ = 0
as we move up along the λ axis. In accordance with the
comments about sublattice magnetization above, the polariza-
tion density values P↑ = ±1/4, P↓ = ∓1/4 are indicative of
a state where spin-up and spin-down electrons each exhibit
unequal populations on the atomic A and B sublattices of the
CNT. We denote the critical value of λ at which

√
2φc reaches

zero as λ∗ [see Fig. 2(a)]; for λ > λ∗, the mirror symmetry is
restored.

3In addition to the renormalization of gs, integrating out the fluctu-
ations of φc also renormalizes Ks upward. This increase of the spin
stiffness together with the increase of gs helps pin the value of φs.

C. Phase structure for f �= 0, λ �= 0

Next, we discuss the phase diagram with nonzero f and
λ, keeping h = μ = 0. As discussed above, along the axis
f = 0, λ > 0 there is a gapped phase that spontaneously
breaks the mirror symmetry of the system. We consider a
cut through the phase diagram, varying f at a fixed nonzero
value of λ < λ∗ [dashed line in Fig. 2(a)]. In Fig. 2(b), we
show the potential given by Hλ, f + HBS [Eqs. (7) and (8)] as
a function of

√
2φc and

√
2φs at four representative points

along the dashed line. The red crosses in the figure indicate
the minima of the potential. Notice that points separated by
(±π,±π ) have the same values of P↑ and P↓ (mod integer),
and hence describe the same physical state.

At the point in the phase diagram [Fig. 2(a)] marked by a
red circle, the corresponding potential in Fig. 2(b) has a min-
imum at (π, 0), corresponding to a polarization (P↑, P↓) =
(1/2, 1/2). Beyond f = f ∗

−, this minimum splits into two
minima, as shown for the point indicated by the blue square
in Fig. 2(a). These minima move away from each other and
towards (φc, φs) = (0, 0) as f increases [see arrows indicat-
ing the direction of motion for the potential minima, and
the potential corresponding to the point marked by purple
diamond in Fig. 2(b)], until they merge at (φc, φs) = (0, 0)
when f = f ∗

+. Beyond this point, the minimum is at the origin,
corresponding to a polarization (P↑, P↓) = (0, 0) (see poten-
tial at the point marked by the green star). Figure 2(c) shows
the motion of the potential minima along the dashed line in
Fig. 2(a).

Within the mirror symmetry breaking (MSB) phase [filled
region in Fig. 2(a)], both φc and φs change continuously
as f is varied, corresponding to changes in the polarization
densities P↑,↓. Therefore an adiabatic change in the axial field
within this phase causes spin and charge currents to flow along
the nanotube. As f changes from f ∗

− to f ∗
+,

√
2φs changes

by ±π . This change of φs corresponds to one net electron
spin being pumped across the system. The direction of the
pumping depends on which of the two degenerate grounds
states the system is in. Additionally, φc also changes as f
varies from f ∗

− to f ∗
+ [see potentials corresponding to the blue

square and purple diamond, displayed in Figs. 2(b) and 2(c)].
These changes of φc imply that the charge polarization density
changes as the magnetic field is varied, realizing a magneto-
electric effect. Unlike φs, the change of φc is nonmonotonic,
with no net charge being pumped as f changes from f ∗

− to f ∗
+.

The maximum change in the charge polarization is obtained
at an intermediate value of the flux within the MSB phase. Its
magnitude is nonuniversal, depending on microscopic param-
eters such as λ, gc, and the Luttinger parameter Kc.

For a sufficiently large λ, the MSB phase disappears for
all values of f . Instead, there is a direct transition from the
(P↑, P↓) = (1/2, 1/2) phase to the (1/2, 0) phase, and another
transition from the (1/2, 0) phase to the (0,0) phase, as in the
noninteracting case [28]. Across these transitions, the charge
polarization density changes discontinuously by 1/2. Along
the transition lines [the thick black lines emanating from the
points 1 and 2 in Fig. 2(a)] the interaction terms in Eq. (8)
are irrelevant. At points 1 and 2, the interaction terms are
marginal. Between these points, each transition line splits in
two, and the MSB phase is formed. The boundaries of the
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MSB phase (except the points 1, 2, and the origin) are likely
to be of the 1+1 dimensional Ising universality class, since
along these lines the Z2 mirror symmetry is broken.

D. Effect of the Zeeman field h

To examine the effect of the Zeeman field h, we start
from the point λ = f = μ = 0. At this point, the Zeeman
field leaves the spin sector gapless, and induces a finite spin
magnetization. To see this, we write φs(x) = φ̃s(x) +

√
2hKs
vs

x.

Then, in terms of φ̃s, the h term in Eq. (6) disappears, and
the cosine in the gs term [Eq. (8)] becomes spatially modu-
lated; the effect of the cosine term is thus suppressed by the
Zeeman field. Additionally, there is a constant term in the
energy density, Ks

πvs
h2. Turning on f and λ, a gapless phase

with a finite spin magnetization density appears in a region
around the point f = λ = 0, whose extent depends on h. The
critical lines at large λ beyond the points 1 and 2 [thick black
lines in Fig. 2(a)] similarly expand into gapless regions upon
increasing h. Away from points 1, 2 and the origin λ = f = 0,
the phase diagram with a small nonzero h is similar to that
shown in Fig. 2(a). (For brevity, we do not plot the h �= 0
phase diagram here.) In particular, the existence of a MSB
phase is stable for sufficiently small h. Similar considerations
can be applied for the phase diagram at a nonzero chemical
potential, μ.

VI. DISCUSSION

In this work, we described how electron-electron inter-
actions in zigzag carbon nanotubes lead to the formation
of correlated insulating phases. The interactions prevent the
magnetic field driven gap closing expected based on the
single-particle band structure. In particular, over a range of
values of spin-orbit coupling and magnetic flux, we predict
that the ground state of the carbon nanotube spontaneously
breaks the mirror symmetry of the system. Within this MSB
phase, adiabatic changes of the flux drive charge and spin
currents along the nanotube, providing an observable, distin-
guishing signature of this phase.

In experiments, the spin-orbit coupling is fixed for a given
nanotube. Therefore the applied flux (along with the Zee-
man field and chemical potential) is the primary tool for
exploring the phase diagram. To assess whether or not the
MSB phase can be realized, we must compare the value of
the spin-orbit coupling to the critical value λ∗ above which
the symmetry breaking phase disappears. The value of λ∗ is

determined by the competition between the spin-orbit cou-
pling term λ sin(

√
2φs) sin(

√
2φc) in Hλ, f , Eq. (7), and the

gc cos(2
√

2φc) term in HBS, Eq. (8). Experimentally, spin-
orbit coupling values of up to a few meV have been reported
in CNT quantum dots [8,9,18]. In contrast, we estimate the
bare value of vgc

d = U−
2πd ≈ e2

d [see text below Eq. (8)] to be
of the order of a few hundred meV. Therefore it is likely that
in experiments, λ < λ∗. Notice that the potential U− depends
on subtle many-body effects and is sensitive to details such
as the distance to a gate and its screening properties, as well
as screening from high-energy modes of the nanotube that are
not included in our model. A quantitative numerical estimate
for the value of λ∗ is therefore out of reach. Nonetheless,
given the large separation of characteristic scales between
the Coulomb energy and SOC, our prediction of λ < λ∗ is
robust and indicates that the MSB phase may be accessible
in experiments. However, whether the MSB phase is realized
also depends on the strength of the Zeeman term h, which is
not independent of the orbital magnetic flux � (notice that
h �= 0 when � = �c). Therefore, as � is swept across �c,
the system either enters the MSB phase, or a phase with a
nonzero spin magnetization and gapless spin excitations. In
either case, the charge gap remains open, in agreement with
the experimental observation [21]. In view of future experi-
ments, closing of the spin gap near � = �c could be detected
via the associated enhancement of magnetic field fluctuations.
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