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Transport anisotropy and metal-insulator transition in striped Dirac fermion systems
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Using the determinant quantum Monte Carlo method, we investigate the metal-insulator transitions induced
by the stripe of charge density in an interacting two-dimensional Dirac fermion system. The stripe will introduce
the transport anisotropy and insulating intermediate phase into the system, accompanied by the change of band
structure and a peak of density of states around Fermi energy. In the case of strong correlation, stripe exhibits
competition with Coulomb repulsion through closing the energy gap and disrupting the magnetic order and
finally drives the system in the Mott insulating phase back to the metallic state. Our results may provide a
feasible way to modify transport properties by setting charge stripes in experiments.
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I. INTRODUCTION

For the unique electronic spectrum [1] and wonderful prop-
erties [2,3], graphene has become one of the most promising
Dirac fermion systems [4,5]. With the emergence of a series
of novel phenomena, the honeycomb lattice in correlated sys-
tems especially for Hubbard model is expected to reveal more
complex physical mechanism. For example, the disorder in the
Anderson-Hubbard model is proven to induce a novel non-
magnetic insulating phase emerging at the quantum critical
point [6], the Hubbard-Holstein model including electron-
phonon interaction identifies semimetal-to-insulator quantum
critical points [7] and the Bose-Hubbard model is used to
tune quantum phase transitions in the helium-graphene system
for its sensibility to the exact lattice structure [8]. In recent
years, related research has become increasingly richer, and
numerous graphene-like lattices such as the kagome [9,10]
and decorated honeycomb lattice [11,12] have been discussed.

The stripe order composed by charge or spin inhomo-
geneities received extensive attention in experimental and
theoretical studies for its correlation with novel phenomena,
such as symmetry breaking [13], superconductivity [14,15],
topological phase [16], and phase transitions [17–19]. Among
them, the metal-insulator transition (MIT) has been an im-
portant and controversial issue. For example, the MIT in
hole-doped ferromagnets can be described as an ordering of
the domain boundaries, which can be interpreted in terms of
a two-dimensional (2D) superstructure of orthogonal stripes
[20]. In NdNiO3, striped domains induced by heteroepitaxy
change the surface morphology, and thus set the critical tem-
perature of the first-order MIT [21]. Besides, the appearance
of the stripe phase is accompanied by MIT under atomic
scale investigation, indicating that the local conduction state
is related to the charge ordering [22].
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Recently, introducing charge stripes by setting the periodic
potential energy has provided a powerful means to help us
understand the physics of various lattices, especially for the
graphene lattice. In experiments, some organic materials are
coated on graphite surface and self-assemble into nanoscale
stripes [23–26]. Although the size of the stripe structure in
graphene is rather small, its effect to induce the anisotropy
is confirmed and highly valued. Besides, numerical studies
proposed that doping holes [27] or modulating hopping [28]
could introduce the stripe order into the graphene system, and
the stripe should cause interesting effects, such as its competi-
tion with the quantum anomalous Hall state in twisted bilayer
graphene [28]. Actually, because of its ability to effectively
adjust the physical properties of the system, charge stripes
were used to modify the electrical conductivity in graphene
[29–31]. It was also suggested that periodic potentials might
lead to the generation of new Dirac points and the changing
energy band structure could be used to adjust the conductivity
[32,33]. In experiments, highly pronounced resistance oscil-
lations are found in the monolayer graphene with a laterally
modulated potential profile [34] and the stripe built by the
technique of dielectric patterning is proven to induce the trans-
port anisotropy [35].

In this paper, we study the stripe-induced metal-insulator
transitions in the Hubbard model on a honeycomb lattice
through the exact determinant quantum Monte Carlo (DQMC)
method. The charge stripes are introduced by a periodically
distributed chemical potential along the y-direction, and its
strength is measured by �μ as shown in Fig. 1(h). A mod-
ulated potential is proven to effectively induce a stripe order
[36], and allows an exploration of general and fundamental
issues [37]. For the anisotropy of transport properties induced
by stripe, we focus on the x-direction where there are more
interesting physical phenomena.

Our data suggest that, for the metallic system, the enhanced
intensity of stripes induces two times phase transitions. That
is, the increasing �μ will first drive the semi-metal to a
insulator, and then drive this insulator to a metallic phase.
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FIG. 1. The transverse conductivity σdc as a function of T for several stripe strengths �μ with interaction U equal to (a) 0.0, (b) 1.0,
(c) 2.0, and (d) 3.0. At small �μ, σdc decreases with increasing T , representing the metallic phase. At a pretty large �μ, σdc decreases as T
decreases, indicating that metallicity is suppressed and MIT occurs. When �μ is large enough, σdc diverges again as the temperature decreases
to the limit T → 0. Panels (e) to (g) show σdc(�μ) curves for several interaction U and inverse temperature β, whose intersections represent
the critical points of phase transitions. Critical values of the first phase transition are respectively 0.58, 0.60, 0.65; critical values of the second
phase transition are respectively 0.81, 0.88, 0.96. (h) The distribution of the stripe along y-direction, taking �μ = 1 as an example. The depth
of color represents the value of chemical potential.

For a Mott insulator in the strongly correlated case, applying
stripes closes the Mott gap and makes the system return to
the metallic phase. We use the exact diagonalization method
with no interactions to investigate the energy band structure
influenced by stripes and prove the existence of the insulating
intermediate phase. Our results show that an increasing �μ

will lead to new Dirac points and a peak of density of states
(DOS) which appears near the Fermi level [33,38]. When �μ

continues to increase, the peak of DOS gradually disappears
and the system goes back to the metallic phase. We use the
behavior of energy bands to label the insulating phase. Under
a sufficiently large �μ, that is, a sufficiently strong stripe, the
energy bands are separated from each other, and an energy
gap appears at the Fermi level [30,39,40]. We summarize our
results into a phase diagram as Fig. 6.

II. MODEL AND METHOD

The Hamiltonian of the interacting Hubbard model on a
honeycomb lattice in the presence of charge stripes is defined
as follows:

Ĥ = −t
∑
〈ij〉σ

(ĉ†
iσ ĉjσ + ĉ†

jσ ĉiσ )

+U
∑

j

(
n̂j↑ − 1

2

)(
n̂j↓ − 1

2

)
−

∑
jσ

μ(j)n̂jσ , (1)

μ(j) = �μ × sin{2π [y(j) − y0]/Ty}. (2)

In Eq. (1), ĉ†
iσ (ĉiσ ) is the spin-σ electron creation (annihi-

lation) operator at site i and n̂iσ = ĉ†
iσ ĉiσ is the occupation

number operator. Here, t is the nearest-neighbor (NN) hop-
ping integral and t = 1 sets the energy scale in the following.
U > 0 is the onsite Coulomb repulsive interaction. μ(j) is the

chemical potential where �μ describes the strength of the
stripe. By setting the starting ordinate y0 and the period length
Ty in the y-direction, 2π [y(j) − y0]/Ty converts the ordinate
y(j) into a stripe chemical potential distributed along the y
direction and it forms a periodic distribution of the charge
density. The schematic diagram is shown in Fig. 1(h).

We adopt the DQMC method [41] to study the phase
transition in the model that is defined by Eq. (1) in which
the Hamiltonian is mapped onto free fermions in 2D + 1
dimensions that are coupled to space- and imaginary-time-
dependent bosonic (Ising-like) fields. By using Monte Carlo
sampling, we can carry out the integration over a relevant
sample of field configurations, which are selected when the
statistical errors are negligible enough. The discretization
mesh �τ of the inverse temperature β = 1/T should be small
enough to ensure that the qualified Trotter errors are less than
those that are associated with statistical sampling. This ap-
proach enables us to compute static and dynamic observables
at a specified temperature T . Tuning μ(i) �= 0 means that the
system is away from the half-filling, which breaks the particle-
hole symmetry and will lead to a sign problem. However, the
problem becomes less severe as we have

∑
j μ(j) = 0 and we

are able to obtain accurate data at a large-enough β equal to
12 [6]. We choose a L = 6 honeycomb lattice with periodic
boundary conditions, for which the total number of sites is
N = 2 × 3 × L2.

The T -dependent x-direction dc conductivity is computed
via a proxy of the momentum q and imaginary time τ -
dependent current-current correlation function (more details
are in the Appendix of Ref. [42])

σdc(T ) = β2

π
�xx

(
q = 0, τ = β

2

)
. (3)
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FIG. 2. The longitudinal conductivity σ
y
dc computed as a function

of temperature T for various strengths of U and �μ. The increasing
stripe strength has little effect on σ

y
dc, the conductivity always di-

verges when the temperature tends to be 0, and the system is always
metallic.

Here, �xx(q, τ ) = 〈 ĵx(q, τ ) ĵx(−q, 0)〉, and ĵx(q, τ ) is the
current operator in the x-direction. Similarly, the y-direction
dc conductivity σ

y
dc(T ) = β2

π
�yy(q = 0, τ = β

2 ) describes the
transport property in the y direction as shown in Fig. 2. This
form, which avoids the analytic continuation of the QMC data,
has been seen to provide satisfactory results for many studies
[43,44].

We also compute the staggered transverse antiferromag-
netic (AFM) structure factor in the direction parallel to the
lattice plane to study the AFM phase transition

SAFM = 1

N

∑
i, j

(−1)(i+ j)
(
Sx

i Sx
j + Sy

i Sy
j

)
, (4)

where Sx
i (Sy

i ) is the x (y)-component spin operator
and the phase factor is +1(−1) for sites i, j that be-
long to the same (different) sublattices of the honeycomb
structure.

The density of states at the Fermi level is defined as [45,46]

N (0) � β × G(r = 0, τ = β/2)/π. (5)

The DOS is an important property to differentiate several
physical mechanisms responsible for inducing the insulat-
ing phase and G in Eq. (5) is the imaginary-time dependent
Green’s function. When �μ becomes pretty large, the stripe
will lead to the energy band deformation [47] and N (0) is not
enough to describe the more complex condition around the
Fermi energy. Therefore, we need another method to study
the change of DOS, especially at large �μ.

Using the exact diagonalization method, we calculated
the energy bands of the lattice with no interaction to help
us understand the physical mechanism of the stripe-induced
phenomena. We set a cell including 24 sites with different
chemical potentials in a stripe period and as y(j) increases,
the site j is marked as a1, b1, a2, b2, . . . , a12, b12, respectively
(more details are shown in Fig. 8 of the Appendix). The lattice
is consist of a series of such cells, so the Hamiltonian is
defined as

Ĥ = −
∑

i, j=1:12

t
(
ĉ†

ia j
ĉib j + ĉ†

ib j
ĉia j + ĉ†

ib j
ĉia j+1 + ĉ†

ia j+1
ĉib j

)

−
∑

ix, j=1:6

t
(
ĉ†

ixa2 j
ĉix+1b2 j + ĉ†

ix+1b2 j
ĉixa2 j

+ĉ†
ixa2 j−1

ĉix−1b2 j−1 + ĉ†
ix−1b2 j−1

ĉixa2 j−1

)
−

∑
iy

t
(
ĉ†

iya1
ĉiy−1b12 + ĉ†

iy−1b12
ĉiya1

)−∑
i, j

μ j ĉ
†
i, j ĉi, j . (6)

Here, i(ix or iy) represents the ith cell (along the x or y
direction), a j (b j) is used to mark the jth site of sublattice a(b)
in a cell. Through the second quantization, we get the matrix
shown as Eq. (7) in which K = eik, and then get the energy
bands by diagonalizing it numerically

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μa1
Kx+1

Kx
0 0 0 0 . . . 0 1

Ky

1 + Kx μb1 1 0 0 0 . . . 0 0
0 1 μa2 1 + Kx 0 0 . . . 0 0
0 0 Kx+1

Kx
μb2 1 0 . . . 0 0

0 0 0 1 μa3
Kx+1

Kx
. . . 0 0

0 0 0 0 1 + Kx μb3 . . . 0 0
...

...
...

...
...

...
. . .

...
...

0 0 0 0 0 0 . . . μa12 1 + Kx

Ky 0 0 0 0 0 . . . Kx+1
Kx

μb12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7)

III. RESULTS AND DISCUSSION

Starting from the metallic graphene system under weak
interaction [42], our results show that the application of stripe
will introduce two times phase transitions into the system,
as shown in Fig. 1. In Figs. 1(a) to 1(d), the conductivity
σdc (“conductivity” means “lateral conductivity” unless oth-
erwise specified) is a function of temperature T for several
U and �μ. While the conductivity decreases at lower tem-

peratures in the (semi-) metallic phase with sufficient small
interaction, the effect of an increase of �μ is unequivocal.
The stripe first leads to a suppression of metallicity accom-
panied by MIT, displaying a downturn of σdc at small T .
When U = 0, increasing �μ from 0.5 to 0.7 introduces in-
sulating phase into the system. However, when the stripe
continues to increase, an opposite phenomenon emerges:
dσdc/dT changes from negative to positive. As σdc decreases
with increasing T at low temperatures, the system re-enters
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FIG. 3. (a) Conductivity σdc as a function of temperature T for
several interaction U at �μ = 0. U inhibits metallicity and induces
MIT, and conductivity increases with increasing temperature. (b) σdc

as a function of U for various inverse temperature β. The curves of
σdc(T ) intersect around U ≈ 3.89, the function relationship between
σdc and T is different on two sides of the intersection, representing
the critical value for inducing MIT. (c) DOS at the Fermi energy N (0)
as a function of temperature T . At a sufficiently large U , N (0) tends
to be zero when T → 0, which suggests an opened Mott gap. We use
points at low temperature for a linear fit. (d) Staggered transverse
AFM structure factor SAFM as a function of lattice size L for various
U . As U increases, SAFM is increased at each L. As the curve intercept
gradually increases from zero to positive, the system reaches the
AFM phase. The critical U is approximately 3.9. For finite-size
scaling studies, quadratic fit is proved to be suitable [48,49].

the metallic phase. We use metal-insulator-metal transition
(MIMT) to define this process. In Figs. 1(b) to 1(d), we calcu-
lated the situation under U = 1 ∼ 3, and it can be indicated
that MIMT is effective whether there is an interaction or
not.

A more evident display of the critical stripe strength for
MIMT is obtained in Figs. 1(e) to 1(g), where σdc is a function
of �μ for various inverse temperatures β. Since the phase
transition implies a change in the function relationship be-
tween σdc and T , the intersections of the σdc(�μ) curves can
be used to estimate the critical �μ. When the curve with
lower temperature (like blue curve for β = 12) is higher than
the curve with large temperature (like the black curve for
β = 8), the system is metallic. The region where the blue
curve is lower than the black one indicates the presence of
the intermediate insulating phase.

Moreover, in the direction parallel to the stripe, the
different chemical potential distributions lead to different
conditions of electron hopping, so we need to calculate the
behavior of longitudinal conductivity σ

y
dc. As shown in Fig. 2,

when �μ increases from 0.5 to 0.9, σ
y
dc in the y-direction

hardly changes whether or not there is an interaction, which is
very different from the MIMT on the x-direction. σ

y
dc always

increases with decreasing temperature, meaning that the sys-
tem is always a metal. By contrast, our results suggest that the

FIG. 4. For interaction U = 4.0. (a) Conductivity σdc as a func-
tion of temperature T for several stripe strength �μ. When �μ

increases from 0.0 to 0.7, it enhances metallicity and induces
insulating-metallic phase transition. At �μ = 0.8, the system is a
stripe-induced insulator. Stripe continues to enhance, dσdc/dT be-
comes positive, and the error bar is large under sufficiently strong
U and �μ. (b) The sign problem 〈sign〉 as a function of the inverse
temperature β. The larger the �μ, the faster the 〈sign〉 decreases
with β, so our calculations are limited under large U and large �μ.
(c) DOS at the Fermi energy N (0) as a function of temperature T . As
�μ increases, the N (0) curve tends to be an infinite value at T → 0.
(d) Staggered transverse AFM structure factor SAFM as a function of
temperature T at different stripe strength �μ. As �μ increases, the
divergent SAFM at low temperature is suppressed.

application of stripe contributes to the formation of transport
anisotropy, which is also reported in Refs. [30,35,47].

Thus we focus on the transport properties on x-direction.
For the graphene system in the Hubbard model, the Mott-
insulating phase under strong correlation is a crucial issue and
its interplay with stripe order needs further study [27]. First,
the Mott-insulating phase caused by the interaction U are
determined in Fig. 3. Figure 3(a) plots σdc as a function of T ,
where σdc changes little with T as U increases to 3.8–3.9, and
the system is close to the critical point of MIT. In Fig. 3(b),
the conductivity always decreases as the interaction increases
and σdc at small T decreases faster. Around the critical value
Uc ≈ 3.89, dσdc/dT changes from positive to negative, and
the interaction drives the metal to Mott insulating phase. In
addition to the MIT, we investigated the change in DOS to
determine the behavior of the energy gap. N (0) is the function
of T in Fig. 3(c), and the value of N (0) at T → 0 curve
decreases gradually as U increases. Under a sufficiently large
U , N (0) → 0 when T → 0, which means that there is no
electron distribution near the Fermi energy E0 and the Mott
energy gap is opened [50]. We linearly fitted the data at
low temperatures and the critical point determined by N (0)
is around 3.8. Similarly, we also extrapolate the data to the
thermodynamic limit in Fig. 3(d) and determined that sym-
metry breaking and antiferromagnetic phases appear around
U ≈ 4.0: In the finite-size scaling study of the AFM spin
structure factor SAFM in Fig. 3(d), the value of SAFM at L → ∞
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FIG. 5. Band structure and DOS distribution near the E0 at ky = 0 without interaction. When stripe is applied, the energy band near the
Fermi surface is deformed. As the �μ increases, the two blue bands approach (b,c) the E0 and (d) generate new crossings, accompanied by
a peak at E = 0 for DOS. The peak splits and disappears as �μ increases to 1.1. In (c,d), the DOS peak is confined to a small range, the
magnitude order of peak width �E is about 10−2.

is 0 when U = 3.6 and 3.8. When U � 4.2, SAFM tends to
be a finite value, which proves that the antiferromagnetism
at this time is indeed a long-range order. Besides, although
these U -driven MIT points determined by different methods
are not coincided, the critical interaction Uc can be determined
around 3.9. Therefore, we can conclude that the Mott gap is
opened by the strong Coulomb repulsion at Uc, accompanied
by a MIT and a magnetic phase transition. The critical value
Uc ≈ 3.9 is consistent with the conclusions of the studies
[6,51].

Next, we discuss the competition between stripe and
Mott-insulating phase as shown in Fig. 4, which involves con-
ductivity, magnetic order, and band structure. In Fig. 4(a), the
conductivity σdc increases with the temperature T at �μ = 0,
and the system is in the Mott-insulating phase under strong in-
teraction U = 4 [6,42]. When the periodic chemical potential
is applied and its oscillation amplitude becomes stronger, the
metallicity of the system is promoted by �μ. As �μ reaches
0.3, dσdc/dT tends to be zero, representing that the system
is at the critical point of the Mott insulator-metal transition.
As �μ increases to 0.5, the system becomes a distinct �μ-
dominant metal. When �μ > 0.5, the system will undergo
MIMT as described in Fig. 1. It is worth noting that the
determination of these two transitions at U = 4 is slightly
more problematic for the large sign problem accompanied by
the large error bar. As shown in Fig. 1(b), 〈sign〉 at large �μ

drops rapidly to 0 with decreasing temperature, so we can only
qualitatively conclude that there exists the MIMT. However,
although the large error under pretty strong U will limit the
in-depth analysis, the sign problem at �μ = 0.3 is not serious

and the conclusion that the stripe could suppress the Mott
insulating phase is reliable. By fitting N (0) at low tempera-
ture as a linear function of T , we find that as �μ increases,
N (0)T →0 increases gradually, and at the critical �μ = 0.3 it
becomes positive. At this time, DOS near the Fermi surface is
not 0, the electron distribution reappears at E0, and the energy
gap is closed. In addition, the stripe will suppress the magnetic
order and eliminate the AFM phase. For an antiferromagnet,
SAFM is expected to diverge as T → 0 [52,53]. In Fig. 1(d),
�μ exhibits an obvious effect to inhibit SAFM, especially for
the low temperature. Although the existence of period length
Ty limits us to do a finite-size scaling study, the inhibition on
AFM by �μ is obvious. Overall, the stripe will close the Mott
gap and eliminate the magnetic order, inducing the transition
from the Mott-insulating phase to metal.

So far we discussed how the stripe competes with the in-
teraction through dc conductivity. Another electronic property
to characteristic the system state is the DOS. We therefore
simplify the lattice model to a 2D Hamiltonian as shown in
Eq. (6), resolve the quadratic quantization matrix and get the
band distribution of the system as shown in the Appendix. In
Fig. 5, we focus on energy bands on x-direction with ky = 0,
plot four dominating bands around the E0, and study the dis-
tribution of DOS near E0 based on the band structure, which
are closest to the Fermi surface, indicated by the two lines in
the blue color. As shown in Fig. 5, with increasing �μ, the
width of these two bands reduce. Around two Dirac points,
they gradually approach and lead to new crossings (in other
words, new Dirac points) on the Fermi surface as shown in
Fig. 5(c). For periodic potentials on the 2D lattice, the authors
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FIG. 6. Critical stripe strength �μc under different interaction
U . The phase diagram is divided into four regions: metal under weak
U and �μ, Mott insulator under strong U weak �μ, metal phase
under strong �μ and intermediate state, which is a �μ-induced
insulating phase.

of Refs. [32,33,38] found it exhibited a similar effect, which
provided support for our conclusion. Subsequently, the two
bands indicated in red color gradually approach the Fermi
level and “touch” the bands indicated in blue when �μ is
pretty large, such as �μ = 1.1. Our results in Fig. 9 suggest
that a strong-enough stripe may be accompanied by an energy
gap as described in previous studies [40,54]. Here we focus
on the MIMT in the development of stripe. It is worth noting
that the change of energy band affects the distribution of DOS
whose change trend is consistent with the transport properties,
indicating that energy bands may be the reason for phase
transitions.

For numerically calculated band structures, we count the
number of states in the range [E − dE/2, E + dE/2) to qual-
itatively calculate the density of states at energy E , as shown

FIG. 7. The conductivity σdc is shown as a function of tempera-
ture T for various interaction U with lattice size (a) L = 4, (b) L = 6,
and (c) L = 8. (d) Staggered transverse AFM structure factor SAFM

as a function of β. We choose a large enough T = 1/12 in our
calculation.

FIG. 8. The cell of simplified Hamiltonian including 24 sites
with different chemical potentials. Sublattices are labeled by red and
blue colors.

in the insets of Fig. 5. We chose a small-enough dE = 0.01.
For Figs. 5(a) to 5(b), the system is metallic under weak
stripe. Although the change in the band structure leads to
an increase in DOS at E0, the peak of DOS around Fermi
level does not appear until �μ increases to 0.6. In particu-
lar, the metal-insulator transition also occurs at this value as
described in Fig. 1(e). In the insulating phase, like �μ = 0.7
in Fig. 5(d), the sharp peak at E0 appears. However, with
further enhancement of the stripe and compression of the
bandwidth, beyond the crossings, two energy bands indicated
in blue color are gradually distanced. Although the DOS at
E0 still maintains a large value, the “diffusion” of the DOS
distribution still leads to the disappearance of the peak, with
the return of the system to the metallic phase. The sharp peak
of DOS at Fermi level seems to represent a band structure
similar to the flat band, which would localize the electron and
then induce the insulating phase because of its weak electronic
dispersion [55]. This kind of insulator was proven to be stable
even under a pretty strong interaction. Besides, the variation
trend of Fermi surface is also consistent with that of transport
properties as shown in Fig. 10, providing another evidence
that the behavior of energy bands can be used to label the
insulating phase.

With results of energy bands supporting our previous con-
clusions, we summarize our results as a phase diagram shown
in Fig. 6. The �μ-induced insulating phase is wrapped by two
red curves, and with the increase of U , the two red curves
have a tendency to close, indicating that the intermediate state
may be suppressed by strong interaction, and the system is a
U -dominated Mott-insulating phase. Due to the sign problem
and error bar, the calculation of competition between the Mott
insulator and stripe is limited in a small range and labeled by
the blue curve. On the right side of this curve, conductivity
increases with temperature, and the system has AFM order
and energy gap. As U increases, the blue curve rises rapidly,
which also proves the instability of other phases under strong
correlation.
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FIG. 9. Energy bands E (k) at (a) �μ = 0.0. Some bands are degenerate and the DOS near Fermi energy vanishes linearly. (b) �μ = 0.6.
The system is at the critical point of phase transition. When �μ continues to increase, new crossings will appear on the Fermi energy as shown
in Fig. 5(d). (c) �μ = 0.8. The critical value of insulator-metal transition. In the range of (π , π ) to (0, π ), a new Dirac point on Fermi energy
appears. (d) �μ = 4.0. The stripe is very strong and energy bands are separated from each other.

IV. SUMMARY

Using DQMC simulations, we investigated the effect of
stripe on the transport properties in the Hubbard model.
Through a periodically distributed chemical potential along
the y-direction, we introduce charge stripes into the 2D hon-
eycomb lattice and define its intensity as �μ. The change
in lateral conductivity σdc as a function of temperature T

FIG. 10. Fermi surface determined by intersections of energy
band and E = 0 plane, the depth of color represents the value of
energy. The energy reaches 0 in the red region. Panels (a) to (d) cor-
respond to Figs. 5(a), 5(c), 5(d), 5(e), respectively. The range of
abscissa and ordinate is (−π, π ).

indicates that stripe will induce an insulating intermediate
state and two phase transitions. Through secondly quantizing
the simplified noninteracting model, we use the behavior of
DOS to verify the existence of mesophase. We speculate that
the reason for the stripe-induced intermediate phase may be
the change in band structure. However, the stripe causes dif-
ferent potential distributions on x- and y-directions, and the
longitudinal conductivity is hardly affected by �μ. Thus, the
system will exhibit transport anisotropy.

The stripe also shows the competition with interaction.
Through conductivity, DOS at the Fermi level, and antifer-
romagnetic spin structure factor, we demonstrate that, for a
strongly correlated Mott insulator, a sufficiently strong stripe
will close the Mott gap, disrupt the magnetic order, and ulti-
mately drive the system as a metal. We summarize our results
in the phase diagram including metal, Mott insulator, and
stripe-induced insulating phase as shown in Fig. 6, providing
a discussion and reference for modifying transport properties
by setting charge stripes.
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APPENDIX A: DC CONDUCTIVITY

To understand the influence of the system’s finiteness on
the physical results we presented in the main text, we now
check the behavior of σdc with different lattice size L. We re-
port in Figs. 7(a) to 7(d). the conductivity σdc as a function of
temperature T for L = 4–8. When we compare Figs. 7(a), 7(b)
and 7(c), we can find that while different lattice sizes yield
different values for the conductivity, the interaction still in-
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duces a Mott-insulating phase at the critical value around
3.8–3.9. Besides, the system is always a metal when U =
3.6–3.8 but an insulator when U = 3.9–4.0.

To test that at β = 12 we are already assessing physics
close to the ground state, we show in Fig. 8(b) the dependence
of SAFM with the inverse temperature: saturation is readily
observed for values β � 10.

APPENDIX B: SIMPLIFIED HAMILTONIAN

We set the cell as shown in Fig. 8, which contains a
complete cycle of the chemical potential distribution with 24
sites. For sites on the 2 × 3 × 62 graphene lattice, this cell
includes all possible potentials under a determined �μ. In
the simplified model, we assume that these cells are aligned
along the x-direction and y-direction and periodic boundary
conditions are effective on both directions. Therefore, the 2D
Hamiltonian is shown in Eq. (6), where i and a j (b j) are,
respectively, used to represent the ith cell and the jth a(b)
site in this cell. In Eq. (6), the first term is the transition
within the cell, such as a1 → b1, b1 → a2. The other terms
are transitions between cells, such as b1 in (i − 1)th cell → a1

in ith cell, a2 in ith cell → b2 in (i + 1)th cell.
Through the second quantization, we obtain the Hamilto-

nian matrix as shown in Eq. (7) and E (k) at the no-interacting
case. We show all energy bands in Fig. 9, and focus on the

situation near the Fermi energy. Although the interaction in
our calculation is not zero, the value range of interaction is
not particularly large (U � 4), so we think this method can
still be used for reference. Figure 9(d) shows the separation of
bands at large �μ, indicating that although the spatial period
of the potential is much larger than the distance between two
nearest sites, a strong-enough stripe will also induce an energy
gap [30,39,56]. It is worth noting that the y-direction periodic
boundary condition destroys the possible edge states in the
2D graphene ribbons, which only has a periodic boundary
condition in one direction.

We also plot the Fermi surface in Fig. 10. When �μ �
0.6, the critical value of MIT, the system is in metallic phase
with two Dirac points. As �μ ∈ (0.6, 0.8), the sharp peak of
DOS at the Fermi level would localize the electron and induce
the insulating phase [55] and the system has six Dirac points.
When �μ reaches the critical value ∼0.8, the system goes
back to the metallic phase, accompanied by the appearance of
the “‘Fermi line,” as shown in Fig. 10(d). Although there are
errors between critical points determined by band structure
and conductivity, the errors are small and do not affect the
reliability of the conclusion. It is worth noting that the change
of band structure in the x-direction is more obvious than
the change in the y-direction, and the mode of electronic
dispersion along the y-direction is more stable. This may be
the reason why σdc on the x-direction is more sensitive to
the �μ.
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