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Enhanced symmetry-breaking tendencies in the S = 1 pyrochlore antiferromagnet
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We investigate the ground-state properties of the nearest-neighbor S = 1 pyrochlore Heisenberg antiferro-
magnet using two complementary numerical methods, the density-matrix renormalization group (DMRG) and
pseudofermion functional renormalization group (PFFRG). Within DMRG, we are able to reliably study clusters
with up to 48 spins by keeping 20 000 SU(2) states. The investigated 32-site and 48-site clusters both show
indications of a robust C3 rotation symmetry breaking of the ground-state spin correlations and the 48-site
cluster additionally features inversion symmetry breaking. Our PFFRG analysis of various symmetry-breaking
perturbations corroborates the findings of either C3 or a combined C3/inversion symmetry breaking. Moreover,
in both methods the symmetry-breaking tendencies appear to be more pronounced than in the S = 1/2 system.
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I. INTRODUCTION

Frustrated magnets continue to be on the forefront of con-
densed matter research since they often realize the fascinating
situation where quantum fluctuations are strong enough to
suppress the onset of magnetic order, even at lowest temper-
atures, and therefore, are potential hosts for quantum spin
liquids. One of the prime three-dimensional candidates is
the Heisenberg antiferromagnet on the pyrochlore lattice—a
cubic arrangement of corner-sharing tetrahedra—which even
in the classical limit does not order magnetically due to a
ground-state degeneracy that grows exponentially in system
size giving rise to a classical spin liquid [1,2]. Recent research
has uncovered a striking variety of phenomena that emerges
out of this classical scenario, particularly, when small effects
of quantum fluctuations are taken into account. For example,
adding small transverse spin interactions in a pyrochlore Ising
magnet—known as quantum spin ice—gives rise to an emer-
gent U(1) gauge theory, effective magnetic monopoles, and
emergent light [3–6].

On the other hand, the ground-state properties of the
Heisenberg model in the extreme quantum case S = 1/2 re-
main elusive since the combination of three spatial dimensions
and strong quantum fluctuations poses significant challenges
for numerical methods. Yet, there has been serious progress
recently both for finite [7–13] and zero temperatures [14–16].
A numerical linked-cluster [5,9,17–25] and high-temperature
series expansions [7,8] as well as the diagrammatic Monte
Carlo technique [10] are able to reach nontrivial temperatures
but cannot target the zero-temperature limit directly. Various
state-of-the-art techniques, including variational Monte Carlo
[26], DMRG [27], and PFFRG methods [28] point towards a

magnetically disordered ground state but with broken point-
group symmetries. This questions the existence of a quantum
spin-liquid ground state and indicates that quantum spin ice
behavior may not survive in the extreme quantum limit and
for isotropic Heisenberg interactions.

In this situation, it is natural to ask what happens between
the extreme quantum and the (semi-)classical limit, such as
the S = 1 case, which is even less clear than for S = 1/2. This
is due to the fact that addressing the S = 1 case is much more
difficult especially for those methods (exact diagonalization,
Lánczos techniques) that depend on the size of the Hilbert
space. As an example, the current exact diagonalization (ED)
limit for S = 1/2 spins is 48 sites [29] whose Hilbert space
(in the Sz

tot = 0 sector) has a dimension of ∼1013. However,
for S = 1 this Hilbert space dimension is already reached,
and even exceeded, for 32 sites (which corresponds to the
2 × 2 × 2 pyrochlore unit cell). Recent PFFRG studies of
the J1-J2 model [16] revealed that already the S = 1 case
appears to be surprisingly close to the classical limit, except
for the nearest-neighbor Heisenberg model, where a nonmag-
netic phase is predicted, however, its width is significantly
reduced compared to the S = 1/2 case. The rotation-invariant
Green’s function technique [30] also finds an absence of
long-range magnetic ordering where the spin-spin correlation
length is smaller than the lattice constant. On another front,
perturbative calculations suggest an even stronger competition
between magnetically ordered and plaquette or dimer states
than in the S = 1/2 case [31]. In conclusion, the difference
between the extreme quantum cases S = 1/2 and S = 1 re-
mains elusive.

There is also a strong motivation to obtain new in-
sights from experimental studies. The recently discovered
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NaCaNi2F7 compound realizes a nearly ideal S = 1 Heisen-
berg model, which shows signatures of a quantum spin liquid
at low temperatures [32].

In light of the very sparse results for the S = 1 case,
our goal is to make progress on the numerical front towards
solving this difficult problem. With large-scale DMRG calcu-
lations we address the ground-state properties of clusters with
N = 32 and 48 sites. Our main finding is a robust C3 rota-
tion symmetry breaking and possibly an additional breaking
of inversion symmetry. Remarkably, such symmetry-breaking
tendencies appear to be even larger compared to the spin-1/2
case. This is also confirmed by our complementary PFFRG
analysis which indicates that either C3 rotation or a combina-
tion of both C3 and inversion symmetries are broken while a
breaking of inversion symmetry alone seems unfavorable.

The rest of the paper is structured as follows. In Sec. II
we introduce the model and briefly describe properties of
the DMRG and PFFRG methods that are relevant for our
work. Thereafter, our results from both methods are presented
in Sec. III, including real-space and momentum-space spin-
correlation functions, energies of ground states, and excited
states as well as response functions for symmetry-breaking
perturbations. The paper ends with a conclusion in Sec. IV.

II. MODEL AND METHODS

We investigate the S = 1 Heisenberg model on the py-
rochlore lattice

H = J
∑

〈i, j〉
Si · S j, (1)

where Si = (Sx
i , Sy

i , Sz
i )T is the three-component S = 1 spin

operator on site i. The pyrochlore lattice is a decorated fcc
lattice, with the fcc lattice vectors a1 = 1

2 (1, 1, 0)T , a2 =
1
2 (1, 0, 1)T , a3 = 1

2 (0, 1, 1)T , together with the tetrahedral ba-
sis b0 = 0, bi = 1

2 ai, that is, each lattice point can be written
as Ri ≡ Rα,n1,n2,n3 = n1a1 + n2a2 + n3a3 + bα, with integer
n1, n2, n3 and α ∈ {0, 1, 2, 3}.

A. DMRG

We first use the DMRG method [33–37] to address the
ground-state properties and low-lying excitations. Although
the method works best for one-dimensional systems, large-
scale DMRG calculations have been able to give valuable
results for two-dimensional [38] and recently for three-
dimensional systems [27,39], well beyond the limitations of
exact diagonalization. However, compared to the S = 1/2
case, the larger local Hilbert space also has an impact on the
system sizes that can be treated reliably within DMRG. We
consider two fully periodic clusters with N = 32 and 48 sites.
The superlattice spanned by the periodic arrangement of 32-
site clusters shares the same octahedral point group Oh as the
fcc lattice on which the original pyrochlore lattice is based. On
the other hand, this symmetry group is partially broken in the
case of 48-site clusters. The lattice vectors of the superlattice
that is formed by these periodic cluster arrangements are given
in Table I.

Enforcing the SU(2) symmetry conservation provides a
much more efficient compression for S = 1 spins than for

TABLE I. Frame vectors c1, c2, c3 of the two clusters used in
this work. The 32-site cluster respects all point symmetries of the
fcc lattice. The notation “d” is used to follow the convention of
Ref. [27].

Cluster c1 c2 c3

32 2a1 2a2 2a3

48d (1, 1, 1)T (1, 0, −1)T (1, −1, 0)T

S = 1/2, however, it does not compensate the growth of the
Hilbert space as we increase the size of the spin. We are able to
keep 20 000 SU(2) block states, which are usually equivalent
to �100 000 U(1) states. We map the three-dimensional clus-
ter via a “snake” path to a one-dimensional topology (further
details are given in Appendix A), then we use the single- and
two-site variants of the DMRG method [40–43] to optimize
the wave function and extrapolate the energies to infinite bond
dimensions using the two-site variance [44]. We find that
the results are independent from the choice of the “snake”
path and the initial state, corroborating the reliability of our
calculations.

B. PFFRG

We also address the model using the PFFRG method. This
approach accesses the T = 0 properties of a spin model via
the vertex functions of the fermionic model, which is ob-
tained by mapping from spins to pseudofermions [45]. In the
standard case of spin-1/2 models, this mapping is carried out
via Abrikosov’s pseudofermion representation. To implement
spin-1 degrees of freedom, we employ the approach of the au-
thors of Ref. [46] by placing two copies of spin-1/2 operators
on each site.

Within the functional renormalization group’s exact infi-
nite set of coupled differential equations, n-particle fermionic
vertex functions are coupled to those of one order higher.
By truncating this infinite hierarchy using the standard one-
loop plus Katanin scheme, we obtain a finite solvable set
of differential equations for the one- and two-particle ver-
tex functions where the renormalization group parameter is
an artificially introduced infrared frequency cutoff � in the
fermionic single-particle propagator. The resulting flow equa-
tions are then solved starting in the known infinite cutoff
limit � → ∞, and evolving the system towards � → 0 to
obtain physical (i.e., cutoff-free) fermionic vertex functions.
The fermionic two-particle vertex is related to the static spin-
spin correlation function χ�

i j which is our main numerical
outcome. Necessary numerical approximations include ne-
glecting longer-range spin-spin correlations χ�

i j , discretizing
the vertices’ frequency dependencies and applying a solving
algorithm with finite cutoff stepwidth to the renormalization
group equations. More precisely, in our calculations, correla-
tions of distances larger than five nearest-neighbor spacings
are neglected. Furthermore, frequency dependencies of the
two-particle vertex (self-energy) are discretized via a fre-
quency mesh with 64 (2000) points distributed exponentially
around zero frequency.

Since, by construction of the PFFRG method, the spin-
spin correlation functions χ�

i j satisfy all symmetries of the
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TABLE II. Ground-state energies per site and gaps within the
Stot = 0 sector (singlet gap) as well as to the Stot = 1 sector (triplet
gap) in units of J . The extrapolation error is defined as the half
distance between the best variational energy and the extrapolated
value. No value is given for the singlet gap of the 48d cluster due
to large numerical costs.

Cluster GS energy Triplet gap Singlet gap

32 −1.5396(4) 0.619(13) 0.248(22)
48d −1.520(6) 0.51(26) −

Hamiltonian, we have to apply small bias fields to investigate
whether the nonmagnetic phase of the nearest-neighbor S =
1 pyrochlore Heisenberg model tends towards spontaneous
breaking of the lattice symmetries. (Note that the absence
of magnetic long-range order associated with broken time
reversal symmetry has already been confirmed in an earlier
PFFRG study [16].) This bias field induces a variation of
the couplings J in the Hamiltonian of Eq. (1) for different
nearest-neighbor bonds 〈i, j〉, that is, J → Ji j . More precisely,
couplings are either strengthened (Ji j = J + δ) or weakened
(Ji j = J − δ), according to the symmetry-breaking pattern
to be probed (here 0 < δ 	 1). We then monitor the sys-
tem’s response to such perturbations via the function χ�

D,i jkl
given by

χ�
D,i jkl =

∣∣∣∣
J

δ

χ�
i j − χ�

kl

χ�
i j + χ�

kl

∣∣∣∣, where Ji j = J + δ, Jkl = J − δ.

(2)
Note that in the infinite cutoff limit, this response function is
normalized, χ�→∞

D,i jkl = 1. A large increase χ�
D,i jkl 
 1 in the

cutoff free limit � → 0 hints towards a phase in which the
lattice symmetry that maps the two bonds 〈i, j〉 and 〈k, l〉 onto
each another is broken.

III. RESULTS

A. DMRG results

We begin with the discussion of the DMRG results for
the aforementioned two types of clusters. The ground-state
energies and triplet gaps are shown in Table II. To put these
numbers into context, the energy per site estimation from the
rotation invariant Green’s function method is ∼ − 1.4J [30],
which lies above our energies. Interestingly, the triplet gap of
the 32-site cluster appears to be almost equal to that of the
S = 1/2 case where a triplet gap size of 0.6872J was found in
Ref. [27]. On the other hand, for the 48d cluster the triplet gap
is significantly larger in the S = 1 case as in the spin-1/2 case
where the authors of Ref. [27] reported a value of 0.36(3)J .

Next, we discuss the structure of the ground state by
considering the nearest-neighbor spin correlations, shown
in Fig. 1. (On-site magnetizations converge to zero.) Sur-
prisingly, the 32-site cluster already exhibits a well-defined
pattern of spatially varying correlations. The ground state ex-
hibits lines along which strong nearest-neighbor correlations
〈Si · S j〉 ≈ −1.36 are present. In Fig. 1(a) these lines run
along the directions of the two face diagonals in the x-z plane
and do not intersect each other. All other nearest-neighbor

FIG. 1. Nearest-neighbor spin correlations 〈Si · S j〉 for the
ground state of the (a) 32-site and (b) 48-site cluster. For both cases
only one cubic unit cell of the clusters are shown. The widths of
the lines correspond to the strength of the correlation. The shaded
tetrahedral units are only guides to the eye. The values of the nearest-
neighbor strong and weak spin correlations are 〈Si · S j〉 ≈ −1.36 and
〈Si · S j〉 ≈ −0.09, respectively, for the 32-site cluster.

spin correlations (i.e., those on bonds with a finite separation
along the y-axis) are significantly weaker (〈Si · S j〉 ≈ −0.09),
indicating that the system undergoes an effective dimensional
reduction towards one-dimensional (1D) chains. This is fur-
ther supported by the fact that the strong correlations along
such chains are surprisingly close to the nearest-neighbor
correlations of a spin-1 Heisenberg chain, where the literature
reports 〈Si · S j〉 ≈ −1.401 [47,48]. The selection of the x-z
plane in this state clearly indicates a broken C3 rotational
symmetry around the [111] axis. It is worth noting that the
same cluster with S = 1/2 spins does not show any kind of
symmetry breaking [27].

To put the C3 rotation symmetry breaking on an even
stronger footing and remove any possible bias towards low-
entanglement states in the DMRG calculation, we perform an
additional analysis where we identify the symmetry-related
states. The ground-state manifold of the 32-site cluster is
expected to be threefold degenerate—corresponding to the
three choices of putting nonintersecting lines in either the x-y,
x-z, or y-z planes—if the symmetry breaking is intrinsic. To
prove that, we determine the low-lying states in the Stot = 0
sector, which is done by optimizing the wave function with
the additional constraint that it should be orthogonal to the
previously optimized states. (By default, DMRG converges to
the state that has the smallest entanglement with respect to the
snake path used.) After that, we again extrapolate the ener-
gies to the error-free limit, which is demonstrated in Fig. 2.
Note that this approach is different from the one used in Ref.
[27] since it does not require additional perturbations in the
Hamiltonian, however, it is only feasible for smaller system
sizes due to the consecutive orthogonalization. Therefore this
is not feasible for the 48-site cluster. The results from Fig. 2
clearly indicate that the ground state is threefold degener-
ate and that the fourth level corresponds to the first singlet
excitation.

Continuing with the 48-site cluster, the correlation pattern
is more complex than for the 32-site cluster, see Fig. 1(b).
Although we cannot reach the same accuracy and nice con-
vergence for the 48-site cluster like for the 32-site one [the
two-site variance is six times larger for the 48-site cluster than
for the 32-site with 20 000 SU(2) states], at first glance, the
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FIG. 2. Extrapolation of the energies (in units of J) of the first
four low-lying states in the Stot = 0 sector of the 32-site cluster. The
data points with largest and smallest two-site variances belong to the
bond dimensions 4000 and 20 000, respectively. The bottom panel
shows a sketch of the three degenerate ground-state configurations,
labeled by #1, #2, #3.

pattern looks quite similar. While some chains in the x-z plane
still show strong correlations [particularly, the ones along
the [1,0,1] direction in Fig. 1(b)], other chains are lacking
strong and homogeneous correlations. Furthermore, correla-
tions along bonds with a finite separation along y-direction
become relevant. Further details of this state are revealed
when investigating the total spin of the individual tetrahedra
(
∑

i∈tetra Si )2/[S(S + 1)] since this quantity indicates the pres-
ence or absence of the inversion symmetry. This is shown in
Fig. 3, where we compare the S = 1/2 and S = 1 cases for
the same 48d cluster. In the S = 1/2 case, the up and down
energy densities merge in the error-free limit, in contrast, they
converge to different values for S = 1, which suggests that the
inversion symmetry is broken for this cluster.

Altogether we can conclude that the symmetry-breaking
features occur already for smaller cluster sizes in the S = 1
system compared to the S = 1/2 case (where the C3 rotational
symmetry is broken at N = 48 sites and inversion with C3

rotational symmetry is broken for N � 64 sites) indicating
stronger symmetry-breaking tendencies.

We also calculate the equal-time spin structure factor

S(Q) = 1

2N

∑

i j

〈Si · S j〉c cos [Q · (Ri − R j )], (3)

where Ri denotes the real-space coordinates of sites and the
index c denotes the connected part of the correlation matrix
(the factor of 1/2 comes from normalization 1/[S(S + 1)] for
spin S = 1). This quantity is plotted in Fig. 4 for the two

FIG. 3. The (normalized) total spin squared of up and down
tetrahedra for the 48d cluster. The upper and lower panels show the
results for the S = 1/2 and S = 1 cases, respectively. The numbers
above the data points denote the corresponding bond dimensions.

clusters. The [hhl] cut is qualitatively similar to that of the
S = 1/2 system, that is, no sharp Bragg peaks are present—at
least for these system sizes—indicating the absence of mag-
netic order. The streaks in the Qz = 0 cut of the spin structure
factor running along one selected direction clearly reflect the
breaking of the C3 rotational symmetry for the 32-site and
48-sites clusters. Particularly, for the 32-site cluster the signal
shows almost no modulation along Qy which corresponds to
the absence of correlations in the y-direction. For the 48-site
cluster, however, modulations become more pronounced, in
agreement with the onset of y-correlations as discussed above.

It is worth highlighting experimental measurements of
the equal-time structure factor of NaCaNi2F7, which is

FIG. 4. Spin structure factor S(Q) for the two clusters. The top
row shows the Qy = Qx , [hhl] cut through the Brillouin zone, the
bottom row corresponds to the Qz = 0, [hl0] cut.
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FIG. 5. One-dimensional cuts of the spin structure factor across
the pinch point location for the 32- and 48-site clusters as well as
S = 1/2 and S = 1.

believed to be a nearly ideal realization of the nearest-
neighbor S = 1 Heisenberg antiferromagnet on the pyrochlore
lattice [32]. The Qz = 0 cut in the experiments, how-
ever, does not reflect this symmetry breaking, which may
be due to the fact that different domains are formed in
the sample and their superpositions result in a symmetric
Qz = 0 signal.

Next, we discuss the fate of the pinch point feature in
the spin structure factor, which is characteristic for the cor-
responding classical model and occurs at wave vectors Q =
(0, 0, 4π ) and symmetry-related points. In Fig. 5 we plot the
spin structure factor along two one-dimensional, orthogonal
cuts through this pinch point location for both the 32- and
48-site clusters as well as S = 1/2 and S = 1. Note that for an
ideal pinch point the signal should feature a plateau around
Qx = 0 in the top panel of Fig. 5 and a narrow peak at
Qz = 0 in the bottom panel of Fig. 5. All curves show a clear
deviation from this ideal shape, indicating that the classical
pinch points are significantly altered in the S = 1/2 and S = 1
models and rather appear as broad peaks. Furthermore, two
artificial peaks appear at ±π in the upper panel of Fig. 5,
which are due to finite-size effects. Although sharp features
are absent in our spin structure factors for both clusters and
spin lengths, we cannot ultimately exclude the possibility that
these peaks are the finite-size remnants of magnetic long-
range order occurring in the thermodynamic limit. However,
it is worth noting that previous studies using PFFRG [16] and
the rotation-invariant Green’s function method [30] do not
detect magnetic order for S = 1.

While we cannot perform a reasonable finite-size scaling
based on our data, we find for both cluster sizes a slight nar-
rowing of the peak along the Qz-cut (bottom panel of Fig. 5)
as we increase the spin from S = 1/2 to S = 1. This is in
qualitative agreement with PFFRG [16] and rotation-invariant
Green’s function results [30] and was interpreted as a sign
of restoration of sharp pinch points upon approaching the
classical limit. Since the width of the pinch point is associated
with the fulfillment of the “ice-rule constraint” (vanishing net
magnetic moment in a tetrahedral unit) a sharpening of the
pinch point should come along with a decreasing total spin

FIG. 6. PFFRG flows of dimer responses χ�
D [see Eq. (2)] for

different symmetry-breaking perturbations. The insets illustrate the
symmetry-breaking patterns where thick black (thin gray) lines are
the strengthened (weakened) bonds with J → J + δ (J → J − δ).
Furthermore, the two colored bonds in each of the four insets indicate
the two bonds (i, j) and (k, l ) for which the dimer response function
in Eq. (2) is calculated. The response function χD,C3 probes the
system with respect to the correlation pattern in Fig. 1(a). Note that
χ

(1)
D,C3,i and χ

(2)
D,C3,i correspond to the same perturbation but differ in

the two bonds which are used to calculate Eq. (2).

per tetrahedron. This is, indeed, reflected in our results where
the net spin of a tetrahedron (cf. Fig. 3), taking into account
the normalization with respect to the spin length, decreases
from ∼1.23 for S = 1/2 to ∼0.92 for S = 1 (32-site cluster).

B. PFFRG results

We will now show that, complementary to the DMRG, the
PFFRG supports the picture of an enhanced lattice symmetry
breaking for the ground state of the S = 1 model compared
to the S = 1/2 model. To this end, the flow behaviors of
dimer response functions χ�

D [see Eq. (2)] for three different
symmetry-breaking scenarios are investigated. In a previous
work [28], the same dimer response functions were studied
for the S = 1/2 model. Since otherwise the same numerical
settings were used, a direct comparison is possible.

Our first perturbation (top left in the inset of Fig. 6)
strengthens the up-tetrahedra and weakens the down-
tetrahedra, resulting in a broken inversion symmetry. The
corresponding response function χD,i compares two bonds
related by inversion symmetry. The second pattern (top right
in the inset of Fig. 6) is the one of Fig. 1(a) where noninter-
secting lines are strengthened such that C3 rotation symmetry
is broken. Accordingly, the response function χD,C3 considers
two bonds which are related by a C3 rotation. The last per-
turbation (bottom left and right in the inset of Fig. 6) breaks
inversion and C3 symmetry and corresponds to a proper dimer
pattern where each site is attached to exactly one strengthened
bond. In this case, two dimer responses can be defined: The
bonds contributing to χ

(1)
D,C3,i

are related by lattice inversion

symmetry while those of χ
(2)
D,C3,i

are related by lattice C3

symmetry.
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The four response functions of the S = 1 pyrochlore
Heisenberg antiferromagnet as a function of the renormaliza-
tion group parameter � are shown in the main panel of Fig. 6.
The results are qualitatively similar to those obtained for the
S = 1/2 system in Ref. [28]. A decrease of χD,i as the system
flows from a high cutoff � towards the physically relevant
cutoff-free limit � → 0 signifies that the ground state does
not support a pure inversion symmetry breaking. On the other
hand, the responses in the presence of a pure C3 or combined
C3/inversion symmetry-breaking perturbation all undergo an
increase to values larger than 10 in the cutoff-free limit indi-
cating a strong tendency to realize these correlation patterns.
Notably, though they are not exactly equal, the largest dimer
responses for those perturbations are found to be defined
on bonds related by C3 lattice symmetry, namely χD,C3 and
χ

(2)
D,C3,i

. Most importantly, in the limit � → 0 these response
functions are approximately 1.4 times larger compared to the
S = 1/2 model which indicates enhanced symmetry-breaking
tendencies in the S = 1 case. However, this factor of 1.4
decreases as we project out states of the unphysical Hilbert
space sector inherent to the PFFRG, see Appendix B for a
detailed discussion.

Since the largest response functions χD,C3 and χ
(2)
D,C3,i

are
almost equal, the PFFRG cannot ultimately identify the pre-
ferred symmetry-breaking pattern and leaves us with the
conclusion that either C3 or combined C3/inversion symme-
tries are broken, while an inversion symmetry breaking alone
seems to be ruled out. This overall picture is remarkably sim-
ilar to our DMRG results where, depending on the considered
cluster, either a C3 or a combined C3/inversion symmetry
breaking is found, while correlation patterns with broken in-
version symmetry only are not observed.

IV. CONCLUSION

We investigated the ground-state properties of the S = 1
pyrochlore Heisenberg antiferromagnet using DMRG and PF-
FRG. Both methods are conceptionally very different, e.g.,
within DMRG we study two finite and periodic spin clusters
with 32 and 48 sites. On the other hand, PFFRG does not
operate on a finite spin cluster, but instead limits the range
of spin correlations and relies on a fermionic mapping of the
original spin Hamiltonian. Despite these fundamental differ-
ences, both approaches agree in their overall conclusion in
that the tendency towards rotational or combined rotational
and inversion symmetry breaking is stronger in the S = 1
case than for the S = 1/2 system. On the other hand, de-
pending on the precise type of symmetry breaking, this does
not necessarily exclude the possibility of a spin-liquid ground
state.

The inherent limitations of both methods should, how-
ever, also be discussed. For example, the small cluster sizes
studied with DMRG do not allow an extrapolation to the
thermodynamic limit. While a possible cluster bias does
not exist within PFFRG, this approach relies on approx-
imated (truncated) renormalization group equations where
multispin-correlations are poorly incorporated. Hence, despite
the coherent physical scenario revealed in this paper, we
believe that further investigation of this difficult problem is
necessary.

It is again worth putting these results in the context of
available experimental findings [32]. While our results for the
spin structure factor are consistent with experimental data, a
symmetry breaking in the ground state must be accompanied
by a finite-temperature phase transition, which could serve as
a corroboration of our findings. The reported specific heat and
entropy data down to 100 mK do not exhibit any anomalies;
it would, hence, be interesting to search for a possible phase
transition at even lower temperatures.
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a site, which is connected to the rest via the periodic bonds.
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TABLE III. Coordinates and labels (corresponding to the
“snake” path) for the 32-site cluster.

Index x y z Index x y z

1 1 1 1 17 5 5 9
2 1 7 7 18 5 3 7
3 7 1 7 19 3 5 7
4 7 7 1 20 11 11 9
5 1 5 5 21 5 9 5
6 1 3 3 22 5 7 3
7 7 5 11 23 11 9 11
8 7 11 5 24 3 7 5
9 5 1 5 25 9 5 5
10 5 7 11 26 9 11 11
11 3 1 3 27 7 5 3
12 11 7 5 28 7 3 5
13 5 5 1 29 9 9 9
14 5 11 7 30 9 7 7
15 11 5 7 31 7 9 7
16 3 3 1 32 7 7 9

APPENDIX A: DETAILS OF THE FINITE CLUSTERS

For completeness, we give here the indexing of the cluster
sites that were used in our DMRG calculations. The 32- and
48-site clusters and their indexing are shown in Fig. 7 and
Tables III and IV, respectively.

TABLE IV. Coordinates and labels (corresponding to the “snake”
path) for the 48-site cluster.

Index x y z Index x y z

1 1 1 1 25 13 −3 1
2 9 7 7 26 13 −5 −1
3 15 1 7 27 11 −3 −1
4 15 7 1 28 11 −5 1
5 5 −3 1 29 13 1 −3
6 13 3 7 30 13 −1 −5
7 11 5 7 31 11 1 −5
8 19 3 1 32 11 −1 −3
9 5 1 −3 33 13 1 5
10 13 7 3 34 13 −1 3
11 19 1 3 35 11 1 3
12 11 7 5 36 11 −1 5
13 9 −3 −3 37 13 5 1
14 17 3 3 38 13 3 −1
15 15 5 3 39 11 5 −1
16 15 3 5 40 11 3 1
17 9 1 1 41 17 −3 −3
18 9 −1 −1 42 17 −5 −5
19 7 1 −1 43 15 −3 −5
20 7 −1 1 44 15 −5 −3
21 9 5 5 45 17 1 1
22 9 3 3 46 17 −1 −1
23 7 5 3 47 15 1 −1
24 7 3 5 48 15 −1 1

FIG. 8. Cutoff-free dimer responses against level repulsion
strength A/J . Data points obtained from PFFRG are fitted by the
function Eq. (B2) using the nonlinear least-squares method. In the
limit A/J → ∞ the responses are given in Table V.

APPENDIX B: EFFECT OF THE UNPHYSICAL HILBERT
SPACE ON THE PFFRG GROUND STATE

The PFFRG deals with a Hilbert space which partially
hosts unphysical states. For the implementation of a S = 1
model the reasons are twofold. First, the mapping from spin- 1

2
operators to pseudofermions doubles the local Hilbert space
dimension by adding two unphysical states on each site, cor-
responding to a local fermionic occupation number of 0 or 2.
Both result in a vanishing local spin. Second, the extension
of the method from a spin- 1

2 to a spin-1 model is achieved by
placing two spin- 1

2 operators on each site [46]. In addition to a
physical Hilbert space sector with local spin quantum number
S = 1, this gives rise to an unphysical sector with zero local
spin quantum number as well. In many PFFRG studies, the
presence of the unphysical Hilbert space is neglected at T =
0, by approximating that only the physical sector contributes
to the ground state despite quantum fluctuations. Some studies
investigated the effect of the unphysical sector by adding level
repulsion terms to the Hamiltonian [46,49].

In this section, we investigate for the present model to
which extent states of the unphysical Hilbert space sector con-
tribute to the PFFRG ground state in the cutoff-free limit. We
proceed by adding level repulsion terms to the Hamiltonian
which energetically favor states with the largest on-site spin
quantum number. The terms are included in the form of on-site
interactions, modifying the Hamiltonian as

H = J
∑

〈i, j〉
Si · S j − A

∑

i

S2
i . (B1)

We perform the PFFRG with varying level repulsion strengths
A/J . If the ground state only involves the Hilbert space sector
with on-site spin number S = 1, no change in the cutoff-free
dimer response is expected, as the energies of all states in the
S = 1 sector are equally affected by the level repulsion terms.
The cutoff-free dimer responses for different level repulsion
strengths are shown in Fig. 8. The responses change with A/J ,
implying that the unphysical Hilbert space sector contributes
to the ground state.
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In the limit A/J → ∞, the ground state is enforced to only
populate the physical Hilbert space. To obtain an approxima-
tion for this limit, PFFRG data points of dimer responses are
well fitted by a phenomenological function

χD(A/J ) = a

(A/J − b)
+ c, (B2)

with fitting parameters a, b, and c and using a nonlin-
ear least-squares fit. We consider both the S = 1 and S =
1
2 model with data points created at the same interaction
parameters.

In Table V, the obtained dimer responses of the large A/J
limit are presented together with those for A/J = 0. With
increasing A/J , there is no crossing between the considered
dimer responses and, except from χD,i, they are much larger
than 1. It follows that the PFFRG results, supporting either a

TABLE V. Dimer responses in both the absence of level repul-
sion terms and large level repulsion limit A/J → ∞. Values for
the latter are obtained from a nonlinear least-squares fit, using the
function Eq. (B2).

A/J = 0 A/J → ∞
χD S = 1

2 S = 1 S = 1
2 S = 1

χD,i 0.286 0.156 0.529(3) 0.378(2)

χD,C3 12.1 16.9 6.1(2) 6.8(3)

χ
(1)
D,C3,i 8.2 11.5 4.3(1) 4.7(2)

χ
(2)
D,C3,i 12.2 17.0 6.1(2) 6.8(3)

pure C3 or combined C3 and inversion symmetry breaking, are
qualitatively unchanged by introducing level repulsion terms.
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