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Gaussian matrix product states cannot efficiently describe critical systems
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Gaussian fermionic matrix product states (GfMPS) form a class of ansatz quantum states for 1d systems of
noninteracting fermions. We show, for a simple critical model of free hopping fermions, that (i) any GfMPS
approximation to its ground state must have bond dimension scaling superpolynomially with the system size,
whereas (ii) there exists a non-Gaussian fermionic MPS approximation to this state with polynomial bond
dimension. This proves that, in general, imposing Gaussianity at the level of the tensor network may significantly
alter its capability to efficiently approximate critical Gaussian states. We also provide numerical evidence that
the required bond dimension is subexponential, and thus can still be simulated with moderate resources.
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I. INTRODUCTION

The growing complexity of quantum many-body wave
functions with increasing system sizes has motivated the
development of variational classes of states. By exploiting
simplifying features of a given problem, ansatz states can help
optimize numerical resources, as well as provide an insightful
new perspective into the inner workings of quantum correla-
tions in these systems. For instance, Gaussian states and their
correlation matrix formalism greatly facilitate computations
involving noninteracting particles. On the other hand, tensor
network states have become an essential theoretical frame-
work and numerical toolbox for quantum many-body physics,
excelling at the representation of area law and similarly low-
entangled states [1].

For systems of free (or weakly interacting) fermions, both
classes can be combined to give rise to Gaussian fermionic
tensor network states [2]. Relevant examples include the
ground state of the Kitaev-Majorana chain, and models of
topological insulators and superconductors [3–6]. In the 1d
case, the resulting tensor network is the Gaussian fermionic
matrix product state or GfMPS, which has been shown to out-
perform non-tensor-network-based methods in free fermion
computations for very large systems [7]. This motivates the
question about the expressivity of GfMPS, namely, what kind
of free fermionic states can be efficiently approximated or
even exactly represented by them [8–10].

In the case of general MPS, it was proved in [11] that
an efficient approximation (i.e., one with bond dimension
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growing at most polynomially with the system size N) exists
whenever a certain Rényi entropy is bounded by O(log N ).
This established the usefulness of MPS to approximate states
with at most a logarithmic violation of the area law, including
the ground states of both gapped and gapless (critical) local
Hamiltonians. In the setting of fermionic chains, it also applies
to fermionic MPS (fMPS). However, it is not known whether
an analogous result holds for GfMPS whenever the state being
approximated is Gaussian with similarly bounded entropies.

Here we answer this question in the negative: We provide
a simple counterexample in the form of a critical hopping
fermion Hamiltonian, whose Gaussian ground state can be ef-
ficiently approximated by fMPS but not by GfMPS. The proof
of this last fact combines a rigorous bound on the error in-
curred by a fixed rank Gaussian approximation of a Gaussian
state with specific knowledge of the entanglement structure
of the target ground state, obtained from asymptotic Toeplitz
determinant theory. Furthermore, we provide evidence, from
both conformal field theory arguments and numerical results,
that the required bond dimension scaling for a good GfMPS
approximation is nevertheless subexponential. This makes the
question about the existence of an efficient GfMPS approxi-
mation a hard one to settle numerically, which motivated our
pursuit of an analytical proof.

Our result disproves the somewhat intuitive assumption
that the most bond-dimension-efficient approximation to a
Gaussian state would come from a Gaussian tensor net-
work. This can be relevant when optimizing resources for
computational applications. However, it should be noted that
working with Gaussian tensor networks gives access to the
correlation matrix formalism, which in general leads to ex-
ponential savings in the scaling of computational resources
with system size. This may well compensate the extra bond
dimension derived from Gaussianity. On the other hand, there
are additional situations where Gaussian tensor networks have
faced difficulty approximating Gaussian states. This is the
case for ground states of local, gapped, quadratic Hamilto-
nians displaying chiral topological features, for which no-go
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theorems forbid Gaussian tensor network approximations
with constant bond dimension [3,4]. In this context, our
findings leave the door open to the existence of better,
non-Gaussian tensor network approximations that bypass the
no-go results. Alternatively, if Gaussianity of the tensor net-
work is to be kept, the techniques presented here may have
something to say regarding the required scaling of the bond
dimension.

This paper is organized as follows: We begin by introduc-
ing the model we use as our counterexample in Sec. II, and
review the logarithmic bound on its Rényi entropies. Next, in
Secs. III and IV we show, respectively, that the ground state
of our model can be approximated efficiently with fMPS, but
that no efficient approximation exists for GfMPS. However,
in Sec. V we provide evidence that the required scaling for
a GfMPS approximation of our example is still subexponen-
tial. Finally, in Sec. VI we introduce a toy family of states
for which we can determine the necessary (superpolynomial,
but subexponential) scaling of the bond dimension of their
GfMPS approximation (and so that all of them have a poly-
nomial fMPS approximation).

II. MODEL

We consider a periodic chain of length N with a single
fermionic mode ai, a†

i per site, satisfying the usual canonical
anticommutation relations,

{ai , a†
j} = δi j, {ai, a j} = {a†

i , a†
j} = 0, (1)

and study the free hopping Hamiltonian at half filling,

H = −1

2

N∑
j=1

a†
j a j+1 + H.c. = −

∑
k

cos k a†
kak, (2)

where we have defined the momentum modes in the usual
form, ak ≡ 1√

N

∑N
j=1 eik ja j with k ∈ 2π

N Z ∩ (−π, π ]. In this
basis H is diagonal and its ground state, which is Gaussian due
to H being quadratic, can be determined by filling the negative
energy modes below the Fermi momentum, kF = π/2 [12].
This is encoded in the momentum space correlation matrix,

Ckq ≡ 〈a†
kaq〉 = nkδk,q, nk ≡ �(kF − |k|), (3)

where � denotes the Heaviside step function. The position
space correlation matrix Ci j ≡ 〈a†

i a j〉 can then be obtained
by an inverse Fourier transform. It exhibits power-law decays
as befits a gapless model (its explicit form can be seen in
Appendix C). Note that due to particle number conservation,
〈akaq〉 = 〈aia j〉 = 0.

The entanglement structure of this state, which will be key
to the results presented next, can be obtained from its corre-
lation matrix [13–16]. Given a bipartition of a pure Gaussian
state into complementary regions R, R̄, we can find a basis
of modes on each subsystem such that the state decomposes
as the tensor product of entangled fermion pairs [17]. How
entangled these pairs are is given by the spectrum of the
correlation matrix of either subsystem, which is nothing but
the corresponding submatrix of the global correlation matrix,

CR ≡ (Ci j )i, j∈R. (4)

FIG. 1. Left: A (G)fMPS fiducial state of one physical fermion
and two virtual fermions. Right: A (G)fMPS is obtained from
projecting the virtual fermions onto entangled pairs, leaving an en-
tangled state of the physical fermions.

For convenience and notational unity we will work with
the eigenvalues of VR ≡ 2CR − 1, which we denote
{λ j} ⊂ [−1, 1], and call the Gaussian entanglement spectrum
[18]. The Rényi entropy Sα then splits as a sum of contribu-
tions from each entangled pair,

Sα =
∑

j

sα (λ j ), (5)

where

sα (λ) ≡ 1

1 − α
log

[(
1 + λ

2

)α

+
(

1 − λ

2

)α]
, (6)

so that the entanglement decreases with |λ| from λ = 0 (max-
imally entangled state) to λ = ±1 (product state).

For the ground state of H , the leading scaling of the Rényi
entropy of an interval of size L can be seen to be logarithmic
[15,19,20],

Sα (L) ∼ α + 1

6α
log L, L → ∞, (7)

which is consistent with it lying in the universality class of the
free boson conformal field theory (CFT) with central charge
c = 1 [21,22].

III. EFFICIENT APPROXIMATION
WITH FERMIONIC MPS

A fermionic matrix product state (fMPS) [2] is an ansatz
state for a 1d fermionic chain, which is defined in terms of a
series of so-called fiducial states of f physical fermions and
2χ virtual fermions. The state represented by the fMPS is
obtained by contracting the virtual fermions, i.e., projecting
them onto maximally entangled pairs (see Fig. 1). This is
analogous to the usual definition of an MPS for, say, a spin
chain, in which case the fiducial states are states of virtual
and physical spins, and the set of their coefficients in a ba-
sis is referred to as a tensor. This analogy is exploited in
Appendix A. The dimension D of the virtual Hilbert space,
i.e., the bond dimension of the fMPS, is related to χ via
D = 2χ [23]. A translation-invariant fMPS is one for which
all fiducial states are identical, so that, naturally, the state after
contraction displays translation invariance.

Definition 1. A family of states |�N 〉 for increasing system
sizes N is efficiently approximable by fMPS if for any ε > 0
there exists a family of fMPS states |�MPS

N 〉 with bond dimen-
sion D(N ) = poly(N ) and∥∥|�N 〉 − ∣∣�MPS

N

〉∥∥
2 � ε ∀N. (8)
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Theorem 1. The family of ground states of (2) is efficiently
approximable by fMPS.

Proof. Using the Jordan-Wigner transformation, we can
map our system to a spin chain model, the XX model. Since
we have a logarithmic bound (7) for the Rényi entropies,
in particular for α < 1, it follows from Lemmas 1 and 2
in [11] that the ground state of the XX model is efficiently
approximable by MPS. Then, undoing the Jordan-Wigner
transformation, we can find an efficient fMPS approxima-
tion for the fermionic model (this is done in detail in
Appendix A). �

In general, understanding the entanglement structure of
quantum states is key to obtain both approximability and in-
approximability results, since the bond dimension of an MPS
has a clear interpretation as the maximum Schmidt rank for
a bipartition of an MPS into connected subsystems. In order
to compare it with an analogous result in the next section, we
cite here the following:

Lemma 1 (low Schmidt rank approximation). Let |�〉 be
a bipartite quantum state with Schmidt spectrum {s j}n

j=1 in
descending order. Then for any bipartite state |�̃〉 of Schmidt
rank at most r,

|〈�|�̃〉|2 � 1 −
n∑

j=r+1

s2
j , (9)

and the bound is tight: the optimal |�̃〉 can be found by
truncating the Schmidt decomposition of |�〉.

Lemma 1 is a consequence of the Eckart-Young-Mirsky
theorem [24,25], which states that the optimal low-rank ap-
proximation to a given matrix comes from truncating its
singular value decomposition. It leads to a lower bound for
the error of an MPS approximation [26] (used for instance in
some of the inapproximability proofs in [27]).

IV. NO EFFICIENT APPROXIMATION WITH GAUSSIAN
FERMIONIC MPS

A Gaussian fMPS (GfMPS) is an fMPS for which all
fiducial states are Gaussian states of the physical and virtual
fermions. This extra constraint is the simplest way to enforce
that the physical state after contraction will be Gaussian, since
the contraction operation projects each pair of virtual modes
onto the maximally entangled state, which is itself Gaussian,
so that Gaussianity of the global state is preserved. In fact,
the contraction of GfMPS tensors can be done at the level of
correlation matrices via Schur complements [7,28].

An efficient approximation in terms of GfMPS can be de-
fined analogously to the fMPS case. Then, we have our main
result as

Theorem 2. The family of ground states of (2) is not effi-
ciently approximable by GfMPS.

The proof of Theorem 2 will follow from two lemmas.
The first one is the Gaussian version of Lemma 1. Given the
Gaussian entanglement spectrum {λ j} of a bipartite state, we
call the number of eigenvalues λ j 
= ±1 its Gaussian rank. We
then have

Lemma 2 (low Gaussian rank approximation). Let |�〉
be a bipartite Gaussian state, with Gaussian entanglement
spectrum {λi}n

i=1, ordered so that |λi| � |λi+1|. Then for any

Gaussian state |�̃〉 of Gaussian rank at most r,

|〈�|�̃〉|2 �
n∏

i=r+1

1 + |λi|
2

= exp
(−Strunc

∞ [r]
)
, (10)

where Strunc
∞ [r] ≡∑n

i=r+1 s∞(λi), and the bond is tight: the
optimal |�̃〉 can be found by truncating the Gaussian singular
value decomposition of |�〉.

We were not able to find a proof in the literature so we
provide one together with related results in Appendix B.
Lemma 2 can be used to lower-bound the error of a GfMPS
approximation to a given state, since the Gaussian rank of
any GfMPS divided into two connected subsystems is upper
bounded by χ . We then need information on the entanglement
spectrum of our target state, which is provided by

Lemma 3. For the ground state of (2), let IL,N (μ) be the
number of eigenvalues λ from the Gaussian entanglement
spectrum of an interval of size L in a chain of N sites that
satisfy |λ| < μ, and let c > 0. Then there exists μ < 1 such
that

IL,N (μ) > c log N, (11)

as L, N → ∞ with L/N fixed.
The proof of Lemma 3 can be found in Appendix C. It

starts by proving the equivalent property for the Gaussian en-
tanglement spectra of the infinite chain: In the thermodynamic
limit, we can exploit the theory of Toeplitz determinants
to lower-bound the corresponding IL,∞(μ) function in the
asymptotic regime. Then we use standard inequalities to show
that the difference between the finite and infinite chain cor-
relation matrices is bounded in trace norm. This ensures that
their respective spectra are distributed similarly enough so that
Lemma 3 follows.

Proof of Theorem 2. Suppose there exists a GfMPS ap-
proximation with polynomial bond dimension D(N ). Then
we can find c > 0 such that χ (N ) = log2 D(N ) � c log N .
Thanks to Lemma 3, we know there exists some μ < 1 such
that IL,N (μ) > (c + 1) log N , and we have

Strunc
∞ [χ (N )] � [IL,N (μ) − χ (N )]s∞(μ) � s∞(μ) log N,

(12)

which diverges as N → ∞. Since |�̃N 〉 has Gaussian rank
bounded by χ (N ) across the bipartition, Lemma 2 implies
that the overlap between the ground state and its GfMPS
approximation goes to zero as the system size increases. Thus,
by contradiction, any approximation with bounded error must
have χ (N ) growing faster than logarithmically, and conse-
quently D(N ) grows superpolynomially. �

V. SUBEXPONENTIAL BOND DIMENSION

A. CFT argument

The techniques used in the proof of Theorem 2 cannot be
applied to obtain better lower bounds, or upper bounds on the
required bond dimension, for which more accurate knowledge
of the Gaussian entanglement spectra of finite chains would be
needed. Here we provide evidence that this bond dimension is
subexponential. First, a heuristic argument is made, based on
conformal field theory (CFT). In the next section, we present
some numerical results.
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The low-lying entanglement spectrum of a critical model
is known to behave universally according to the underlying
CFT. With our notation, for an interval of L sites in a chain of
N sites, we have [29–32]

|λn| � tanh

(
π2

2

εn

log �

)
, � = N

πa
sin

πL

N
, (13)

where � is the effective length of our interval in units of some
UV cutoff a, and the εn are fixed by the CFT. In our model,
this is the free compactified boson CFT, and

εn ≡
⌊n

2

⌋
+ 1

2
= 1

2
,

1

2
,

3

2
,

3

2
,

5

2
,

5

2
, . . . . (14)

(More precisely, these numbers characterize the spectrum of
scaling dimensions of an associated boundary CFT.) The CFT
spectrum (13) not only satisfies the condition in Lemma 3,
but it also allows us to estimate the tail contribution to the
∞-Rényi entropy,

Strunc
∞ [χ ] ≈ 2 log �

π2
exp

(
− π2χ

2 log �

)
. (15)

Thus, if the CFT prediction were exact for the whole spec-
trum, by Lemma 2 the required scaling for χ is

χ (N, ε) ≈ 2

π2
log ηN log

(
π2

2ε
log ηN

)
, (16)

for some proportionality constant � = ηN . Here we used the
fidelity error ε ≡ 1 − exp (−Strunc

∞ [χ ]) attached to a single
bipartition of the system. Our experience from MPS is that we
should account for all bipartitions, with different L/N and thus
different η [11]. We do this coarsely by replacing ε → ε/N .
This results in

D(N, ε) ≈ (ηN )
log 2
π2 log

(
2N log ηN

π2ε

)
, (17)

which is subexponential.

B. Numerics

We have also performed some numerical studies of this
problem which seem to partially confirm the scaling from
(16). We introduce them briefly here, and elaborate on them in
Appendix D. Essentially, we defined a subclass of translation-
invariant GfMPS (which we call ladder GfMPS), which
exactly represent states with the following occupation number
in momentum space:

nk = p
(

cos k
2

)2
p
(

cos k
2

)2 + q
(

sin k
2

)2 , (18)

for p, q arbitrary real odd monic polynomials. Clearly, to
reproduce (3), we need to have p (resp. q) supported mostly
inside (resp. outside) the Fermi surface. We tried several
choices, the best of which is represented in Fig. 2. There
we have used δ ≡ 〈�MPS|Hfb|�MPS〉 − E0, with Hfb the flat
band Hamiltonian with the same ground state as H , and E0

its ground state energy, as a proxy for the fidelity error ε,
which it upper bounds. Further energy optimization (as done
in [8]), which we did not pursue, could improve the results.
Figure 2 also shows the estimation (17) for η ∼ 1.3 (resulting

FIG. 2. Bond dimension D(N ) vs system size N for our (not
necessarily optimal) ladder GfMPS approximation to the ground
state of H . δ is the error in energy, which upper-bounds the fidelity
error ε. The lines represent (17) with numerically optimized η ∼ 1.3.

from optimization), which gives an idea of the scaling of our
numerical results.

VI. TOY MODEL

Finally, we present a simple toy model of a family of
Gaussian states, with no reference to a Hamiltonian, that are
efficiently approximable by fMPS but not by GfMPS. We
begin by explaining the intuition behind it. Lemmas 1 and 2
highlight the differences between Gaussian and non-Gaussian
truncation of a bipartite state [33]. This dichotomy is also
reflected in different bounds for the truncation errors, εG and
εNG respectively, in terms of the α < 1 Rényi entropy. Assum-
ing εG, εNG � 1, we have

εG � S1/α
α χ−(1−α)/α, (19)

εNG � S1/α
α D−(1−α)/α. (20)

For the non-Gaussian case this is Lemma 2 in [11]. The Gaus-
sian case can be proved similarly by minimizing the entropy
over all possible Gaussian entanglement spectra with a fixed
Gaussian truncation error. Since χ ∼ log D, we see that the
bond for εG is much weaker; i.e., there exist states with small
Sα and εNG but high εG for the same bond dimension [34].
These states are usually characterized by Gaussian entangle-
ment spectra involving many low-entangled pairs.

We exploit this in our toy example, leveraging the addition
of entangled pairs as we grow the system by making their
entanglement increasingly weaker. Consider a family of states
|ψN 〉 on rings of N sites obtained by distributing ν(N ) en-
tangled pairs between opposite sites in the chain, each with
strength λN , where

ν(N ) ∼ (log N )1+β, λN ∼ 1 − 2

ν(N )
, (21)

for some β > 0. The α < 1 Rényi entropy is maximal for a
bipartition of the ring into two equal halves, since all pairs
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contribute to give

Sα (N/2) = ν(N )sα (λN ) ∼ (log N )(1−α)(1+β ), (22)

which is upper bounded by O(log N ) for α ∈ ( β

1+β
, 1). There-

fore, for any β > 0 an efficient fMPS approximation exists.
However, for any GfMPS approximation |ψ̃N 〉, the error
bound (10) reads

|〈ψN |ψ̃N 〉| �
(

1 + λN

2

)ν(N )−χ (N )

(23)

�
(

1 − 1

ν(N )

)ν(N )−χ (N )

. (24)

Thus if |〈ψN |ψ̃N 〉| � 1 − ε, then for large enough N and small
enough ε we have

χ (N ) � (1 − ε)ν(N ) ∼ (log N )1+β, (25)

so that D(N ) � N (log N )β . This scaling can be easily seen to be
sufficient [since χ (N ) = ν(N ) allows for an exact represen-
tation], so that the required bond dimension to approximate
|ψN 〉 is superpolynomial but still subexponential.
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APPENDIX A: fMPS APPROXIMATIONS FROM (SPIN)
MPS APPROXIMATIONS

Following [2], a fermionic MPS with f = 1 physical
fermions and 2χ = 2 virtual fermions per site can be defined
by means of a series of “projectors”

Qj ≡
∑

k,l,m = 0,1
k⊕l⊕m=p

[Aj]
k
lm (a†

j )
k αl

j β
m
j , (A1)

where ⊕ denotes the sum in Z2, j is the position index along
the chain, [Aj]k

lm is a coefficient tensor, and a j, α j, β j are the
physical, left virtual, and right virtual fermionic modes at site
j, respectively. The restriction on the indices ensures a well-
defined fermionic parity p for Qj . One also needs to define the
operators

Hj = 1√
2

(
1 + β

†
j α

†
j+1

)
, (A2)

which generate entangled pairs of virtual fermions from the
vacuum. The fMPS state is then defined by the action of both
sets of operators on the global vacuum, followed by projecting
out the virtual fermions:

|�〉 ≡ 〈0|virtual

∏
j

Q j

∏
j

Hj |0〉all. (A3)

The generalization to larger physical and/or bond dimensions
is straightforward. If we now interpret the fermionic Fock
space as the Hilbert space of a spin- 1

2 chain (as is done

implicitly by the Jordan-Wigner transformation), one can see
that |�〉 can be obtained from a standard “spin” MPS, with
local tensors that coincide with [Aj]k

lm, possibly up to signs.
Consequently, the set of 1d fMPS states coincides with those
obtained from MPS that satisfy (i) their bond dimension is a
power of 2, and (ii) each tensor has a well-defined parity.

In the case we are interested in, the Jordan-Wigner trans-
formation maps the fermionic Hamiltonian H ,

H = −1

2

N∑
j=1

[a†
j a j+1 + a†

j+1a j ], (A4)

to the XX model spin chain,

HXX = −1

2

∑
j

[XjXj+1 + YjYj+1], (A5)

for which the results from [11] apply, since all its Rényi
entropies grow logarithmically. The existence of an MPS ap-
proximation with polynomial bond dimension then follows.
Additionally, this spin MPS has a global parity symmetry
represented by the action of the product of Z operators on
each physical spin. To see that this implies the existence of
an fMPS approximation to the ground state with polynomial
bond dimension, we show that we can make the spin MPS
satisfy conditions (i) and (ii) without a substantial increase in
bond dimension.

Let D be the bond dimension of the spin MPS, and [Bj]k
lm

denote its tensors. Then there is q such that D � 2q < 2D,
and we can embed the D × D × 2-dimensional MPS tensors
into 2q × 2q × 2-dimensional ones without changing the state
just by padding each tensor with zeros, i.e., by extending the
range of l, m to 2q, and defining the additional tensor elements
as 0. Thus we can satisfy (i) with less than twice the original
bond dimension. To get condition (ii), we modify the tensors
by adding an additional pair of indices l ′, m′ ∈ {0, 1} such that

[Bj]
k
ll ′mm′ ≡ [Bj]

k
lmδk⊕|l|⊕|m|⊕l ′⊕m′ , (A6)

where |l|, |m| denotes the parity of the corresponding index.
The new tensors are individually parity symmetric, so that (ii)
holds, and they can be seen to generate the same state as the
original ones (which is only possible because said state has
global parity symmetry). Thus it follows that there exists an
fMPS approximation to the ground state of H , with less than
four times the bond dimension of the spin MPS approximation
to the XX model ground state, which therefore grows at most
polynomially.

APPENDIX B: GAUSSIAN BIPARTITE STATE OVERLAPS
AND GAUSSIAN ENTANGLEMENT SPECTRUM

In this section we prove Lemma 1 as a corollary to a more
general result. For convenience, we work here in the Majorana
representation, introducing Majorana operators

c j,1 ≡ a j + a†
j , c j,2 ≡ i(a j − a†

j ), (B1)

{c j,s, c j′,s′ } = 2δ j, j′δs,s′ (B2)
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so that the (Majorana) correlation matrix is a real, skew-
symmetric matrix defined as

[�] js, j′s′ ≡ i

2
〈[c j,s, c j′,s′ ]〉, s, s′ = 1, 2, (B3)

which satisfies ��T � 1, with equality for pure states. The
overlap of two Gaussian states of 2N Majorana fermions can
be computed from their correlation matrices �, γ [28],

|〈�|γ 〉|2 = 2−N
√

det(1 − �γ ). (B4)

Finally, we introduce the Gaussian singular value decompo-
sition (Gaussian SVD) [17], which states that, given � the
correlation matrix of a pure bipartite Gaussian state on two
subsystems of 2n Majorana fermions each [35], we can find
O, Q ∈ O(2n) that block-diagonalize �,

� = (O ⊕ Q)

(
n⊕

j=1

W (θ j )

)
(O ⊕ Q)T, (B5)

where the 4×4 blocks are given by

W (θ ) ≡
(

cos θJ sin θ1

− sin θ1 − cos θJ

)
, J ≡

(
0 1

−1 0

)
, (B6)

and the θ j can all be chosen to lie on the first quadrant,
0 � θ j � π

2 , in which case we have cos θ j = |λ j |. The θ j

are another possible way to write the Gaussian entanglement
spectrum. Indeed, W (θ ) is the correlation matrix of a pair of
fermionic modes, which is in a product state for sin θ = 0
(|λ| = 1) and maximally entangled whenever cos θ = 0 (λ =
0). The number r of entangled pairs (sin θ 
= 0) is what we
called in the main text the Gaussian rank. Now we are ready
to state and prove the following:

Theorem 3. Let |�〉, |�̃〉 be pure bipartite Gaussian states on
two subsystems of 2n Majorana fermions. Let their correlation
matrices be �, �̃ and their Gaussian entanglement spectra be
given by {θ j}n

j=1, {θ̃ j}n
j=1, respectively. Then,

|〈�|�̃〉|2 � max
σ∈Sn

n∏
i=1

cos2

(
θi − θ̃σ (i)

2

)
, (B7)

and the bound is tight (it is reached for some �, �̃).
Proof. We follow a strategy inspired by Theorem VI.7.1 in

[36]. �, �̃ will be of the form

� = (O ⊕ Q)

(
n⊕

j=1

W (θ j )

)
(O ⊕ Q)T, (B8)

�̃ = (Õ ⊕ Q̃)

(
n⊕

j=1

W (θ̃ j )

)
(Õ ⊕ Q̃)T, (B9)

for some O, Õ, Q, Q̃ ∈ O(2n). To begin with, we shall assume
that

θi, θ̃i ∈
(

0,
π

2

)
, ∀i, (B10)

θi 
= θ j, θ̃i 
= θ̃ j, i 
= j. (B11)

We are seeking to upper-bound

|〈�|�̃〉|2 = 2−2n
√

det(1 − ��̃) = 2−2n
√

det (� + �̃), (B12)

where we have used (B4) and the purity condition �−1 = −�.
In other words, our problem consists in determining

max
O,Q,

Õ,Q̃

det[(O ⊕ Q)W (O ⊕ Q)T + (Õ ⊕ Q̃)W̃ (Õ ⊕ Q̃)T],

(B13)
where

W ≡
(

n⊕
j=1

W (θ j )

)
, W̃ ≡

(
n⊕

j=1

W (θ̃ j )

)
. (B14)

We know the maximum exists since we are optimizing over
a closed manifold. Further, we can assume O, Q = 1, which
amounts to fixing the mode basis on which we express our
states and does not affect their overlap.

Assume that (�, �̃) constitute an extreme point of the
target function. This implies that no infinitesimal change in
the matrix �̃ will change the overlap, that is,

d

dt
det(� + et (o⊕q)�̃e−t (o⊕q) )|t=0 = 0, ∀o, q ∈ o(2n).

(B15)
By differentiating, and then using det(� + �̃) > 0 (since we
are looking for maxima) and the cyclicity of the trace, we
arrive at

det(� + �̃)tr((� + �̃)−1[o ⊕ q, �̃]) = 0,

tr((o ⊕ q), [�̃, (� + �̃)−1]) = 0. (B16)

Let [�̃, (� + �̃)−1], which is skew symmetric, have the fol-
lowing block structure (according to the bipartition of our
states),

[�̃, (� + �̃)−1] ≡
(

A B
−BT D

)
, (B17)

with A = −AT, D = −DT. Then condition (B16) implies

tr

[(
o 0
0 q

)(
A B

−BT D

)]
= tr(oA + qD) = 0, (B18)

which holds for every skew-symmetric o, q. This forces A =
D = 0 and we conclude

[�̃, (� + �̃)−1] =
(

0 B
−BT 0

)
. (B19)

We denote B ≡ [�̃, (� + �̃)−1] = −[�, (� + �̃)−1] for
brevity. We proceed by noting

{�, [�, (� + �̃)−1]} = [�2, (� + �̃)−1] (B20)

= [−1, (� + �̃)−1] = 0, (B21)

where {, } denotes the anticommutator. Thus

{�,B} = 0, (B22)

which further constrains the form of B. Indeed, because of our
assumption on O, Q, we have

� =
(

�11 �12

−�T
12 �22

)
, (B23)
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where

�11 =
n⊕

i=1

cos θi J = −�22, (B24)

�12 =
n⊕

i=1

sin θi 1. (B25)

Condition (B22) can be seen to imply

[�11, B] = 0, �12BT = −B�12, �12B = −BT�12, (B26)

which, thanks to our assumptions about the θi, is enough to
force

B =
n⊕

i=1

biJ, (B27)

for some bi ∈ R. Now we go back to (B19) and write

[�̃, (� + �̃)−1] = �̃(� + �̃)−1 − (� + �̃)−1�̃

= �̃(� + �̃)−1 − �(� + �̃)−1

= (�̃ − �)(� + �̃)−1, (B28)

hence,

B(� + �̃) = (�̃ − �)

⇒ �̃ = (1 − B)−1�(1 − B), (B29)

where the inverse of 1 − B exists since det(1 − B) = det(1 +
BTB) > 0. Defining βi ≡ 2 arctan bi, the expression above
yields

�̃ =
n⊕

i=1

W (θi + βi ), (B30)

which can be checked to be consistent with all the conditions
derived before, in particular

[W (θ + β ), (W (θ ) + W (θ + β ))−1] = tan
β

2

(
0 J
J 0

)
. (B31)

In conclusion, the pairs �, �̃ with maximal overlap for fixed
spectra satisfy that � and �̃ are simultaneously singular-value-
decomposable, by which we mean there exists a basis in which

� =
n⊕

i=1

W (θi ), �̃ =
n⊕

i=1

W (θ̃σ (i) ), (B32)

for some permutation σ . The statement of the theorem then
follows from simply computing the overlap of these states,
and extends to the case of general {θi, θ̃i} by a continuity
argument. �

The case described in Lemma 1 follows as a corollary to the
previous theorem by forcing all but r of the θ̃i to be equal to 0.
It can then be seen that the optimal choice for the remaining
ones is for them to equal the r largest θi (the most entangled
pairs) and for the permutation σ to match them accordingly,
so that the maximum overlap is given by the expression in
the statement of the lemma, once we express the Gaussian
entanglement spectrum back in terms of λ j . The bound is tight
since an approximation with such an overlap can be obtained
by performing the Gaussian SVD of the target state and setting
all but the r largest θi to 0 (i.e., all but the r smallest |λ j | to 1).

APPENDIX C: PROOF OF LEMMA 2

As we advanced in the main text, we begin by proving a
corresponding result in the thermodynamic limit:

Lemma 3. For the ground state of (A4) on an infinite chain,
let IL,∞(μ) be the number of eigenvalues λ from the Gaussian
entanglement spectrum of an interval of size L that satisfy
|λ| < μ, and let c > 0. Then there exists μ < 1 such that

IL,∞(μ) > c log L, (C1)

as L → ∞.
Proof. We will rely on the theory of asymptotic Toeplitz

determinants, which has been extensively used in analytic
computations for noninteracting fermionic systems. Let CL,∞
be the correlation matrix of the interval of length L, and
VL,∞ ≡ 2CL,∞ − 1. Call DL(z) ≡ det(z1 − VL,∞), and let
f (z) be a holomorphic function on a domain that includes
the interval [−1, 1] where all the eigenvalues {λi} of VL,∞ lie.
Since we have

DL(z) =
L∏

i=1

(z − λi ), (C2)

it follows from Cauchy’s integral formula that

L∑
i=1

f (λi ) = 1

2π i

∫
C

dz f (z)
d

dz
log DL(z), (C3)

where C is a contour within the domain of holomorphicity of f
encircling the interval [−1, 1]. Since VL,∞ is a Toeplitz matrix
with an adequate symbol, the asymptotic value of DL(z) as
L → ∞ is given to us by the Fisher-Hartwig conjecture, in
particular by a subcase thereof which was proven by Basor
[37]. This property has been exploited for various computa-
tions in the XX model [19]. In our particular case, it tells us

log DL(z) ∼ L log
√

z2 − 1 + log L

2π2

[
log

(
z + 1

z − 1

)]2

, (C4)

where by ∼ we mean both sides are equal up to O(1) terms
that do not grow with L. The right-hand side of (C3) then reads∮

dz f (z)
d

dz
log DL(z) (C5)

∼ L

2

∮
dz f (z)

(
1

z − 1
+ 1

z + 1

)
(C6)

+ 2 log L

π2

∮
dz f (z) log

(
z − 1

z + 1

)
1

z2 − 1
. (C7)

Using complex variable techniques, this finally results in

L∑
i=1

f (λi ) ∼ L
f (−1) + f (1)

2
+ 2 log L

π2

∫ 1

−1
dλ

f (λ)

1 − λ2
,

(C8)
which is a strong constraint on the distribution of eigenvalues.
It hints at the fact that they are asymptotically distributed with
a density 2 log L/[π2(1 − λ2)] along the interval [−1, 1], with
the rest of them (a number of order L) eventually clumping at
the end points. We are now in a position to bound the function
IL,∞(μ). It can be written as a sum over eigenvalues, with f
the indicator function of the interval [−μ,μ], which of course
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cannot be extended to a holomorphic function. Still, to get
intuition, the result would be

IL,∞(μ) “ = ”
2 log L

π2

∫ μ

−μ

dλ
1

1 − λ2

= 4 log Largtanhμ

π2
, (C9)

and since the coefficient of log L diverges as μ → 1, we
would have the result. To make a proper statement, we use
the functions

fμ(λ) ≡ (1 − λ2)(μ2 − λ2)

(2 − μ2 − λ2)2
, (C10)

which lower-bound the indicator function �(μ − |λ|) and
are holomorphic on a disk containing [−1, 1]. Thus, we can
assure

IL,∞(μ) �
L∑

i=1

fμ(λi ) ∼ 2 log L

π2

∫ 1

−1
dλ

fμ(λ)

1 − λ2

= 4 log L

π2

⎛
⎝argtanh

(
1√

2−μ2

)
(2 − μ2)3/2

− 1

2 − μ2

⎞
⎠, (C11)

and since the coefficient of log L on the right-hand side still
diverges as μ → 1, the result follows. �

Now we will show that the spectra of the correlation ma-
trices for the finite and infinite chains are close enough that
Lemmas 2 and 3 imply each other. Denote the Frobenius norm
by ‖ · ‖2 and the Schatten 1-norm (or trace norm) by ‖ · ‖1. We
then have

Lemma 4. Let CL,N ,CL,∞ be the correlation matrices for
an interval of L sites of a finite chain of N sites and an infi-
nite chain, respectively, and let L/N = ϕ stay constant as we
increase N . Then ‖CL,N − CL,∞‖1 is bounded by a constant.

Proof. Both CL,N and CL,∞ are Toeplitz matrices. Their
matrix elements read

(CL,N )i,i+r = 1

N

sin
(

π
2 r + m

N r
)

N sin πr
N

, (C12)

(CL,∞)i,i+r = 1

N

sin
(

π
2 r
)

πr
, (C13)

where m = 2, 1, 0,−1 whenever N ≡ 0, 1, 2, 3 mod 4, re-
spectively. Define L × L Toeplitz matrices T even

j , T odd
j with

elements

(
T even

j

)
i,i+r ≡ cos

(
πr

2

)
r2 j, (C14)

(
T odd

j

)
i,i+r

≡ sin

(
πr

2

)
r2 j+1. (C15)

By expanding and collecting terms cautiously in (C12), it can
be seen that

CL,N − CL,∞ =
∞∑
j=0

a j

N2 j+1
T even

j +
∞∑
j=0

b j

N2 j+2
T odd

j , (C16)

where a j, b j are the coefficients in the series expansion of the
holomorphic functions

sin mz

sin πz
=

∞∑
j=0

a jz
2 j, (C17)

cos mz

sin πz
− 1

πz
=

∞∑
j=0

b jz
2 j+1, (C18)

which are absolutely summable within their disk of conver-
gence (the unit disk). The trace norm of T even

j , T odd
j can be

bounded by using

rank
(
T even

j

) = 4 j + 2, rank
(
T odd

j

) = 4 j + 4, (C19)

together with the inequality

‖M‖1 �
√

rank(M )‖M‖2, (C20)

to find∥∥T even
j

∥∥
1 �

√
4 j + 2

∥∥T even
j

∥∥
2

�
√

4 j + 2

√√√√√2
L∑

r=0
r even

r4 j (L − r)

�
√

4 j + 2

√√√√√2L
L∑

r=0
r even

r4 j �
√

4 j + 2√
4 j + 1

L2 j+1,

(C21)

and ∥∥T odd
j

∥∥
1 �

√
4 j + 4

∥∥T even
j

∥∥
2

�
√

4 j + 2

√√√√√2
L∑

r=1
r odd

r4 j+2(L − r)

�
√

4 j + 2

√√√√√2L
L∑

r=1
r odd

r4 j+2

�
√

4 j + 4√
4 j + 3

L2 j+2. (C22)

Going back to (C16) this yields

‖CL,N − CL,∞‖1 �
∞∑
j=0

|a j |
N2 j+1

∥∥T even
j

∥∥
1 + |b j |

N2 j+2

∥∥T odd
j

∥∥
1

� 2
∞∑
j=0

|a j |
( L

N

)2 j+1

+ |b j |
( L

N

)2 j+2

,

(C23)

which converges and is thus bounded as N → ∞ with con-
stant L/N . �

Finally, we have
Proof of Lemma 2. We will argue by contradiction. As-

sume therefore that there is c > 0 such that for all μ < 1,
IL,N (μ) � c log L. Since Lemma 3 holds, we can choose μ <
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μ′ < 1 such that

IL,∞(μ) > (c + 1) log L � IL,N (μ′) + log L. (C24)

Recall now the following inequality for the trace norm of the
difference of Hermitian matrices,∑

i

|αi − βi| � ‖A − B‖1, (C25)

where αi, βi are the eigenvalues of A, B in descending
order [36]. We choose A = VL,N ≡ 2CL,N − 1, B = VL,∞ ≡
2CL,∞ − 1. In our situation, there are asymptotically at least
log L eigenvalues of A that are at least μ′ − μ away from
their associated eigenvalues of B; thus the left-hand side of the
inequality grows with L while the right-hand side is bounded
by Lemma 4, a contradiction. �

APPENDIX D: NUMERICAL METHODS

Here we present some numerical results for the approxima-
tion of the ground state of our hopping model (2) with GfMPS.
After a few generic optimizations within the generic GfMPS
class, we found that the numerical optima always fell within a
particular subclass of GfMPS, which we dub ladder GfMPS,
and introduce in what follows.

To begin with, we recall the basics of GfMPS contraction
in momentum space (we stay at one fermionic orbital per site;
the generalization to a higher number thereof is straightfor-
ward). Once more, it is convenient to work in the Majorana
representation, where two Hermitian operators c j,1, c j,2 stand
for each fermion mode aj , a†

j ,

c j,1 ≡ a j + a†
j , c j,2 ≡ i(a j − a†

j ). (D1)

A Fourier transform then maps these to complex Majorana
operators dk,1, dk,2,

dk,s = 1

N

N∑
j=1

e−ik jc j,s, s = 1, 2. (D2)

This is useful in the translation-invariant case, for which dif-
ferent momenta decouple. At the level of correlation matrices,
this implies that the Majorana correlation matrix �,

[�] js, j′s′ ≡ i

2
〈[c j,s, c j′,s′ ]〉, (D3)

is block diagonalized by the Fourier transform F ,

F�F† =
⊕

k

G(k), [G(k)]ss′ ≡ i

2
〈[dk,s, d†

k,s′ ]〉. (D4)

Our translation-invariant GfMPS will be determined by a
fiducial state of 2 Majorana fermions, χ left virtual Majorana
fermions and χ right virtual Majorana fermions. Note that in
this section χ differs by a factor of 2 from χ in the main
text, since it counts the number of virtual Majorana fermions.
Because we are working with periodic boundary conditions,
we can allow χ to be odd. In fact, the parity of χ can have
significant consequences for the parity structure of the states
in the variational class [8], and in our case, odd χ is actually
preferable. We denote the correlation matrix of the fiducial

state by

� =
(

A B
−BT D

)
, (D5)

where the block structure comes from separating the two
physical fermions (A is a 2×2 submatrix) from the virtual
fermions (D is a 2χ×2χ submatrix). The correlation matrix
for the GfMPS state is obtained by projecting the virtual
Majorana fermions onto entangled pairs, which in momentum
space reads [2]

G(k) = A + B

[
D −

(
0 eik1

−e−ik1 0

)]−1

B. (D6)

Next we define a rail GfMPS, which is characterized by
an ( f + χ )×( f + χ ) orthogonal matrix O that is divided in
blocks,

O =
(

O11 O12

O12 O22

)
, (D7)

where O11 is f × f and O22 is χ×χ . The correlation matrix
for the fiducial state of 2 f physical fermions and 2χ virtual
fermions for the rail GfMPS is defined to be

�O ≡

⎛
⎜⎜⎝

0 O11 0 O12

−OT
11 0 −OT

21 0
0 O21 0 O22

−OT
12 0 −OT

22 0

⎞
⎟⎟⎠. (D8)

Therefore, the 2 f ×2 f correlation matrix G(k) for the result-
ing GfMPS state is

G(k) =
(

0 T (eik )
−T (eik )† 0

)
, (D9)

where

T (z) = O11 + O12(O22 − z1)−1O21 (D10)

is a unitary matrix, or, in our f = 1 case, a complex phase, and
the diagonal blocks vanish due to time-reversal invariance. In
fact, readers familiar with the theory of discrete linear time
invariant (LTI) systems may recognize T (z) as the transfer
function of a lossless system whose state space representation
is given by the matrix O with the blocking from (D7). This
analogy may be exploited to import techniques from the LTI
system literature to the GfMPS setting. Here we will not pur-
sue it. It is however known that T (z) will be a finite Blaschke
product: a unimodular rational function [38], of the form

T (z) = η

χ∏
j=1

1 − ᾱ j z

z − α j
, (D11)

where |η| = 1 and α j are the eigenvalues of O22, which can be
any conjugation-invariant set of complex numbers inside the
unit disk [39].

An f = 1 ladder GfMPS is made from juxtaposing two
f = 1 rail GfMPS and projecting their respective second
physical Majorana fermions onto maximally entangled pairs,
to form the “rungs” of the ladder (see Fig. 3). The resulting
GfMPS has again f = 1 and a bond dimension that equals
the sum of those of the rails plus one (from the rungs),
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FIG. 3. Top: An f = 1, χ = 3 rail GfMPS. Bottom: An f = 1,

χ = 7 ladder GfMPS.

χ = χ1 + χ2 + 1. Its correlation matrix is given by

G(k) =
(

0 eikT1(eik )T2(eik )∗

−e−ikT1(eik )
∗
T2(eik ) 0

)
. (D12)

What was gained from this construction is that the product
T1(eik )T2(eik )∗ is now a unimodular rational function with
poles no longer confined to the unit disk, and thus more

general. It can be written in terms of an arbitrary polynomial
and its reciprocal polynomial, and a few additional manipu-
lations lead to the general form of nk we showed in the main
text,

nk = p
(

cos k
2

)2
p
(

cos k
2

)2 + q
(

sin k
2

)2 , (D13)

for p, q arbitrary real odd monic polynomials of degree χ

(assuming χ is odd), or equivalently,

nk = (1 + cos k) π (cos k)2

(1 + cos k) π (cos k)2 + (1 − cos k) θ (cos k)2
, (D14)

for π, θ arbitrary real monic polynomials of degree χ−1
2 . We

can then try to guess adequate families of polynomials that
make nk close to its exact value

nk,exact = �(kF − |k|) (D15)

on the allowed momenta k ∈ 2π
N Z ∩ (−π, π ]. We tried ex-

pressions based on Fourier expansions of nk,exact and on
Chebyshev polynomials, which nevertheless displayed a
clearly exponential bond dimension. Our best results came
from picking p (resp. q) so that its zeros are exactly a subset of
the allowed momenta that are outside (resp. inside) the Fermi
surface. For those selected values, the GfMPS approximation
reproduces the target state exactly. Several approaches can be
followed to choose which precise momenta we make exact.
Choosing all of them next to the Fermi points still leads to
exponential bond dimension, but spreading them logarithmi-
cally (so that we still pick exponentially more momenta that
are close to the Fermi points) leads to a very well behaved
ansatz family that gives rise to the results shown in the main
text.
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