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Disorder effects in the Z3 Fock parafermion chain
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We study the effects of disorder in a one-dimensional model of Z3 Fock parafermions which can be viewed as
a generalization of the prototypical Kitaev chain. Exact diagonalization is employed to determine level statistics,
participation ratios, and the dynamics of domain walls. This allows us to identify ergodic as well as finite-
size localized phases. In order to distinguish Anderson from many-body localization, we calculate the time
evolution of the entanglement entropy in random initial states using tensor networks. We demonstrate that a
purely quadratic parafermion model does not feature Anderson but many-body localization due to the nontrivial
statistics of the particles.
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I. INTRODUCTION

It is well known that low-dimensional quantum systems
can host particles with statistical properties beyond the usual
boson and fermion paradigms such as anyonic exchange [1,2]
and generalized exclusion statistics [3,4]. A particular type
of particles with anyonic properties is parafermions [5,6],
which can be viewed as a generalization of the nowadays
well-known Majorana fermions [7]. The latter can be inter-
preted as real and imaginary parts of spinless fermions, which
in turn possess the properties usually attributed to quantum
particles such as the existence of a Fock space and therefore
a well-defined particle number. The corresponding objects
obtained from parafermions were introduced by Cobanera and
Ortiz [8,9] and named Fock parafermions. By construction,
they possess a Fock space with an occupation number, but, in
contrast to spinless fermions, also anyonic exchange statistics
and a generalized Pauli principle inherited from the underly-
ing parafermion operators.

While Fock parafermions have been utilized to link
parafermions to ordinary electrons and thereby investigate
models possessing zero-energy (edge) modes [10], they can
also be studied as particles in their own right. The first step in
this direction was taken by Rossini et al. [11], who studied a
tight-binding chain of Fock parafermions. A key observation
was that such a model is nonintegrable despite being quadratic
in terms of the Fock parafermion operators, and the low-
energy properties for generic filling fractions are described
by a Luttinger liquid. Due to the generalized Pauli principle,
more than one Fock parafermion can occupy a lattice site;
coherent pair-hopping processes thus become possible, which
yields further gapless phases [12]. Very recently, the effect
of dissipation was also analyzed [13] which, under suitable
conditions, leads to the emergence of a noninteracting single-
particle spectrum and dark states.

Despite these efforts, many open questions on Fock
parafermion systems remain, with some of the most natural

ones being related to the addition of disorder. It is well known
that in other low-dimensional systems, the addition of a disor-
dered potential generally leads to the localization of quantum
states and thus drastically affects the transport properties. In
noninteracting systems, Anderson localization [14,15] mani-
fests itself in a complete freezing of the dynamics, detectable,
for example, in the saturation of the entanglement entropy.
The generalization of this phenomenon to interacting systems,
nowadays known as many-body localization (MBL) [16,17],
has attracted tremendous attention [18]. MBL provides a
generic realization of a nonergodic quantum system with po-
tential applications in quantum information [19,20], and MBL
phases feature interesting properties such as an area law [21]
scaling of the entanglement in the excited states [22], uncon-
ventional transport [23–25], or a logarithmic growth of the
entanglement entropy following quantum quenches [26–28].

In this work, we study disorder effects on Fock
parafermions. In particular, we ask whether a purely quadratic
Fock parafermion chain with random on-site potential exhibits
the phenomenology of Anderson or many-body localization.
Our results are consistent with the MBL phenomenology,
except in a special limit where the model becomes equiva-
lent to a free fermionic system. Our findings hence suggest
that anyonic statistics precludes Anderson localization even
in quadratic systems. Furthermore, our results show that the
coherent pair hopping supports localization.

Many studies of MBL employ an exact diagonalization of
small systems [29,30]. The existence of the MBL phase in the
thermodynamic limit has recently been questioned [31–35],
but no conclusive picture has emerged yet [36–41]. A pos-
sible new viewpoint is quantum avalanches [42–49]. In our
work, we address the phenomenology of MBL in finite-size
parafermion systems in analogy to the finite-size studies of
MBL in the prototypical Heisenberg chain [29,30].

This article is organized as follows: In the next section, we
introduce Fock parafermions, the one-dimensional model we
are considering, and recapitulate its basic properties. There-
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after (Sec. III), we introduce our numerical approaches, i.e.,
exact diagonalization (ED) as well as the time-evolving block
decimation (TEBD). In Sec. IV, we present our results on the
level spacing statistics, the participation ratio, the imbalance
dynamics, and the entanglement entropy. In Sec. V, we sum-
marize our findings.

II. MODEL

A. Fock parafermions

In one dimension, the transverse-field Ising chain is a cor-
nerstone model for the classification of topological order; it is
directly linked to the Kitaev chain [6,7] with Majorana edge
zero modes appearing in its ordered phase. More generally,
one can study p-state clock models, and the simplest extension
of the Ising chain (p = 2) is given by the quantum Potts
model,

HPotts = − J
∑

j

(σ †
j σ j+1 + σ

†
j+1σ j ) − f

∑
j

(τ †
j + τ j ), (1)

where the clock matrices σ j, τ j satisfy the following algebra:

σ
†
j = σ

p−1
j , τ

†
j = τ

p−1
j ,

σ
p
j = τ

p
j = 1, σ jτk = ωδ j,k τkσ j, (2)

with ω = exp(2π i/p). Their explicit representation reads

[σ j]kl = δk+1,l + δk,pδl,1,

[τ j]kl = ωk−1δk,l , k, l ∈ {1, . . . , p}. (3)

The notion of a Majorana is then generalized by introducing
two parafermion operators at each site j, γ2 j−1 and γ2 j , via

γ2 j−1 =
⎛
⎝∏

k< j

τk

⎞
⎠σ j, γ2 j = ω

p−1
2 γ2 j−1τ j, (4)

which satisfy the following algebraic relations:

γ jγk = ωsgn(k− j)γkγ j, γ
p−1
j = γ

†
j , γ

p
j = 1. (5)

For p = 2, Eq. (5) reduces to the usual anticommutation rela-
tions for 2L Majorana fermions.

The biggest drawback of using the parafermion operators
defined in Eq. (4) is that γ

†
2 j−1 and γ

†
2 j cannot be interpreted

as particle creation operators. However, it was shown that
for any set of parafermion operators governed by Eq. (5), a
generalized set of annihilation operators Fj , the so-called Fock
parafermions, can be defined via [8]

Fj = p − 1

p
γ2 j−1 − 1

p

p−1∑
m=1

ω
m(m+p)

2 γ m+1
2 j−1γ

†m
2 j . (6)

These operators feature anyonic commutators,

FjFk = ωsgn(k− j)FkFj,

F †
j Fk = ω−sgn(k− j)FkF †

j , (7)

and satisfy the local relations

F p
j = 0, F †m

j F m
j + F p−m

j F †(p−m)
j = 1, (8)

with m = 1, . . . , p − 1. Note that for p = 2, this scheme re-
duces to the standard representation of Majoranas in terms of

spinless fermions. The Fock parafermion operators act on the
occupation basis of a Fock space in the usual way, thus they
can be interpreted as annihilating and creating particles that
satisfy anyonic statistics. In particular, the occupation number
basis of the Fock space is obtained by repeated application of
the creation operators over the vacuum |0〉,

|n1, n2, . . . , nL〉 = F †n1
1 F †n2

2 · · · F †nL
L |0〉, (9)

with nk ∈ {0, 1, . . . , p − 1}, and L denoting the total number
of lattice sites. Due to Eq. (8), each lattice site can accommo-
date, at most, p − 1 Fock parafermions. One can easily show
that the states (9) indeed form an orthonormal basis,

〈n1, . . . , nL|m1, . . . , mL〉 = δn1,m1 · · · δnL,mL . (10)

The number operator at a given lattice site j is given by

Nj =
p−1∑
m=1

F †m
j F m

j , (11)

which satisfies the commutation relations

[Nj, F †
j ] = F †

j , [Nj, Fj] = −Fj . (12)

This entails, in particular,

Nj |n1, n2, . . . , nL〉 = n j |n1, n2, . . . , nL〉. (13)

In analogy with conventional fermions, the application
of F †

j to a basis state |n1, . . . , n j, . . . , nL〉 yields a statisti-
cal phase. In order to facilitate the implementation of exact
diagonalization and tensor network techniques, we employ
the Fradkin-Kadanoff (generalized Jordan-Wigner) transfor-
mation [5],

Fj =
⎛
⎝

j−1∏
l=1

Ul

⎞
⎠Bj . (14)

In the Fock basis, the operators Uj, Bj are explicitly given by

Bj |n1, . . . , n j, . . . , nL〉 = |n1, . . . , n j − 1, . . . , nL〉,
Uj |n1, . . . , n j, . . . , nL〉 = ωn j |n1, . . . , n j, . . . , nL〉, (15)

which entails that they commute on different sites.

B. Hamiltonian

From now on, we restrict ourselves to p = 3, i.e., the
simplest case showing nontrivial anyonic statistics. The Potts
model does not take a simple form when expressed in terms
of Fock parafermion operators. Instead, we start with a model
of Fock parafermions directly. Following prior works [11,12],
we study the following Hamiltonian:

H0 = −J
L−1∑
j=1

[
(1 − g)F †

j Fj+1 + gF †2
j F 2

j+1 + H.c.
]
,

H = H0 +
L∑

j=1

μ jNj, (16)

where g ∈ [0, 1] tunes between pure single-particle and co-
herent pair hopping. We will always use J = 1 as the unit of
energy. The disordered on-site potentials μ j are taken from a
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uniformly sampled distribution, μ j ∈ [−W,W ], with W rep-
resenting the disorder strength. We consider open boundary
conditions. After the Fradkin-Kadanoff transformation, the
Hamiltonian takes the form [11,12]

H0 = −J
L−1∑
j=1

[
(1 − g)B†

jUjB j+1 + gB†2
j B2

j+1 + H.c.
]
,

H = H0 +
L∑

j=1

μ j
(
B†

j B j + B†2
j B2

j

)
. (17)

The model at g = W = 0 corresponds to a tight-binding
chain of Fock parafermions [11]. We note that even though the
model is quadratic, the system is nevertheless nonintegrable
due to the nontrivial statistics of the particles, which prohibits
the application of Wick’s theorem [11]. At g �= 0, a coherent
pair hopping is included, the influence of which was studied
in Ref. [12] (for W = 0).

The Hamiltonian in Eq. (16) features two key symmetries,
namely, (i) a U(1) symmetry related to the conservation of
the total particle number N = ∑

j Nj , and (ii) a particle-hole
symmetry in the case p = 3 [12]. Thus, we can work in sectors
with fixed N and, moreover, restrict ourselves to filling frac-
tions n = N/L ∈ [0, 1]. In our work, we will always consider
n = 0.5.

The phase diagram at W = 0 and arbitrary values of the
filling n and coupling g was studied in Ref. [12] by numerical
and analytical approaches. At n = 0.5, the system exhibits
two gapless phases separated by a (second-order) transition
around gc ∼ 0.6. Both phases display Luttinger liquid char-
acteristics, i.e., they can be described by a conformal field
theory with a central charge c = 1. The behavior of correlation
functions such as 〈F †

i Fj〉, however, differs qualitatively in the
two phases.

A simplification occurs in the case g = 1. As can be seen
from Eq. (16), sites with one Fock parafermion per lattice
site completely decouple, i.e., singly occupied sites cease to
move. The full chain is thus broken into segments of empty
and doubly occupied sites which are separated by singly oc-
cupied sites. On these segments, the local on-site basis states
of |0〉, |2〉 can be identified with a spin-1/2 degree of freedom,
and the Hamiltonian becomes equivalent to an XX spin chain,
which is well known to be noninteracting [50]. Hence, at
g = 1, the spectrum of the full chain becomes equivalent to
a collection of free systems.

III. METHODS

A. Exact diagonalization

Due to the exponential increase of the Hilbert space dimen-
sion with the system size, ED methods are limited to the study
of small systems. In this work, we use full ED to study chains
of up to L = 14 sites with open boundary conditions.

Calculating all eigenstates in a sector with a given fill-
ing fraction n often becomes computationally expensive, in
particular if one wants to average over a substantial num-
ber of disorder realization. It is then beneficial to target a
specific energy density ε within the spectrum and to restrict
the calculation of eigenstates to a small number around this

FIG. 1. Distribution P(s) of the levels statistics in different dis-
order regimes at g = 0.5. The data were obtained by a full ED
calculation of the spectrum at L = 12. For W = 0.0, the distribution
follows the GOE. A small W = 1.0 breaks the discrete Z2 symmetry,
and the level spacing statistics follows the GUE. For high values of
W = 7.0, the level spacing follows Poissonian statistics. For finite
disorder W > 0, P(s) was obtained by averaging over 1000 samples.

value. To this end, we employ the shift-invert method, which
has been applied previously in the context of Anderson lo-
calization [51] and, more recently, in disordered quantum
spin chains [30]. At any disorder realization, we calculate the
minimum (maximum) eigenvalue of the spectrum E0 (Emax),
which allows us to define the normalized energy density
ε = (E − Emax)/(E0 − Emax) [30]. A set of 20 to 30 pairs of
eigenenergies is then calculated around a specific value of ε.

The shift-invert technique allows us to compute observ-
ables in an energy-resolved way at a much reduced numerical
effort. All ED results, except those in Fig. 1, were obtained
using this approach. We checked that for small system sizes,
using a full ED yields similar results.

In Sec. IV D, we will study the time evolution of initial
product states. This is accomplished via Krylov space tech-
niques [52].

B. Tensor networks

As a second approach, we employ tensor network methods
to simulate the time evolution of given initial states [53].
In particular, we use the TEBD with a fourth-order Suzuki-
Trotter expansion and a time step of dt = 0.1. The bond
dimension is dynamically increased in order to maintain a
fixed discarded weight, which we varied over two orders of
magnitude (10−9–10−7) in order to check for convergence.
(We have also checked our TEBD approach against data ob-
tained via the Krylov time-evolution method.)

IV. RESULTS

We now discuss the effects of disorder in our model. We
focus on a set of standard observables. We reiterate that all
calculations are carried out for fillings n = 0.5 and that all ED
data, except those in Fig. 1, were obtained using shift invert.
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The data at W > 0 were averaged over O(1000) disorder
realizations [55].

A. Level spacing statistics

Random matrix theory predicts that the distribution P(s) of
adjacent gaps, sn = En+1 − En, in the spectrum of random ma-
trices follows one of the so-called Gaussian ensembles [56].
Purely real Hamiltonians will generally obey the statistics
from the Gaussian orthogonal ensemble (GOE), while general
hermitian Hamiltonians are governed by the Gaussian unitary
ensemble (GUE). For Hamiltonians possessing an infinite set
of conservation laws such as integrable or free systems, the
distribution P(s) follows a Poisson distribution. The same
holds true for MBL systems.

In Fig. 1, we show results of a full ED calculation for
P(s) for different values of the disorder strength W . Following
Rossini et al. [11], we have discarded the upper and lower
third of the spectrum to generate the distributions, and we have
not employed any unfolding procedures [57].

Without disorder, P(s) follows GOE statistics. This can be
understood by noting that in the absence of the disordered on-
site potential, the model possesses a discrete Z2 particle-hole
symmetry Fj → F †

j under which the particle number operator
transforms as Nj → 2 − Nj [12]. This symmetry is absent for
W > 0, and P(s) is governed by the GUE. For large W = 7,
one obtains a Poissonian distribution. This hints at a crossover
between an ergodic and a localized phase, which we will
further investigate below. (Note that the case g = 1 features
a Poissonian distribution at any W due to the mapping to a
collection of XX chains.)

As an alternative to P(s), one can compute the adjacent gap
ratio [58],

r = min (sn+1, sn)

max (sn+1, sn)
, (18)

which, after disorder averaging, takes the value rGOE ∼
0.5307 in the GOE, rGUE ∼ 0.5996 in the GUE, and rPoisson ∼
0.3863 in the case of Poissonian statistics [54].

In Figs. 2(a) and 2(b), we show r at g = 0.2 and g = 0.5 as
a function of W for mid-spectrum states (ε = 0.5) and differ-
ent L. We can again identify GOE statistics at W = 0, GUE
statistics at small W , and Poissonian behavior at large W . In
order to quantify where the crossover between the ergodic and
the localized regime takes place, we have collapsed the data
by rescaling the x axis as L1/ν (W − Wc) (inset). This yields
Wc = 4.2 as well as Wc = 2.7 for the critical disorder strength.

In Figs. 2(c) and 2(d), we repeat this analysis for fixed
W = 1 and W = 2. We observe a crossover between GUE and
Poissonian behavior as g is increased and obtain gc = 0.97
and gc = 0.7 as the critical interaction for the crossover be-
tween ergodic and localized regimes.

One should note that even though the Hamiltonian is purely
quadratic in terms of the Fock parafermion operators at g = 0,
the system is not free due to the nontrivial statistics of the
particles. In contrast, at g = 1, the model can be mapped to a
collection of noninteracting XX spin chains. It is thus plausible
that the size of the ergodic regime shrinks with increasing g.

In sum, the phenomenology of the level statistics of our
disordered parafermion model is analogous to the disordered

FIG. 2. Adjacent gap ratio for different system sizes and mid-
spectrum states at (a) fixed g = 0.2, (b) fixed g = 0.5, (c) fixed W =
1, and (d) fixed W = 2. The analytically known values [54] in the
different regimes are given by rGOE ∼ 0.5307, rGUE ∼ 0.5996, and
rPoisson ∼ 0.3863. Insets: In order to quantify the crossover between
ergodic and localized phases, the data are collapsed by rescaling the
x axes as L1/ν (W − Wc ) or L1/ν (g − gc ), which yields ν = 0.75 and
(a) Wc = 4.2, (b) Wc = 2.7, (c) gc = 0.97, and (d) gc = 0.7.

XXZ chain, except for the fact that the ergodic regime is
generically governed by a GUE ensemble (instead of a GOE
ensemble in the XXZ case).

B. Participation ratio

We introduce the inverse participation ratio (IPR) of a state
|ψk〉 over a given spatial basis |n〉 as [59]

IPRk =
D∑

n=1

|〈n|ψk〉|4, (19)

with D representing the Hilbert space dimension. We choose
|ψk〉 as an eigenstate of H and take |n〉 as the occupation
number basis of Eq. (10). We determine m ∼ 30 eigenpairs
in an energy window around ε using shift invert and define
the normalized inverse participation ratio as

IPR(ε) =
∑m

k=1 IPRk

m
=

∑m
k=1

∑D
n=1 |〈n|ψk〉|4
m

. (20)

We first compute the disorder-averaged IPR and, from that,
the participation ratio,

PR(ε) = 1

IPR(ε)
. (21)

In the ergodic regime, any eigenstate takes the form |ψk〉 =∑
n cn,k|n〉 with approximately equal weights, |cn,k|2 =

|〈n|ψk〉|2 ∼ 1/D. This entails IPRk ∼ 1/D as well as
PR(ε) ∼ D ∼ 3L. On the other hand, in a localized phase,
eigenstates are close to spatial product states, which leads to
cn,k ∼ δn,n0 and thus IPRk ∼ 1 as well as PR(ε) ∼ 1.

In Figs. 3(a) and 3(b), we show the participation ratio for
mid-spectrum states (ε = 0.5) and different L at fixed g = 0.2
and fixed W = 1, respectively. One can identify the ergodic
and localized regimes in qualitative agreement with Fig. 2
[60].
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FIG. 3. Participation ratio for different system sizes and mid-
spectrum states at (a) fixed g = 0.2, and (b) fixed W = 1. The ergodic
and localized regimes are governed by PR ∼ 3L and PR ∼ 1, respec-
tively. Dashed lines indicate ∼3L scaling.

C. Phase diagram

In Fig. 4, we show the adjacent gap ratio as well as the
participation ratio as a function of both the disorder strength
W and the interaction g for mid-spectrum states (ε = 0.5) of a
system of L = 12 sites. Blue and red coloring indicate ergodic
and localized regimes, respectively. One can again see that the
size of the localized phase grows with g.

In Fig. 5, we plot the participation ratio as a function of
the disorder and the energy density ε for two values of g at
L = 12. Moving away from mid-spectrum states favors local-
ization in analogy with, e.g., the behavior of the disordered
XXZ chain [30].

D. Imbalance dynamics

We complement our analysis of the crossover between
ergodic and localized regimes by studying the imbalance dy-
namics as another prototypical setup. We initially prepare the
system in a domain wall state of the form

|ψ0〉 = |1, 1, . . . , 1, nL/2 = 1, 0, . . . , 0〉. (22)

The time evolution is calculated using Krylov space methods.
We focus on the number of particles transported across the
domain,

I (t ) = 2
NL(t ) − NR(t )

L
, (23)

where NL(t ) = ∑L/2
j=1〈ψ (t )|Nj |ψ (t )〉, and NR(t ) defined anal-

ogously.

FIG. 4. (a) Adjacent gap ratio and (b) participation ratio of mid-
spectrum states for a system of L = 12 sites as a function of both
the disorder W and the interaction g. Blue and red coloring marks
ergodic and localized regimes, respectively.

FIG. 5. Participation ratio as a function of the disorder strength
W and the energy density ε for (a) g = 0.0 and (b) g = 0.2 on a chain
of L = 12 sites. The green dashed line corresponds to log2(PR) =
L/2 = 6.

Ergodic systems thermalize; all knowledge from the initial
state is eventually lost during the time evolution, which en-
tails I (t → ∞) → 0. In contrast, a localized phase features
I (t → ∞) > 0. This expectation was confirmed, e.g., for the
disordered XXZ chain [61,62].

In Fig. 6(a), we show I (t ) at g = 0.2 for different W at L =
12. The curves decay slower for larger W . In order to quantify
this, we define the steady-state value I (∞) by averaging over
the last 50 time steps and study its behavior as a function of
the system size; see Fig. 6(b). One observes that for small
(large) W , I (∞) decreases (increases) with L, hinting at a
vanishing (finite) value and thus an ergodic (localized) regime.
The crossover happens around W ∼ 4, which is in agreement
with the results of Fig. 2.

E. Entanglement entropy

Finally, we study the evolution of the entanglement entropy
in the localized regime. We prepare the system in a random
initial product state

|ψ0〉 = |n1, n2, . . . , nL〉, (24)

where n j ∈ {0, 1, 2} is initialized randomly with the constraint∑L
j=1 n j = N . Using tensor networks, we compute the half-

chain entanglement entropy,

S = −tr(ρA ln ρA) = −tr(ρB ln ρB), (25)

where ρA,B are the reduced density matrices of the left and
right half of the chain. In an Anderson-localized phase, S
becomes constant while in an MBL regime, S grows loga-
rithmically (i.e., without bounds) until finite-size effects set

FIG. 6. (a) Imbalance dynamics for g = 0.2 and different W for
a system of L = 12 sites. (b) The corresponding steady-state value
I(∞) as a function of W for various L.
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FIG. 7. Dynamics of the entanglement entropy in random prod-
uct states at (a),(c) W = 5.0 and (b),(d) W = 7.5. (a) and (b) show
data for fixed L = 12 and various values of g; (c) and (d) illustrate
the scaling with respect to the system size. In particular, we observe
growth in the purely quadratic model (g = 0), indicating many-body
instead of Anderson localization.

in [26–28]. The entanglement dynamics can thus be used to
discern Anderson from many-body localization.

In Fig. 7, we show the entanglement dynamics for various
g at W = 5 [Figs. 7(a) and 7(c)] and W = 7.5 [Figs. 7(b) and
7(d)]. For fixed L = 12 (left column), S grows logarithmically
for all g < 1, indicating that the system is many-body local-
ized. This includes the point g = 0 where the Hamiltonian is
purely quadratic but not free due to the nontrivial statistics of
the parafermions. At g = 1, the entanglement does not grow;
the system decomposes into segments of XX chains, which,
since they are free, become Anderson localized. The scaling
with respect to the system size is shown in the right column
of Fig. 7, indicating that the logarithmic growth is only cut off
by the finite system.

In sum, the entanglement dynamics in our model is similar
to the one in the XXZ chain if one identifies the point g = 1
with the XX limit.

V. CONCLUSION

We have studied the effects of disorder in a one-
dimensional chain of Fock parafermions using both exact
diagonalization and tensor network techniques. We calculated
prototypical quantities such as level statistics or imbalance
dynamics to demonstrate that disorder drives the system from
an ergodic into a localized regime. Our results are represen-
tative for finite systems of ∼ 14 sites, and we cannot rule out
that the localized regime is, in fact, a prethermal precursor
of a ergodic phase. The entanglement dynamics indicates that
even a purely quadratic Fock parafermion model does not
show Anderson but rather many-body localization due to the
nontrivial statistics of the particles.

Our results indicate that a disordered parafermion model
shows the same MBL phenomenology as the prototypical XXZ
chain; the point g = 1 takes the role of the noninteracting
XX limit. The only difference is that in our case, the ergodic
regime is generically described by a GUE instead of a GOE
ensemble. The parafermion statistics seems to play the role
of interactions in the XXZ chain. Whether or not disorder
effectively removes all peculiarities of the parafermions is
unclear and left for future work.

Note added. We note that the pure tight-binding Fock
parafermion chain (g = 0) with disordered potential has been
studied in Ref. [63] as well. As far as our studies overlap,
all results are in qualitative agreement with our findings. One
should note that in contrast to Ref. [63] we do not impose the
condition

∑L
j=1 μ j = 0, so a quantitative comparison of the

results is not possible.
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