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Spin and charge modulations of a half-filled extended Hubbard model
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We introduce and analyze an extended Hubbard model, in which intersite Coulomb interaction as well as a
staggered local potential (SLP) are considered, on the square lattice at half band filling, in the thermodynamic
limit. Using both Hartree-Fock approximation and Kotliar and Ruckenstein slave boson formalism, we show
that the model harbors charge order (CO) as well as joint spin and charge modulations (SCO) at finite values
of the SLP, while the spin-density wave (SDW) is stabilized for vanishing SLP only. We determine their phase
boundaries and the variations of the order parameters in dependence on the SLP, as well as on the on-site and
nearest-neighbor interactions. Domains of coexistence of CO and SCO phases, suitable for resistive switching
experiments, are unraveled. We show that the novel SCO systematically turns into the more conventional SDW
phase when the zero-SLP limit is taken. We also discuss the nature of the different phase transitions, both at
zero and finite temperature. In the former case, no continuous CO to SDW (or SCO) phase transition occurs. In
contrast, a paramagnetic phase (PM), which is accompanied with continuous phase transitions towards both spin
or charge ordered phases, sets in at finite temperature. A good quantitative agreement with numerical simulations
is demonstrated, and a comparison between the two used approaches is performed.
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I. INTRODUCTION

Electronic phases displaying spin and charge modulations
are currently undergoing intense scrutiny [1,2]. Following the
seminal works by Tranquada et al. on doped nickelates [3,4],
they are firstly found in doped Mott insulators. They received
even stronger interest when related order was evidenced in
the superconducting Sr-doped La2CuO4 cuprates (LSCO) [5].
Furthermore, striped states have been exhibited in other series
of oxides as well, which, most notably, include layered cobal-
tates [6] and layered manganites [7], as reviewed in, e.g., Ref.
[7].

A diversity of stripe orders have been reported. Indeed,
the wave vectors characterizing the modulations may either
lie along the diagonal of the Brillouin zone (BZ), in which
case the stripe is coined diagonal, or along the side of the
BZ, and the stripe is said to be vertical. The stripes observed
in nickelates are diagonal and are systematically found to be
insulating [8,9]. This holds true for layered cobaltates and
layered manganites as well. Cuprates, in contrast, present both
diagonal and vertical stripes, with the former being insulating
and the latter metallic, if not superconducting [10]. Explaining
the insulating nature of La2−xSrxNiO4 nickelates by den-
sity functional theory, including optimized lattice distortion
[11–13], or by means of model calculations [14], turned out
to be challenging. Conversely, for cuprates, a systematics of
insulating diagonal filled (with nearly 1 hole per domain wall)
and metallic half-filled (with nearly 0.5 hole per domain wall)
stripes could be established within model calculations [15].
More recent numerical calculations applying a variety of ap-
proaches tackled the issue of d-wave superconductivity in the
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ground state of the two-dimensional Hubbard Model. As of
today, it appears fair to say that it could not unambiguously
be established. Actually, stripe order has been found to be
very close, if not lower, in energy to its superconducting
counterpart [16–22]—coexistence of both phases has been
highlighted too [23,24], albeit not necessarily in the ground
state [25].

So far we briefly presented spin and charge modulated
phases of the doped two-dimensional Hubbard model, but
would they persist in the half-band filling limit? No posi-
tive answer to this question resulted from the study of the
two-dimensional Hubbard model, which, for repulsive on-
site interaction U > 0, only harbors antiferromagnetism. This
could be presumed considering the following qualitative pic-
ture of the stripe modulations. The spatial periods of the
charge order in the striped phase are bounded by holes, or
fractions of holes. A higher hole concentration thus eventu-
ally leads to a shorter spatial period of the stripe ordering,
and conversely. By taking the limit where the hole doping
tends to zero, the period of the stripe order diverges such that
we are left with the usual antiferromagnetic Mott insulating
phase at half band filling. This heuristic argument supports
the assumption that the mechanisms underlying spin-and-
charge modulations at half filling should differ from those
underlying the striped phases at finite doping. Additionally,
evidence of the existence of a spin-and-charge ordered phase
in the half-filled Hubbard model remains elusive [26–34].
As a consequence to this, in the present paper, a Hubbard
model extended with a nearest-neighbor interaction term of
intensity V as well as a spatial modulation of the energy levels
εi in order to straightforwardly induce charge order in the
antiferromagnetic phase is considered, and phases bridging
between pure magnetic order and pure charge order are sought
for.
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The rich landscape of competing electronic phases dis-
played by metal oxides is not their only point of interest.
When the transition between different states is of the first
order, it can be harnessed for application in digital electron-
ics. Since the functional materials can keep their valuable
properties down to the nanoscale, they promise to offer a su-
perior alternative to conventional semiconductor components
[35,36]. In particular, resistive switching in Mott systems
is the subject of intense investigations, since it could en-
able a variety of novel functions, such as resistive RAM
for data storage [37,38], optoelectronics [36,39], or neuro-
morphic computing [40–42]. Their switch between resistivity
values, which may differ by several orders of magnitude,
can be experimentally triggered by varying different control
parameters, such as chemical doping, strain, temperature, hy-
drostatic pressure, electric field, current, and illumination. The
microscopic mechanisms that drive the phase transition are,
however, still debated [43–46]. Yet the diversity of stimuli
indicates that several are likely at play depending on the
material, and it highlights the versatility of the phenomenon
as a tool for future technologies.

In this context, we analyze our model by performing
both Hartree-Fock (HF) and Kotliar-Ruckenstein slave boson
(KRSB) slave boson calculations. While the former method
mostly yields qualitative understanding, the latter better in-
corporates correlation effects.

This paper is organized as follows: In Sec. II the con-
sidered Hamiltonian, the HF approximation as well as the
saddle-point approximation to the KRSB representation used
in this study are presented. In Sec. III within the HF ap-
proximation, and in Sec. IV within the KRSB representation,
the zero-temperature phase diagram of the half-filled model
on the square lattice is unraveled for different values of the
splitting ε and a novel spin-and-charge ordered phase is pre-
sented. In Sec. V, within the KRSB representation, the ε = 0
limit is taken in order to recover the t−U−V model and the
phase diagram is presented for zero and finite temperature.
We then compare, in Sec. VI, the results obtained within
both formalisms in order to assess for the relevance of elec-
tronic correlations in the presented phases. Finally, Sec. VII
presents conclusions and a short outlook. Appendix A details
the self-consistent field equations to be solved in the HF
approximation. Appendix B gives more details about the setup
of the different saddle-points, together with the derivation of
the saddle-point equations.

II. MODEL AND METHODS

A. Extended Hubbard model

Initially introduced nearly simultaneously by Hubbard
[47], Kanamori [48], and Gutzwiller [49] as a model for
electrons in transition-metal oxides, the now-called Hub-
bard model is the archetype of correlated electrons model.
Its Hamiltonian embodies the competition between kinetic
energy and Coulomb interactions in its simplest form. It
reads

HHub = H0 + HU , (1)

with the one-body part, in the grand canonical ensemble,

H0 =
∑
i, j,σ

ti jc
†
i,σ c j,σ − μ

∑
i,σ

c†
i,σ ci,σ , (2)

and the local interaction term

HU = U
∑

i

c†
i,↑c†

i,↓ci,↓ci,↑, (3)

where c†
i,σ (ci,σ ) creates (annihilates) an electron with spin σ ∈

{↑,↓} at the lattice site i, ni,σ is the usual electron number op-
erator (ni = ni,↑ + ni,↓), ti j is the hopping amplitude between
lattice sites i and j, μ is the chemical potential controlling
the band filling and U is the on-site Coulomb interaction
strength. Nevertheless, Hubbard himself pointed out the major
drawback of his model when it comes to faithfully describing
the microscopic processes happening in real systems, namely
the oversimplified treatment of the Coulomb interaction [50].
In cuprates, for example, it appears that the screening of
the Coulomb interaction between electrons is not perfect and
thus yields interatomic contributions. As a response to this,
longer-ranged Coulomb interactions may be incorporated in
the Hamiltonian, yielding the additional term

HV = 1

2

∑
i,j

σ,σ ′

Vi jc
†
i,σ c†

j,σ ′c j,σ ′ci,σ , (4)

where Vi j is the Coulomb coupling between sites i and j. The
1/2 factor accounts for the double-counting of the (i, j) ≡
( j, i) pairs in the sum. Henceforth, we assume the screening
of the long-ranged Coulomb interaction to be efficient, and we
choose Vi j such that Vi j = V if i and j are nearest-neighbors
and Vi j = 0 otherwise. Approximating the Coulomb interac-
tion in such a way yields the often-called extended or t−U−V
Hubbard model

Ht−U−V = HHub + HV . (5)

Turning next to our search for a minimal model of spin-
and-charge modulated phases at half filling, we propose to
further extend the t−U−V model by also considering a stag-
gered local potential (SLP) of the form

Hε =
∑
i,σ

εic
†
i,σ ci,σ . (6)

This potential either arises from an inhomogeneous crys-
tal field inside a material or an alternating intensity of the
confinement potential in the context of cold fermions on an
optical lattice. Models of strong disorder, where εi is randomly
distributed across the lattice such that each site has a different
electrostatic environment, has been considered in the context
of many-body localization [51,52]. In the present case, how-
ever, the focus is made on minimal extensions to the Hubbard
model. We thus consider the simple form,

εi = −ε if i ∈ A, (7a)

εi = +ε if i ∈ B, (7b)

where A and B are the two sublattices of a bipartite lattice.
In the context of LSCO superconductors, alternating La and,
e.g., Pr chains, could produce such a contribution to the crystal
field, as the electronic cloud of the La cations is more extended
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than the one of the Pr cations. This results in a staggered 2ε

energy distribution between adjacent lattice sites. This finally
leads us to the Hamiltonian

Hext = HHub + HV + Hε, (8)

which will be investigated in Secs. III and IV.
Throughout the present paper, we work in the half-filled

subspace of the square lattice, such that

∑
i,σ

〈ni,σ 〉 = NL, (9)

where NL is the total number of lattice sites and we set the
lattice parameter a = 1 thereby fixing the length scale.

B. HF approximation

Throughout this paper, we use the HF approximation as
a benchmark for the weak-coupling regime and compare its
results in the intermediate-to-strong coupling regime with the
KRSB results including correlations. In this framework, the
interaction terms in Eq. (5) are approximated by

HU ≈ U
∑
i,σ

(
〈ni,−σ 〉c†

i,σ ci,σ − 1

2
〈ni,↑〉〈ni,↓〉

)
, (10)

and

HV ≈V
∑
〈i j〉,σ

[ ∑
σ ′

(
〈n j,σ ′ 〉c†

i,σ ci,σ − 1

2
〈ni,σ 〉〈n j,σ ′ 〉

)

− 1

2
〈bi j,σ 〉(c†

i,σ c j,σ + H.c.) + 1

2
〈bij,σ 〉2

]
, (11)

where

〈ni,σ 〉 = 〈c†
i,σ ci,σ 〉, (12a)

〈ni〉 = 〈ni,↑〉 + 〈ni,↓〉, (12b)

〈bi j,σ 〉 = 〈c†
i,σ c j,σ 〉, (12c)

and the 〈i j〉 summation denotes a sum over nearest-neighbors
in which both the (i, j) and ( j, i) bonds are counted.

In this paper, we investigate spin and/or charge ordered
phases at half band filling. Such phases are described by mean
fields of the form

〈ni,σ 〉 = 1
2 + δnσ exp(iQ · Ri ), (13a)

δnσ = 1
2

(
δn + τ 3

σσ mz
)
, (13b)

〈bi j,σ 〉 = bσ + δbσ exp(iQ · Ri ), (13c)

with Q = (π, π ) an ordering wave vector and τ 3 the
third Pauli matrix. We introduced the charge polariza-
tion δn = (nA − nB)/2, the staggered magnetization mz =
(nA,↑ − nA,↓ − nB,↑ + nB,↓)/2, and the (spatially homoge-
neous) spin-projected bond charge bσ as well as its spatially
modulated part δbσ . With Hext now being expressed as a free
fermion Hamiltonian, its diagonalization in Fourier space is

straightforward and we can derive the free energy per lattice
site

F

NL
= − 1

βNL

∑
k,σ,ν

′
ln

[
1 + exp

(−βEHF
k,σ,ν

)] + μ − U

4
− 2V

+
(

2V − U

4

)
δn2 + U

4
m2

z − 2V
∑

σ

(
b2

σ + δb2
σ

)
,

(14)

where the primed sum is performed over the reduced BZ
of the bipartite square lattice and β = 1/T is the inverse
temperature. If we also restrict the hopping processes to near-
est neighbors (ti j = −t if i and j are neighboring sites and
ti j = 0 otherwise), the eigenvalues of the one-body part of the
Hamiltonian read

EHF
k,σ,ν = U

2
+ 4V − μ + ν

√(
t eff
k,σ

)2 + (
	HF

σ

)2
, (15)

with ν = ±1. The effective dispersions read

t eff
k,σ = 2(V bσ − t )(cos kx + cos ky), (16)

and the band gaps

2	HF
σ = (U − 8V )δn − τ 3

σσUmz − 2ε. (17)

We can thus solve the self-consistent field equations for the
introduced order parameters δn, mz, and bσ in the different
phases (see Appendix A for further details).

C. The KRSB representation

1. Slave boson methods

Building on Barnes’ pioneering papers [53,54], slave bo-
son representations for the most ubiquitous correlated electron
models have been set up. In the specific case of the Hubbard
model, the Kotliar-Ruckenstein (KR) representation [55]—as
well as its spin-rotation invariant and spin-and-charge-rotation
invariant generalizations [56,57]—has been found to be of
particular convenience and has been applied to a variety of
cases.

Regarding its reliability, the KR representation has been
shown to compare favorably with quantum Monte Carlo
(QMC) simulations. Specifically, for U = 4 t it could be
shown that the slave-boson ground-state energy is larger than
its QMC counterpart by less than 3% [58,59]. Additionally,
very good agreement with QMC simulations on the location
of the metal-to-insulator transition for the honeycomb lattice
has been demonstrated [60]. It should also be emphasized
that quantitative agreement of the spin and charge structure
factors of QMC and density matrix embedding theory were
established [61–63]. Comparison with exact diagonalization
has been performed, too. For values of U larger than 4 t , it has
been obtained that the slave-boson ground-state energy ex-
ceeds the exact diagonalization data by less than 4% (7%) for
U = 8 t (20 t) and doping larger than 15%. This discrepancy
decreases when the doping is lowered [64]. For small values
of U and close to half filling, on the other hand, it has been
shown that the KR representation and the HF approximation
yield quantitatively similar energies [59,65–68], but sizable
differences arise for U reaching half the band width.

Additionally, the slave boson approach exhibits several in-
triguing formal properties. First, the approach has been found
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to yield exact results in the large degeneracy limit [57,69].
Moreover, in the KR representation, the paramagnetic saddle-
point approximation turns out to reproduce the Gutzwiller
approximation [55,70]. It therefore inherits its formal prop-
erty of obeying a variational principle in the limit of large
spatial dimensions, where the Gutzwiller approximation and
the Gutzwiller wave function [71] become identical [72,73].
These properties are compelling evidence that the approach
captures characteristic features of strongly correlated electron
systems such as the suppression of the quasiparticle weight
and the Mott-Hubbard/Brinkman-Rice transition to an insu-
lating state at half filling under increasing on-site Coulomb
interaction strength [74].

In addition to the aforementioned properties, slave boson
representations possess their own gauge symmetry group,
which allows one to gauge away the phase of one (or sev-
eral depending on the specific representation) slave boson
field. In the case of the KR representation, only the field
associated to double occupancy remains complex, while the
Lagrange multipliers are promoted to time-dependent fields
[57] as detailed below. Such a representation gives rise to
real-valued boson fields that are thus free from Bose con-
densation. Their expectation values are generically finite and
can be well approximated in the thermodynamic limit via the
saddle-point approximation. Corrections to the latter may be
obtained when evaluating the Gaussian fluctuations [62,75]
and the correspondence between this more precise evaluation
and the time-dependent Gutzwiller approach could recently
be achieved—although by means of an extension of the latter
compared to its original formulation [76,77]. While exact
results may be obtained for, e.g., a simplified single-impurity
Anderson model, the Ising chain, or small correlated clusters
[78–81], this comes at the cost of more involved calculations.
Here instead, we make use of the KR representation in the
saddle-point approximation in order to address the different
orders in the phase diagram of the considered extensions of
the Hubbard model at half band filling, in the thermodynamic
limit.

2. The Kotliar and Ruckenstein representation

In the KR representation, a doublet of pseudofermions
{ f↑, f↓} and a set of four slave bosons {e, p↑, p↓, d } are in-
troduced at each lattice site in order to reconstruct the Hilbert
space of the model. The latter are tied to the four distinct
atomic configurations: empty, singly occupied (with spin pro-
jection ↑ or ↓), and doubly occupied, respectively. As such,
the introduced auxiliary operators generate redundant degrees
of freedom, which are to be discarded. This can be achieved by
enforcing the following three constraints at each lattice site:

0 = e†
i ei +

∑
σ

p†
i,σ pi,σ + d†

i di − 1, (18a)

0 = f †
i,σ fi,σ − p†

i,σ pi,σ − d†
i di (σ =↑,↓). (18b)

The first constraint enforces completeness of the represen-
tation, while the second and third ones ensure a one-to-one
correspondence between bosonic and pseudofermionic densi-
ties at each lattice site. This yields a representation in which
the boson (pseudofermion) operators satisfy the canonical
(anti) commutation relations. Under this constrained repre-

sentation, the electron-density operators can be mapped onto
bosonic or pseudofermionic operators,

ni,σ → f †
i,σ fi,σ = p†

i,σ pi,σ + d†
i di, (19)

while the transition operators are mapped onto a combination
of both bosonic and pseudofermionic operators

c†
i,σ c j,σ → f †

i,σ z†
i,σ zj,σ f j,σ , (20)

with

zi,σ = e†
i Li,σ Ri,σ pi,σ + p†

i,−σ Li,σ Ri,σ di. (21)

Multiple distinct choices of Li,σ and Ri,σ yield equivalent rep-
resentations for the Hubbard model when the constraints are
exactly enforced. In practice, these factors are always chosen
as

Li,σ = (1 − p†
i,σ pi,σ − d†

i di )
−1/2, (22a)

Ri,σ = (1 − p†
i,−σ pi,−σ − e†

i ei )
−1/2, (22b)

such that the saddle-point approximation yields correct results
(〈zi,σ 〉 = 1) in the noninteracting limit [55], the empty-band
limit n → 0 and the filled-band limit n → 2. Furthermore,
when the constraints (18a) and (18b) are exactly enforced on
each site, the auxiliary bosonic operators act as projectors onto
the physical (empty, singly, or doubly occupied) states of the
lattice site. It is then straightforward to see that the on-site
Coulomb interaction term in the Hamiltonian can be rewritten
as

HU = U
∑

i

d†
i di, (23)

which is now a mere quadratic bosonic term. In the follow-
ing, the intersite Coulomb term HV is represented as purely
bosonic, such that

HV = V

2

∑
〈ij〉
σ,σ ′

(p†
i,σ pi,σ + d†

i di )(p†
j,σ ′ p j,σ ′ + d†

j d j ). (24)

The Hε term is represented as a bosonic contribution as well,

Hε =
∑
i,σ

εi(p†
i,σ pi,σ + d†

i di ). (25)

3. Gauge fixing

In the functional integral formalism, the partition function
Z of the system reads

Z =
∫ π/β

−π/β

∏
i

dλi

2π

dλ′
i,↑

2π

dλ′
i,↓

2π

∫
D[φ∗, φ]e−�, (26)

with φi(τ ) ≡ [ fi,↑(τ ), fi,↓(τ ), ei(τ ), di(τ ), pi,↑(τ ), pi,↓(τ )],
where fi,σ (τ ) and ei(τ ), di(τ ), ... now refer to time-dependent
Grassmann and complex fields, respectively, while
λi, λ

′
i,σ ∈ R are the Lagrange multipliers enforcing the

constraints (18a) and (18b). In order to simplify the notation,
the time dependence of the fields is not explicitly written in
the remaining of this section.

Following Refs. [57,81], we gauge away the phases of
three bosonic fields and express them as real amplitudes,
while the remaining field—most of the time chosen to be

235131-4



SPIN AND CHARGE MODULATIONS OF A HALF-FILLED … PHYSICAL REVIEW B 106, 235131 (2022)

the d field—remains complex valued. Simultaneously, the
Lagrange multipliers λi and λ′

i,σ must be promoted to real
time-dependent fields αi and βi,σ ,

αi ≡ λi + ∂τ θi, (27a)

βi,σ ≡ λ′
i,σ − ∂τχi,σ , (27b)

where θi and χi,σ are the (time-dependent) phase factors of the
gauge transformation.

Within this gauge, the action S = S f + Sb of the path inte-
gral reads

S f =
∫ β

0
dτ

∑
i,σ

[
f ∗
i,σ (∂τ − μ + iβi,σ ) fi,σ

+
∑

j

ti j f ∗
i,σ z∗

i,σ z j,σ f j,σ

]
, (28)

for the mixed bosonic-pseudofermionic sector, and

Sb =
∫ β

0
dτ

[ ∑
i

iαi

(
e2

i +
∑

σ

p2
i,σ + |di|2 − 1

)
+ d∗

i ∂τ di

−
∑
i,σ

iβi,σ ni,σ + U
∑

i

|di|2 + V

2

∑
〈ij〉

nin j +
∑

i

εini

]
,

(29)

for the purely bosonic sector (all densities are understood to
be expressed in terms of bosonic fields here and throughout).

D. The saddle-point approximation

The present study is performed at the saddle-point level
of approximation, implying that the slave boson fields ψi =
[ei, Re(di ), Im(di ), pi,↑, pi,↓, βi,↑, βi,↓, αi] are averaged out
such that they can be replaced by their time-independent
expectation value 〈ψi〉|i∈s ≡ ψs (s = A, B). One can thus ex-
plicitly integrate out the Grassmann fields and make use of
the free fermion character of the KR representation (see Ap-
pendix B) to rewrite the fermionic sector of the grand potential

� f

NL
= − 1

βNL

∑
k,σ,ν

′
ln[1 + exp(−βEk,σ,ν )]. (30)

If, again, we restrict the hopping to nearest-neighbors only,
the quasiparticle dispersion is given by

Ek,σ,ν = βσ − μ + ν

√(
z̃2
σ tk

)2 + (
	SB

σ

)2
, ν = ±1, (31)

where we introduced

βσ ≡ 1
2 (βA,σ + βB,σ ), (32a)

	SB
σ ≡ 1

2 (βA,σ − βB,σ ), (32b)

and the usual tight-binding dispersion of the square lattice

tk = −2t (cos kx + cos ky). (33)

The renormalization factors now read

z̃σ =
√

zA,σ zB,σ , (34a)

with

zs,σ = es ps,σ + ps,−σ ds√
ns,σ (1 − ns,σ )

. (34b)

The purely bosonic contribution to the grand potential is given
by

�b

NL
= αA

2

(
e2

A +
∑

σ

p2
A,σ + |dA|2 − 1

)

+ αB

2

(
e2

B +
∑

σ

p2
B,σ + |dB|2 − 1

)
−

∑
σ

βσ 〈nσ 〉

−
∑

σ

	SB
σ + ε

2

(
δn + τ 3

σσ mz
) + U

2
(|dA|2 + |dB|2)

+ 2V (〈n〉2 − δn2), (35)

where the averaged values and order parameters are defined
identically to their counterparts in the HF approximation
scheme. Let us note that we can already notice that the 	SB

σ

and ε terms control the relative filling of the sublattices, as
they couple to the difference in density between these two
sublattices. For more details, see Appendix B in which the
saddle point equations (SPE) are derived.

III. RESULTS WITH THE HF APPROXIMATION

In this section, we investigate the half-filled, zero-
temperature phase diagram of the above introduced Hubbard
model extended by an intersite Coulomb repulsion and a
SLP. Results for the half-filled Hubbard model within a simi-
lar inhomogeneous crystal field (H = HHub + Hε) have been
obtained in one and two dimensions using lattice density
functional theory [82,83]. On the square lattice, these com-
putations highlighted a continuous phase-transition from the
charge-density wave (CDW) phase to a spin-ordered state as
the ratio U/ε is increased. On the other hand, the t−U−V
model (H = HHub + HV ) has been thoroughly investigated in
the literature. Among the features of this model, which at-
tracted great interest is the CDW to spin-density wave (SDW)
phase transition at half filling. The latter has been studied
analytically by means of perturbation theory [26,27] or in the
slave boson saddle-point approximation [28,29] and numeri-
cally from quantum Monte Carlo (QMC) calculations in one
[30,31] or two [32] dimensions. More recently, the dynamical
cluster approximation (DCA) has been applied to the square
lattice [33,34], yielding a detailed phase diagram of the model
at finite temperature in the U−V parameter space. To the
best of our knowledge, however, no study that simultaneously
takes both extensions of the Hubbard model into account has
been performed.

The proposed origin of the SLP does not justify the inves-
tigation of values of ε larger than the energy scale t . Yet, we
show below that small values of ε may change the nature of
the ground state.

A. Influence of the local potential

The zero-temperature phase diagram of the three param-
eter half-filled extended model may be computed through
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FIG. 1. (a) Zero-temperature phase diagram of the half-filled extended Hubbard model in the U–ε plane for V = t within the HF
approximation. It comprises a CO region and a SCO region. The phase boundary between the two is denoted by the solid-black line. The
dashed line corresponds to the SCO end line, along which the SCO solution vanishes. In the CO∗ (SCO∗) region, the CO and SCO phases
coexist with the CO (SCO) one lower in energy. The red cross (lines) indicates the parameters (ranges) used for subsequent plots in this figure.
(b) Band structure for the pseudofermions at a SCO-CO transition point. The arrows are indicative of the gaps, which are measured at the X
point. Parameters: U = 4.2 t , V = t , and ε = 0.24 t . (c) δn and (d) mz as functions of ε. Parameters: T = 0, V = t , U = 4.2 t and 4.6 t . The
gray-dashed lines denote transition points.

minimization of Eq. (14) with respect to δn, mz and bσ . Yet, it
may be superfluous to scan this three dimensional parameter
space and we stick to a series of two dimensional subspaces
by attributing a fixed value to the third parameter, aimed at
unraveling the most prominent features of the model. We
start our investigations maintaining V fixed, and we com-
pute the phase diagram, together with the variations of the
order parameters in order to establish the nature of the phase
transitions.

The resulting phase diagram is displayed in Fig. 1(a) for
fixed V = t . It comprises two phases, namely a charge ordered
(CO) phase and a spin-and-charge ordered (SCO) phase. The
CO* phase corresponds to a region of the phase diagram in
which the ground state is CO but SCO-type solutions to the
HF self-consistent field equations also exist and usually lie
close in energy. The SCO* phase is defined similarly, with
SCO being the stable phase. The CO and CO* regions are
thus separated by the SCO end line, which corresponds to the
line in parameter space along which SCO solutions vanish
and only CO solutions remain. The phase diagram is in line
with expectation: while increasing U tends to stabilize the
SCO phase, increasing ε promotes the CO one. For compar-
atively large U (U � 4 t), the SCO phase extends down to
ε = 0, in which case a pure SDW phase is stabilized. This
SDW phase entails no charge ordering despite of the finiteness
of V .

Figure 1(b) shows the band structure of the two phases
at the transition point U = 4.6 t , V = t , and ε = 0.24 t . In

the CO phase, the band structure is simple, since 	HF
CO =

(U/2 − 4V )δn − ε for both spin branches. This results in
the usual two-band system reminiscent of the CDW phase
of the t−U−V model. In the SCO phase, however, we
have 	HF

SCO,↑ = (U/2 − 4V ) δn − mzU/2 − ε and 	HF
SCO,↓ =

	HF
SCO,↑ + mzU . Hence, the spectrum entails four branches, in

contrast to the usual two branches of the antiferromagnetic
(AFM) phase of the t−U−V model. Since we work on a half-
filled lattice, the four branches are centered around zero and,
at zero temperature, the ν = −1 bands are entirely filled while
the ν = +1 ones are empty. We also note that the difference
in the gaps of the two spin branches, added to the fact that
these branches are centered around the same value, yields a
symmetry broken phase in which one of the spin branches
is higher in energy than the other one. The choice of which
branch is higher or lower in energy remains, however, purely
arbitrary and is fixed by the sign of δn and mz in the SCO
solutions. In reality, all four different (±δn,±mz ) solutions
are degenerate and can only be distinguished by their internal
parameters. Moreover, since the leading contributions to the
Fermi integrals in this regime come from the band minima, we
expect the energy of both phases to become nearly degenerate
when the minima of the CO ν = −1 band coincide with the
highest SCO ν = −1 band. This is precisely what happens at
the shown transition point, yielding a SCO-CO phase transi-
tion. We can also expect this transition to be discontinuous,
as we observe a difference between 	HF

SCO,↑ and 	HF
SCO,↓ of

order 2 t/3, implying that the magnetization in this phase is

235131-6



SPIN AND CHARGE MODULATIONS OF A HALF-FILLED … PHYSICAL REVIEW B 106, 235131 (2022)

FIG. 2. Zero-temperature phase diagram of the half-filled extended Hubbard model in the U–V plane for (a) ε = 0.1 t , and (d) ε = t within
the HF approximation. It comprises both a CO and a SCO region. The phase boundary between the two is denoted by the solid black line. In
the CO∗ (SCO∗) region, the CO and SCO phases coexist with the CO (SCO) one lower in energy. The end-lines of the two phases are denoted
by dashed lines. The red lines indicate the parameters ranges used for subsequent plots in this figure. (b) δn and (c) mz as functions of V .
Parameters: T = 0, ε = 0.1 t , U = 3 t and 4.5 t . (e) δn and (f) mz as functions of V . Parameters: T = 0, ε = t , U = 4.5 t and 6 t .

still large at the transition point and will have to drop down to
zero in the CO phase.

In Figs. 1(c) and 1(d), the ε dependence of the order param-
eters at T = 0, V = t and for fixed values of U = 4.2 t and
U = 4.6 t are shown. We first notice that the charge ordering
is more pronounced in the CO phase than it is in the SCO one.
Consequently, both phases are still completely distinct at the
phase transition, yielding a discontinuous jump of the order
parameters characteristic of a first order phase transition. For
smaller values of U , however, the antiferromagnetic ordering
of the spins is somewhat weakened, resulting into slightly less
marked discontinuities. Nevertheless, no continuous variation
of the order parameters at the transition point has been found
in the finite V regime in the relevant U and ε ranges. The
transition is therefore discontinuous.

B. Dependence on the screened Coulomb interaction

We now switch to the U−V phase diagram. It is presented
for T = 0 and ε = 0.1 t as well as ε = t in Figs. 2(a) and 2(d),
respectively. Both phases are still separated by a first-order
transition line but, here, it merges with the SCO end line at
weak couplings. At stronger couplings, the transition line at
fixed ε becomes linear in U : V (U ) � U/4 for U,V  ε. This
V (U ) ∝ U/4 dependence is evocative of the already reported
V = U/4 CDW-SDW transition line of the half-filled t−U−V
model (see Refs. [26–34]) that we address below. This is to be

expected as, in a coupling regime in which ε becomes negli-
gible, one should recover results qualitatively similar to those
of the t−U−V model (in which ε = 0). This also explains
why the beginning of this linear regime is shifted towards
stronger couplings as ε is increased from 0.1 t [Fig. 2(a)] to t
[Fig. 2(d)].

In Figs. 2(b) and 2(c) the zero-temperature variations of the
order parameters are presented, for representative parameter
sets, as functions of V. We set ε = 0.1 t , together with U = 3 t
and U = 4.5 t . In Figs. 2(e) and 2(f) the same variations are
presented but for fixed ε = t , and for values of U = 4.5 t
and U = 6 t . We obtain a single SCO-CO transition for each
parameter set, for V = 0.67 t , 1.14 t , 0.46 t , and 0.91 t , re-
spectively. The order parameters again vary discontinuously
at these transitions. We also note that this discontinuity is
preserved at weaker and stronger couplings. We see, however,
that the discontinuity is softened for larger values of ε and/or
smaller values of U . This owes to the stronger antiferromag-
netic ordering of the spins and weaker charge ordering at large
values of U/ε, yielding a sharper drop (increase) in mz (δn) at
the SCO to CO transition. Combining these results with the
ones of the previous section, we conclude that, in the HF ap-
proximation, the SCO-CO phase transition occurring at zero
temperature, and half-filling, is discontinuous. In addition, the
phase diagram exhibits a phase boundary between the CO*
and SCO* in a large range of couplings, which may be suitable
for resistive switching.
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FIG. 3. (a) Zero-temperature phase diagram of the half-filled extended Hubbard model in the U–ε plane for V = t , within KRSB
formalism. It comprises a CO region and a SCO region. The phase boundary between the two is denoted by the solid black line. The dashed
line corresponds to the SCO end line, along which the SCO solution to the SPE vanishes. In the CO* (SCO*) region, both solutions exist
but the CO (SCO) solution is lower in energy. The red cross (line) indicates the parameters (range) used for subsequent plots in this figure.
(b) Band structure for the pseudofermions at a SCO-CO transition point. The arrows are indicative of the gaps, which are measured at the X
point. Parameters: U = 3.6 t , V = t , and ε = 0.1 t . (c) δn, (d) mz, and (e) d2

A and d2
B as functions of ε for fixed values of T = 0, V = t , and

U = 3.6 t . The gray-dashed lines denote transition points.

IV. RESULTS WITH THE KRSB REPRESENTATION

As highlighted in, e.g., Ref. [67], the HF approximation
and the KRSB representation of extended (or not) Hubbard
models are in good quantitative agreement in the weak-
coupling regime. However, one can hardly expect the HF
approximation to yield quantitatively appreciable results in
the intermediate-to-strong coupling regime due to the inherent
inability of such mean field techniques to account for strong
correlations. On the other hand, as outlined earlier, slave bo-
son techniques have proved their efficiency in the stronger
coupling regimes [58,59,63,65,66,68,84,85]. The KRSB rep-
resentation thus appears as a convenient tool to assess for the
relevance of the correlations in the strong coupling regime of
the model and we shall use it to that aim in this section.

A. Influence of the local potential

Let us now show the results following from the solution of
the saddle-point equations (B18) and discuss them in the next
two paragraphs. Emphasized is the competition between the
different orders in the phase diagram. An identification of the
lowest energy solution—with the free energy per lattice site
F = �/NL + μ—allows us to determine the stable phase for
given values of the parameters and we study the variations of
the order parameters δn, mz, and d2

s = 〈ni,↑ni,↓〉|i∈s in order to
confirm the nature of the different phase transitions.

The resulting phase diagram is displayed in Fig. 3(a) as
a function of U and ε at zero temperature and fixed V =
t . It comprises a CO and a SCO region, separated by a

phase boundary across which a first-order phase transition
occurs. The lowermost (ε � 0.2 t) segment of this transition
line corresponds to the FCO = FSCO degeneracy line while the
uppermost (ε � 0.2 t) segment lies along the SCO end line.
This is in contrast to the HF phase diagram in the U−ε space,
in which the phase boundary only consists of the CO-SCO
degeneracy line. Above the SCO end-line, the CO phase is
stabilized by default, irrespective of its energy. Below this
line, for lower couplings (U � 3.8 t), we find a dome in the
CO phase in which the SCO solution still exists and lies
close in energy. The SCO phase is thus metastable under this
dome, implying coexistence of both phases in this regime.
In addition, a pure SDW phase is stabilized for ε = 0 and
U � 3.5 t as already encountered in the HF phase diagram
Fig. 1(a).

Figure 3(b) presents the band structure of the two phases
at a given transition point U = 3.6 t , V = t , and ε = 0.102 t .
In the CO phase, one has μ̃↑ = μ̃↓ (with μ̃σ = μ − βσ )
and 	SB

↑ = 	SB
↓ , resulting into the two spin branches being

equivalent. Besides, no such simplification holds in the SCO
phase, leading to four distinct bands. Analogously to what
has been discussed in Sec. III, the SCO solution has a broken
spin-rotation symmetry, with two inequivalent spin branches.
As in the HF approximation, the lowest and highest energy
branches are fixed by the sign of δn and mz, while the four
different (±δn,±mz ) solutions remain degenerate. Since we
are at half-filling, the Lagrange multipliers and the chemical
potential satisfy |μ̃σ | < |	SB

σ |/2, such that only the ν = −1
bands are filled, while the ν = +1 bands remain empty. Look-
ing at these lower bands, we see that—at this transition point
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FIG. 4. Zero-temperature phase diagram of the half-filled extended Hubbard model in the U–V plane for (a) ε = 0.1 t , and (b) ε = t ,
within KRSB formalism. It comprises both a CO and a SCO region. The phase boundary between the two is denoted by the solid black line.
In the CO∗ (SCO∗) region, the CO and SCO phases coexist with the CO (SCO) one lower in energy. The end lines of the two phases are
denoted by dashed lines. The red lines indicate the parameter ranges used for subsequent plots in this figure. (c) δn, (d) mz, and (e) d2

A and
d2

B as functions of V . Parameters: T = 0, U = 3 t and ε = 0.1 t . (f) δn, (g) mz, and (h) d2
A (solid line) and d2

B (dashed line) as functions of V .
Parameters: T = 0, ε = t , U = 3 t , and 6 t .

in the U−V −ε space—the minima of the bands in the SCO
phase overlaps with its counterpart in the CO phase. Varying
the parameters towards the CO (SCO) stability region of the
phase diagram results in the lowering of the minima of the
CO (SCO) lower band. Since we are at zero temperature,
the contributions to the Fermi integrals largely follows from
these lower bands minima. The stable phase for a given set of
parameters can thus be suggested by inspection of the latter.
Besides, 	SB

CO markedly differs from 	SB
SCO even though both

phases are degenerate in energy. Hence, the value of the gap
may not be used to predict the nature of the ground state.

The variation of the order parameters is given in Figs. 3(c),
3(d) and 3(e) as a function of ε and for fixed values of T = 0,
U = 3.6 t , and V = t . We notice that the local charge and pair
modulations are substantially larger in the CO phase than in
the SCO one. For these parameters, two consecutive transi-
tions between the two phases occur as ε is increased (ε ≈ 0.1 t
and ε ≈ 0.3 t). We see that, at the transition points, all order
parameters vary discontinuously. This implies the CO-SCO
transition to be first order. At finite V , no region of parameter
space has been found to exhibit a continuous variation of

the order parameters across the phase boundary. As detailed
in the next paragraph, the SCO phase is restricted to small
values of V/U , while large values of ε/U are irrelevant due
to the proposed origins for the ε term. This shows that no
continuous CO-SCO transition is possible in the parameter
range of interest.

B. Dependence on the screened Coulomb interaction

Turning now to the explicit dependence on V of the
phase diagram, we present in Figs. 4(a) and 4(b) the zero-
temperature phase diagram of the model as a function of
U and V , for ε = 0.1 t , and ε = t . At weak couplings, the
CO-SCO phase boundary merges with the SCO end line
[uppermost segment of the phase boundary in Fig. 4(a)]. At
stronger couplings, however, the transition line between the
two phases digresses from the SCO end line and a FCO = FSCO

degeneracy line begins [lowermost part of the phase boundary
in Fig. 4(a)]. In this regime, the transition line gradually be-
comes linear, such that it can ultimately be parametrized by
V = U/4 + c(ε) for U,V  ε, with c(ε) independent of U
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and V . We computed c(ε = 0.1 t ) ≈ 0.06 t and c(ε = t ) ≈
0.53 t for these two phase diagrams. This strong coupling
behavior is in qualitative disagreement with the one observed
in the HF approximation. Indeed, the staggered potential ap-
pears to favor the stabilization of the SCO phase at large U
while, in the HF approximation, the SCO-CO transition line
lies slightly below the V = U/4 line at strong coupling —
evidencing the role of correlations in the mechanisms under-
lying this phase transition in the strong coupling regime. Let
us also notice the vertical part of the CO end line at U = 5 t
and 6.2 t for ε = 0.1 t and t , respectively. This follows from
the fact that, for U larger than these values, the charge order is
generated by ε alone and values of V smaller than t and 1.2 t ,
respectively, do not yield additional charge order in the CO
phase. In the ε = 0 case, as discussed below, this would result
in a disordered paramagnetic phase, which is prohibited here
due to the minimal charge ordering imposed by ε.

The zero-temperature variations of the order parameters
as functions of V , for fixed U = 3 t and U = 6 t , are shown
in Figs. 4(c), 4(d) and 4(e) for ε = 0.1 t , and in Figs. 4(f),
4(g) and 4(h) for ε = t . Along these paths in the parameter
space, there is a single CO-SCO transition at V ≈ 0.9 t for
ε = 0.1 t and at V ≈ 0.2 t for ε = t . The order parameters
vary discontinuously at this transition. Such jumps of order
parameters happen as well in the linear regime of the transi-
tion line. We see that, for smaller values of ε, the discontinuity
is enhanced. We also observe such an enhancement when U is
increased. This is explained by the fact that the SCO config-
urations become increasingly antiferromagnetically ordered
and decreasingly charge ordered, and conversely for smaller
values of U and larger values of ε. Additionally, we note that
small values of ε with respect to the energy scales of U and
V (ε = 0.1 t compared to U � t and V ∼ t) are sufficient
to establish strongly discontinuous transitions. For reasons
outlined above, values of ε larger than the energy scale t have
not been investigated. Moreover, in the small U regime, the
SCO phase is not stabilized, even for arbitrarily small values
of V if ε is of the order of t . As a consequence to this, no
transition point has been found to correspond to a continuous
transition at finite ε. In addition to the statement that no
second-order transition occurs in the U−ε space for finite
V , this leads to the conclusion that the CO-SCO transition at
zero temperature is systematically of first order. Furthermore,
phase coexistence, suitable for resistive switching, has been
established in a large domain of the phase diagram.

The way the SCO solution ceases to exist is reminiscent of
the Uc1 and Uc2 lines of the two-band model in its U depen-
dence as described in the suitably extended KR representation.
There, for densities sufficiently close to half-filling and finite
JH , the quasiparticle residue acquires a vertical tangent and
so does the free energy [85,86]. In other words, these singular
points mark the end point of the insulating, respectively metal-
lic solutions. In the current case, the staggered magnetization
of the SCO phase acquires a vertical tangent in its V depen-
dence (see Fig. 4) too, which is reflected in the V dependence
of the free energy as well. Hence, this singular point denotes
the end point of the SCO phase, which, depending on the
parameter values, may correspond to the phase transition. For
instance, this is the case for t � U � 2.8 t with ε = 0.1 t ,
while for ε = t , this happens for 2.5 t � U � 6.5 t . For larger

U -values, the phase transition does not correspond to the end
point of the SCO phase any longer.

C. Resistive switching

Let us here briefly consider temperature driven SCO-CO
phase transitions. They take place at temperatures scaling with
the gap between the empty and occupied quasiparticle bands,
which itself scales with U when it is the largest energy into
play. In that case, the largeness of the gap implies that the
band filling is mostly independent of T at small temperatures,
leading to a high-transition temperature. Yet, the situation
changes in the intermediate coupling regime. For instance, we
performed calculations with U = 4.2 t , V = t , and ε = 0.1 t ,
i.e., in the SCO phase close to its boundary, and we obtained
the temperature at which the magnetic order melts to be close
to 0.35 t while the SCO-CO transition was obtained at a
lower TSCO−CO � 0.2 t . Recalling that the hopping amplitude
in transition metal oxides is widely accepted to be in the
0.1 eV to 0.3 eV range, it renders TSCO−CO experimentally
accessible.

V. THE t–U–V LIMIT

A. Zero-temperature results

As outlined in Sec. IV, the SCO phase is not observed in
the ε = 0 limit. The reason is that the SCO solution continu-
ously becomes a pure SDW phase as ε → 0. As can be seen
from Fig. 5(a), in this limit, we find that in the SCO solutions,
δn goes to zero for all values of U and V . A similar effect is
also shown to occur for the double occupancies in Fig. 5(b),
in which d2

A and d2
B merge to a unique value at ε = 0. On

the other hand, the staggered magnetization mz remains finite,
leading to a SDW phase with no charge order. As for the
values of the SCO band-gaps, which are displayed in Fig. 5(c),
they similarly merge towards a unique value upon reduction
of ε as evidenced by the (U/t,V/t ) = (3.5, 0) and (3.5,1)
plots. Moreover, the value of this single gap at ε = 0 remains
V independent, which hints at the independence in V of the
charge-homogeneous solutions to the SPE discussed below.

In this limit, the model reduces to the t−U−V model.
Its zero-temperature phase diagram is displayed in Fig. 6(a)
in dependence on U and V . It features two phases, namely
the SDW and the CDW phases. They are separated by the
aforementioned V = U/4 phase boundary, across which a
first-order transition occurs. Below this phase boundary, the
CDW solutions continue to exist in a finite region delimited
by the PM-CDW instability line (along which δn = 0 and
FPM = FCDW ) and the CDW end line (as defined in previous
sections). These two lines meet at the critical end point (CEP)
where the PM-CDW instability vanishes. Beyond this point,
no CDW solutions with arbitrarily small values of δn are
found.

Figures 6(c)–6(f) provide an overview of the variations of
δn and d2 in the CDW phase as functions of V for represen-
tative values of U : U = 4 t , 5 t and 10 t , at zero temperature.
For these values, the CDW-SDW transition occurs at V = t ,
V = 1.25 t , and V = 2.5 t , respectively. Let us notice that, for
large U (U > 10 t), the CDW phase closely resembles a pair
density wave (PDW), as the double occupancy oscillates be-
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FIG. 5. (a) δn, (b) d2
A (solid line) and d2

B (dashed line), (c) |	SB
↑ |

(solid line) and |	SB
↓ | (dashed line) in the SCO phase as functions of

ε for different values of the couple (U,V ). These order parameters
have been computed within KRSB formalism. Parameters: T = 0,
(U/t,V/t ) = (8, 1) (blue), (3.5,1) (orange), (2,0) (black), and (3.5,0)
(green) in the last panel.

tween nearly zero and nearly one while the single occupancy
is strongly suppressed. Furthermore, this PDW shows little
dependence on V when the latter is larger than U/4. Upon
reducing U , the PDW gradually turns into a genuine CDW.
In all cases, we see that the order parameters discontinuously
jump across the transition. More generally, no value of U
has been found to exhibit a continuous CDW-SDW transition.
Instead, δn systematically discontinuously goes from a finite
value to zero at the CDW-SDW transition point, assessing the
phase transition to be of first order.

B. Finite-temperature results

In Fig. 6(b), the phase diagram of the model is shown for
T = t/6 as a function of U and V . It exhibits an additional
phase at weak couplings, namely the PM phase. As explained
below, the PM-CDW and PM-SDW phase boundaries follow
from second-order phase transitions. The SDW-CDW transi-
tion however remains of first order. Similarly to the T = 0
case, the transition line in the strong coupling regime corre-
sponds to the V = U/4 line. This result agrees with QMC
simulations [32] and DCA calculations [33,34].

In addition, we compared the free energy of the SDW
phase at U = 1.9 t , V = 0.4 t and β = 100 t/3 with the de-
terminantal QMC (DQMC) results given in the Supplemental
Material of Ref. [87]. They found an energy of −0.453t ,
whereas we find an energy of −0.299 t in the HF approx-
imation and −0.387 t in the KRSB formalism. Hence, the
energy difference between the DQMC and KRSB energies
is as small as 8 × 10−2 W , with W the bare bandwidth. This
supports prior agreement between both approaches. Note that,
in the context of the t-U Hubbard model, the energy difference
between QMC and KRSB is largest for U around 2t (see
Ref. [58]).

Moreover, the parameter region for the PM phase is in
rather good quantitative agreement with DCA results. We also
observed that the PM-CDW transition line deviates from the
V = U/4 line at weak couplings, while a region of CDW-
SDW coexistence develops at strong couplings. Our PM-SDW
phase boundary does not, however, depend on V while DCA
predictions point towards a weak V dependence. We iden-
tify two points of particular relevance: the CEP, as defined
for Fig. 6(a) and a triple point (TP) where the PM, CDW,
and SDW solutions become degenerate. Most notably, when
compared to Fig. 6(b), the CEP is shifted towards weaker
couplings.

The only regime in which we can define a continuous
transition between the CDW phase and the SDW phase is at
finite temperature. Since the PM region in Fig. 6(b) is bounded
by the PM-SDW and PM-CDW instability lines, we can take
a path in the U−V space starting from, e.g., the CDW region,
going through the PM region and finally ending in the SDW
region. This would yield a path along which only continuous
variations of the order parameters are observed, with δn going
from a finite value in the CDW region down to zero in the PM
region and mz going from zero in the PM region to a finite
value in the SDW region.

It is important to note that, despite close investigation
in the region around the SDW-CDW transition line and the
FPM = FCDW = FSDW triple point, no joint spin-and-charge
modulated solution to the SPE could be obtained. This, and
the collapse of the SCO order in the whole U−V range in the
ε → 0 limit, hints that breaking the nA = nB = 1 symmetry of
the SDW phase in the half-filled t−U−V model might yield,
if any, an order more intricate than the SCO one.

VI. EFFECT OF CORRELATIONS

In this section, we assess for the relevance of correlations
by comparing the phase diagrams as well as the free en-
ergies obtained in the HF approximation and in the KRSB
formalism. We also focus on possible markers of a strongly-
correlated phase, namely the slave-boson renormalization
factors as well as the difference between the gaps in the
dispersion obtained in each method.

Qualitatively our HF and KRSB calculations support a
series of common conclusions. The phase diagrams are both
made of CO and SCO regimes and entail large phase coexis-
tence regions. Yet, they markedly differ from the quantitative
point of view. For instance, for V = t , the SCO phase may
be found for U as small as 3.4 t in KRSB formalism, while
it takes U = 4 t to stabilize it in the HF approximation. In
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FIG. 6. KRSB phase diagram of the half-filled t−U−V model at (a) zero temperature and (b) T = t/6 in the U–V plane. The phase
boundaries are denoted by solid-black lines. The dashed lines correspond to the CDW end-line, while the dash-dotted line denotes the PM-CDW
instability line. The PM-CDW-SDW triple point (TP) is denoted by an orange diamond. The PM-CDW instability critical end point (CEP) is
denoted by an orange circle. In the SDW∗ region the CDW and SDW phases coexist, with the latter one being lower in energy. (c) δn as a
function of V at T = 0 for U = 4 t , U = 5 t and U = 10 t . [(d)–(f)] d2

A and d2
B as a function of V at T = 0 and for U = 4 t , U = 5 t , and

U = 10 t , respectively. The gray lines correspond to the SDW-CDW transition points for the different values of U .

addition, their (U, ε) phase diagram differ in the shape of their
phase boundaries. Specifically, by continuously increasing ε

at fixed U > 3.4 t , a transition from the CO phase to the SCO
phase is found, while a second transition back to the CO phase
arises in the KRSB phase diagram. This reentrant behavior is
absent in the HF phase diagram in (U, ε) space where only a
single phase transition is possible when increasing ε.

These discrepancies between the phase diagrams obtained
by both methods follow from the difference between the free
energy obtained in the HF approximation and the one obtained
in the KRSB representation. Figures 7(a) and 7(b) present the
zero-temperature free energies obtained in the Hartree approx-
imation, HF approximation and in the KRSB formalism as
functions of V for U = 5 t and ε = t/10 as well as ε = t ,
respectively. At small values of V , the stable phase is the
SCO one. In this phase, the leading energy scale is that of
U . This leads to the HF energy being approximately 80%
(58%) higher than the KRSB energy for ε = t/10 (t), due
to the non-negligible U -induced correlation in this phase. At
larger values of V , however, the CO phase is stabilized. In this
regime, the dominating coupling scale becomes V and the HF
and KRSB energies differ by less than 0.1%. The HF energy is
actually slightly lower than its KRSB counterpart. This minor
difference can be explained by the increasing relevance of the
exchange term Eq. (16) for larger values of V , while no such
contribution of the exchange to the energy arises in the KRSB
formalism.

The slave-boson renormalization factors are displayed in
Fig. 7(c) as functions of V , for U = 5 t and ε = t . In the large
V regime, we see that z̃ quickly goes to one, in which case
the effective dispersions Eq. (15) and Eq. (31) seem to closely
resemble one another. Yet, the differences between the two are
sizable as the gap of the HF dispersion is larger than its KRSB

counterpart. As for the SCO phase, we see that, albeit close
to one, z̃↑ and z̃↓ do not reach one. This portrays a slightly
correlated phase, the energy of which must then differ from
the HF energy, as evidenced in the previous paragraph.

FIG. 7. (a), (b) Zero-temperature free energy obtained from the
Hartree (dotted blue), HF (solid red), and KRSB (solid black) cal-
culations as functions of V . (c) Slave-boson renormalization factors
and (d) Slave-boson (black) and HF (red) gaps as functions of V .
The dotted lines denote discontinuous jumps at the phase transition.
Parameters: (a) U = 5 t , ε = t/10, (b), (c), and (d) U = 5 t , ε = t .
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In Fig. 7(d), the band gaps obtained in the HF approxima-
tion and in the KRSB representation are displayed as functions
of V , for U = 5 t and ε = t . We notice that the HF gaps also
markedly differ from the KRSB gaps, especially in the SCO
phase where the largest |	σ | in the HF approximation is ap-
proximately 50% larger than its KRSB counterpart. This may
also lead to free energy discrepancies between both methods.

VII. CONCLUSIONS AND OUTLOOK

Summarizing, we have set up and addressed a microscop-
ical t−U−V −ε model supporting a spin-and-charge ordered
phase in its phase diagram in two dimensions at half-filling.
Such a phase is intuitively expected to smoothly connect
the spin-density-wave ground state of the half-filled Hubbard
model and the charge-density wave of the half-filled t−U−V
extended Hubbard model. Our findings do not support this
expectation and, at zero temperature, we unraveled discontin-
uous transitions only, apart from the celebrated instability to
Néel order for U = V = ε = 0. Furthermore, the SCO order
systematically collapses when ε is suppressed down to zero,
irrespective of the values of U and V . The splitting is therefore
essential to the stabilization of the SCO phase.

Let us emphasize that the staggered local potential is also
pivotal to the first-order phase transition that we could relate
to resistive switching. As compared to the intensely sought
for superconductivity, its associated temperature is larger by
about one order of magnitude, or even more, making it easier
to observe. Beyond materials, cold atoms offer a possibility to
experimentally unravel this transition, too, as they can easily
be submitted to the SLP and since the transition temperature
may be of order t .

For fixed, moderate V , our HF phase diagram of the
t−U−V −ε model at half filling comprises both the CO and
SCO phases. In the U−ε plane, the phase transition is dis-
continuous and the phase boundary is well approximated by a
simple straight line εcrit ∝ U that is located within a CO and
SCO coexistence region. In contrast, in the KRSB formalism,
the SCO phase displays a reentrant behavior: starting from a
critical point (ε � 0.2 t , U � 3.4 t), two phase boundary lines
develop. A first one where εcrit increases about linearly with
U , and a second one where εcrit decreases about linearly with
U . In the former case, the phase boundary corresponds to the
end line of the SCO phase, while in the latter case we obtain
a discontinuous transition inside a CO and SCO coexistence
region. This robustness of the SCO phase in KRSB formalism
is rooted in its ability to jointly take magnetism and effective
mass renormalization into account, which leads to a sizable
lowering of the free energy.

There is a lesser degree of divergence when it comes to the
comparison of the HF and KRSB phase diagrams for fixed ε

from the qualitative point of view. Yet, in KRSB, the phase
boundary between the SCO and CO phases is made of two
pieces for both small and large ε values. The first segment,
for small V values, corresponds to the end points of the SCO
phase, while for large V values, it corresponds to the free
energy crossing of the CO and SCO solutions, in a regime
where both phases coexist. This transition is discontinuous.
In contrast, the HF approach yields this phase boundary to be
made of the second piece only, at the exception of a small

ε-small V regime (V � 0.2 t). Moreover, no pure SCO phase
is predicted at the HF level, while the KRSB approach predicts
that only the SCO phase is stabilized in the large U -smaller
V regime (V < U/4), irrespective of the value of ε. That the
end line of the CO phase is missed in HF may not be very
astonishing, as it happens for rather large U values, where HF
theory is not controlled.

Regarding the pure t−U−V model at finite temperature,
the ground states are not systematically ordered any longer,
especially in the weak-coupling regime. Accordingly, insta-
bility lines towards SDW and CDW phases are found and
it becomes possible to go continuously from the former to
the latter. There is obvious interest to the unraveling of the
influence of doping on the phase diagram, and work towards
this end is in progress.
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APPENDIX A: HARTREE-FOCK SELF-CONSISTENT
FIELD EQUATIONS

Minimizing Eq. (14) with respect to the different order
parameters yields the following equations:

1 =
∑

σ

J0,σ , (A1a)

δn =
∑

σ

J1,σ , (A1b)

mz =
∑

σ

τ 3
σσJ1,σ , (A1c)

b↑ = K↑, (A1d)

b↓ = K↓, (A1e)

δb↑ = δb↓ = 0, (A1f)

with

Jm,σ = 1

NL

∑
k,ν

′
nF (Ek,σ,ν )

⎡
⎢⎣ ν	HF

σ√(
t eff
k,σ

)2 + (
	HF

σ

)2

⎤
⎥⎦

m

, (A2a)

Kσ = 1

NL

∑
k,ν

′
nF (Ek,σ,ν )

νt eff
k,σ (cos kx + cos ky)

4
√(

t eff
k,σ

)2 + (
	HF

σ

)2
, (A2b)

and where nF (Ek,σ,ν ) is the Fermi function

nF (Ek,σ,ν ) = 1

1 + exp(βEk,σ,ν )
. (A3)
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APPENDIX B: TREATMENT OF THE SLAVE BOSON
SADDLE-POINTS

1. Expression of the KRSB grand potential

We study the saddle-point configurations of the grand po-
tential by imposing symmetries on the saddle-point solutions
in order to describe the phases that we found to be of rele-
vance. They are the paramagnetic (PM), charge ordered (CO),
spin-density wave (SDW), or spin-and-charge ordered (SCO)
phases. None of them carry net magnetization. This is taken
care of by the following relationship between the bosons:

mz,A + mz,B = p2
A,↑ − p2

A,↓ + p2
B,↑ − p2

B,↓ = 0. (B1)

It may be satisfied by the relations

p2
A,↑ = p2

B,↑, (B2a)

p2
A,↓ = p2

B,↓, (B2b)

but this is not the only solution. In fact, the lowest in energy
solution generally does not fulfill Eq. (B2). Besides, the half-
filled lattice condition is translated as

nA,σ + nB,σ = p2
A,σ + d2

A + p2
B,σ + d2

B = 1. (B3)

No further symmetry is imposed on an SCO configuration,
that corresponds to the lowest symmetry phase. All seven
unknown saddle-point parameters for each sublattice may thus
be gathered as

ψSCO
s = (es, ds, 0, ps,↑, ps,↓, βs,↑, βs,↓, αs). (B4)

In order to generate a CO configuration, we add another
condition, namely that the magnetization vanishes on each
sublattice. It reads

mz,s = p2
s,↑ − p2

s,↓ = 0, (B5)

This yields a charge-ordered nonmagnetic saddle point for
which the five unknowns for each sublattice may be gathered
as

ψCO
s = (es, ds, 0, ps, ps, βs, βs, αs), (B6)

In the SDW phase, the local magnetization is finite but takes
opposite values on each sublattice, so that

mz,A = −mz,B �= 0. (B7a)

Moreover, the density is fixed to one on each sublattice

ns = p2
s,↑ + p2

s,↓ + 2d2
s = 1. (B7b)

This generates a magnetic saddle point with the six unknowns
for each sublattice gathered as

ψSDW
A = (d, d, 0, p↑, p↓, β↑, β↓, α ), (B8a)

ψSDW
B = (d, d, 0, p↓, p↑, β↓, β↑, α ). (B8b)

Finally, in order to generate the highest symmetry configura-
tion, corresponding to a PM solution, we impose all the above
symmetries to the saddle-point solution. This yields a homo-
geneous mean-field of with a total of only four unknowns,

ψPM
A = ψPM

B = (d, d, 0, p, p, β0, β0, α ). (B9)

For each of the considered phases, we obtain the fermionic
contribution to the Lagrangian L f as

L f =
∑
k,σ

( f †
k,σ , f †

k+Q,σ )Kk,σ

(
fk,σ

fk+Q,σ

)
, (B10)

with the pseudofermions inverse propagator

Kk,σ =
(

∂τ − μ + βσ + Xk,σ 	SB
σ + Yk,σ

	SB
σ + Yk,σ ∂τ − μ + βσ + Xk+Q,σ

)
,

(B11)

with

Xk,σ = ζ 2
+,σ ξk + ζ 2

−,σ ξk+Q, (B12)

Yk,σ = ζ+,σ ζ−,σ (ξk + ξk+Q), (B13)

in which the bare dispersion is given by

ξk = 1

NL

∑
i, j

ti j exp[−ik · (Ri − R j )], (B14)

and where we introduced

Q = (π, π )T, (B15a)

ζ±,σ = 1
2 (zA,σ ± zB,σ ). (B15b)

Expressed as such, the inverse propagator may be straight-
forwardly diagonalized. In its eigenmodes basis, we find the
following dispersion for the pseudofermions:

Ek,σ,ν = βσ − μ + 1

2

(
z2

A,σ + z2
B,σ

)
(ξk + ξk+Q)

+ ν

√[
1

2
z̃2
σ (ξk − ξk+Q)

]2

+ (
	SB

σ

)2
, (B16)

with ν = ±1. It enters the fermionic contribution to the grand
potential in the saddle-point approximation, which reads

� = � f + �b

= − 1

β

∑
k,σ,ν

′
ln[1 + exp(−βEk,σ,ν )]

+ NL

{
αA

2

(
e2

A +
∑

σ

p2
A,σ + |dA|2 − 1

)

+ αB

2

(
e2

B +
∑

σ

p2
B,σ + |dB|2 − 1

)

−
∑

σ

[
βσ 〈nσ 〉 − 	SB

σ + ε

2

(
δn + τ 3

σσ mz
)]

+ U

2
(|dA|2 + |dB|2) + 2V (〈n〉2 − δn2)

}
. (B17)

2. Saddle-point equations

In order to find the saddle-point bosonic configurations,
ψ = ψA ⊕ ψB, we need to solve the system of equations given
by δS/δψ = 0. This yields a system of fourteen equa-
tions (there are seven boson expectation values per sublattice),
two of which being merely the constraint Eq. (18a) enforced
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on average on each sublattice. We thus need to explicitly solve
a system of twelve equations, given by the variations of � with
respect to the constraint fields,

I0,↑ = 1
2 〈n↑〉, (B18a)

I0,↓ = 1
2 〈n↓〉, (B18b)

I1,↑ = 1
2 (δn + mz ), (B18c)

I1,↓ = 1
2 (δn − mz ), (B18d)

and by the variations of � with respect to the bosonic fields

1

eA

∑
σ

Eσ zB,σ

∂zA,σ

∂eA
= −αA, (B18e)

1

eB

∑
σ

Eσ zA,σ

∂zB,σ

∂eB
= −αB, (B18f)

1

pA,↑

∑
σ

Eσ zB,σ

∂zA,σ

∂ pA,↑
= −αA + β↑ − 	SB

↑

− 4V (〈n〉 − δn) + ε, (B18g)

1

pB,↑

∑
σ

Eσ zA,σ

∂zB,σ

∂ pB,↑
= −αB + β↑ + 	SB

↑

− 4V (〈n〉 + δn) − ε, (B18h)

1

pA,↓

∑
σ

Eσ zB,σ

∂zA,σ

∂ pA,↓
= −αA + β↓ + 	SB

↓

− 4V (〈n〉 − δn) + ε, (B18i)

1

pB,↓

∑
σ

Eσ zA,σ

∂zB,σ

∂ pB,↓
= −αB + β↓ − 	SB

↓

− 4V (〈n〉 + δn) − ε, (B18j)

1

dA

∑
σ

Eσ zB,σ

∂zA,σ

∂dA
= −αA +

∑
σ

(
βσ + 	SB

σ

) − U

− 8V (〈n〉 − δn) + 2ε, (B18k)

1

dB

∑
σ

Eσ zA,σ

∂zB,σ

∂dB
= −αB +

∑
σ

(
βσ − 	SB

σ

) − U

− 8V (〈n〉 + δn) − 2ε. (B18l)

Here, we introduced the shorthand notations

Im,σ =
∑
k,ν

′
nF (Ek,σ,ν )

⎡
⎢⎣ ν	SB

σ√(
z̃2
σ tk

)2 + (
	SB

σ

)2

⎤
⎥⎦

m

, (B19a)

and

Eσ =
∑
k,ν

′
nF (Ek,σ,ν )

ν z̃2
σ t2

k√(
z̃2
σ tk

)2 + (
	SB

σ

)2
. (B19b)

In the CO phase, this number of unknowns—and hence
the dimension of the corresponding system of equations—
is reduced by four. Indeed, it is straightforward to verify
that Eqs. (B18a) and (B18b) become equivalent, so do
Eqs. (B18c) and (B18d), Eqs. (B18g) and (B18i), as well
as Eqs. (B18h) and (B18j). We are thus left with a sys-
tem of equations of dimension eight. In the ε = 0 case,
the number of unknowns is further reduced by three, since
Eqs. (B18g) and (B18h) [hence Eqs. (B18i) and (B18j)]
become equivalent, implying that Eqs. (B18e) and (B18l)
as well as Eqs. (B18f) and (B18k) also become equiv-
alent. This leads to a system of equations of dimension
five.

In the SDW phase, Eqs. (B18a) and (B18b) become equiv-
alent, so do Eqs. (B18c) and (B18d), Eqs. (B18g) and (B18j),
Eqs. (B18h) and (B18i), as well as Eqs. (B18e), (B18f),
(B18k), and (B18l). This reduces the number of unknowns
by seven, leading to a system of equations of dimension
five.

Finally, in the PM phase both sublattices are strictly equiv-
alent and both spin projections σ =↑,↓ are equivalent. It
has been shown that in this specific case, the saddle-point
equations reduce to a single equation [55]

1 − 4d2 = − U

8ε0
, (B20)

with

ε0 = 2

NL

∑
k

nF (Ek )tk, (B21)

reproducing the seminal result from Brinkman and Rice [74].
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