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The breakdown of the lattice Kondo effect in local-moment metals can lead to nontrivial forms of quantum
criticality and a variety of non-Fermi-liquid phases. Given indications that Kondo breakdown transitions involve
criticality not only in the spin but also in the charge sector, we investigate the interplay of Kondo breakdown
and strong valence fluctuations in generalized Anderson lattice models. We employ a parton mean-field theory
to describe the transitions between deconfined fractionalized Fermi liquids and various confined phases. We
find that rapid valence changes near Kondo breakdown can render the quantum transition first order. This
leads to phase-separation tendencies which, upon inclusion of longer-range Coulomb interactions, will produce
intrinsically inhomogeneous states near Kondo breakdown transitions. We connect our findings to unsolved
aspects of experimental data.
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I. INTRODUCTION

Quantum criticality [1] in strongly correlated metals
continues to be an exciting subject of condensed mat-
ter research [2,3]. It involves a fascinating phenomenology
including strange-metal behavior, strong-coupling critical
points beyond the Landau-Ginzburg-Wilson paradigm, their
interplay with nontrivial band topology, as well as instabilities
to other phases such as unconventional superconductivity. A
particularly rich arena is that of multiband systems involving
lattices of local moments (LMs). LMs can be Kondo screened,
leading to heavy-fermion metallic behavior, or can induce
various forms of symmetry-breaking or topological order. The
breakdown of the Kondo effect has been theoretically ar-
gued to lead to nontrivial quantum phase transitions [4,5] and
possibly to topological non-Fermi-liquid (non-FL) states [6].
Experimentally, different signatures of Kondo breakdown
have been identified in a number of compounds, such as
CeCu6−xAux [7], YbRh2Si2 [8,9], Ce3Pd20Si6 [10], and
CeCoIn5 [11,12], but a comprehensive picture has not yet
emerged.

The breakdown of the Kondo effect has been tradition-
ally assumed to give rise to a singular response in the spin
sector but not necessarily in the charge sector [4–6,13], al-
though the link to orbital-selective Mott transitions has been
emphasized early on [14,15]. However, there is increasing
evidence that this picture is incomplete. This comes partly
from pertinent experiments: Scaling behavior observed in
the optical conductivity of YbRh2Si2 has been interpreted
in terms of critical charge fluctuations [16], and thermody-
namic and transport measurements in CeRhIn5 under pressure
indicate the coincidence of magnetic and valence quantum
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critical points [17]. In addition, an extended regime of non-FL
behavior has been found in YbAlB4, which displays strong
valence fluctuations [18,19], and critical charge fluctuations
have been observed in this compound using Mossbauer spec-
troscopy [20]. These results have motivated corresponding
theoretical activities: Critical charge fluctuations emerging
at a Kondo breakdown transition have recently been studied
in a simplified Kondo lattice model [21]. A different strand
of work has linked various observed anomalies to quantum
critical valence fluctuations [22–24]. Remarkably, the link
between Kondo breakdown and valence fluctuations can be
made precise in simpler quantum impurity models, involving
Kondo screening of isolated LMs. Here, Kondo breakdown
can be induced, e.g., by a pseudogapped power law density
of states ρ(ω) ∝ |ω|s of the fermionic bath [25], and the
resultant quantum phase transition for bath exponents s > 1

2
has been shown to involve spin and charge fluctuations on
equal footing, with critical behavior for both [26–29]. A sim-
ilarly precise link for lattice models is missing, and thorough
studies of the interplay and consequences of critical charge
fluctuations and Kondo breakdown are scarce.

In this paper, we provide a step toward closing this gap.
We study an Anderson lattice model in the limit of large
Coulomb repulsion by suitable parton mean-field theories.
We establish phase diagrams as a function of both fixed total
filling and fixed chemical potential, enabling us to investigate
the interplay of Kondo breakdown and valence changes for a
large range of model parameters. We show that this interplay
is far more complex than for single-impurity models: A key
ingredient is that sizable valence changes across the transition
imply a macroscopic redistribution of charge between bands
which in turn strongly influences the electronic compressibil-
ity. As a result, the Kondo breakdown transition in the limit
of small band hybridization is generically driven first order
at fixed chemical potential, which implies phase separation
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at fixed density. We find that this phase-separation region
extends to sizable values of hybridization, making it exper-
imentally relevant. The inclusion of longer-range Coulomb
interactions, which are not part of our modeling, will then
generate inhomogeneous states by a mechanism of frustrated
phase separation. In fact, inhomogeneous states, whose ori-
gin has not been fully clarified, have been observed in some
correlated metals [30–32], and we argue that strong valence
fluctuations are a possible cause for these phenomena.

The remainder of the paper is organized as follows: In
Sec. II, we introduce the Anderson lattice model which we
decided to study and discuss various limits in parameter space.
We give a general argument for the occurrence of phase
separation near Kondo breakdown in the limit of small band
hybridization. Section. III outlines the parton mean-field the-
ory which we use to obtain concrete numerical results; these
results are presented in Sec. IV and include a discussion of
phases and phase diagrams obtained both in the canonical
and grand-canonical settings. Section VI highlights the con-
sequences of the phase separation which naturally emerges
from the interplay of Kondo breakdown and valence fluctu-
ations. Finally, Sec. V, discussing physics not captured by
the mean-field techniques used in this paper, argues that our
qualitative findings are robust against fluctuation effects. An
outlook closes the paper. Technical details are relegated to
appendices.

II. MODEL AND GENERAL CONSIDERATIONS

A. Anderson-Heisenberg lattice model

The interplay of Kondo breakdown and valence fluctua-
tions can be illustrated in a two-band Anderson lattice model,
describing a strongly correlated f band interacting with an
uncorrelated c band, which we supplement by an additional
Heisenberg-type interaction between the f sites. The Hamil-
tonian reads

H = −t
∑
〈i j〉,σ

c†
iσ c jσ + ε f

∑
i,σ

f †
iσ fiσ + U

∑
i

n f ,i↑n f ,i↓

+ V
∑
i,σ

(c†
iσ fiσ + H.c.) + J

∑
〈i j〉

(
Si · S j − n f ,in f , j

4

)
(1)

in standard notation, with n f ,iσ = f †
iσ fiσ and Si =

( 1
2 )

∑
σσ ′ f †

iστσσ ′ fiσ ′ , where τ = (τx, τy, τz ) is a vector of
Pauli matrices, and σ =↑,↓. For simplicity, the hybridization
V is assumed to be local, and both the c-electron hopping
t and the f -electron exchange J are restricted to nearest
neighbor terms. Here, we will primarily be interested in the
limit of infinite onsite repulsion U , restricting the f valence
n f to fluctuate between 0 and 1. This is relevant, e.g., for
Ce (Yb) compounds where LMs correspond to a 4 f 1 (4 f 13)
configuration, respectively, the latter requiring a particle-hole
(ph) transformation. In what follows, we will specify band
fillings according to nc = (1/Ns)

∑
iσ 〈c†

iσ ciσ 〉, where Ns is
the number of lattice sites, such that a full conduction band
corresponds to nc = 2 (and similarly for the f band). We are
mainly interested in the case nc �= 1.

The Heisenberg coupling J between the LMs in Eq. (1)
can arise either from direct exchange or indirect Ruderman-
Kittel-Kasuya-Yosida (RKKY) interactions. It competes with
Kondo screening [33] and can drive the LM system into a
magnetically ordered or a spin-liquid state. While the low-
temperature state of the LMs depends on microscopic details,
such as the lattice structure and the precise form of the
Heisenberg coupling, we shall focus on cases where the J
term alone generates a quantum spin liquid (microscopi-
cally arising from some form of frustration). This enables a
clear-cut definition of Kondo breakdown due to the absence
of symmetry-breaking order: Upon increasing J , the heavy
Fermi liquid (FL) phase of the model in Eq. (1) transitions
into a metallic spin liquid, dubbed fractionalized Fermi liquid
(FL∗) [6,13], and these two phases can be sharply distin-
guished by the volume of their Fermi surfaces [6]. As noted
in the introduction, our goal is to study the fate of this FL∗-FL
transition in the presence of strong valence fluctuations. In
contrast, the onset of symmetry-breaking order causes Kondo
and non-Kondo states to have the same Fermi volume, such
that they can be adiabatically connected or separated by a
Lifshitz-type transition [6,34].

The density-density term in Eq. (1) has been added with an
exchange mechanism in mind. If the J interaction is instead
dominantly of RKKY origin, then it will have long-range
contributions and will moreover depend on the conduction-
electron density. We will comment on these aspects toward
the end of the paper.

We note that Kondo breakdown has been studied in an An-
derson lattice model like Eq. (1) earlier in Ref. [14] but with a
focus on the Kondo regime of weak valence fluctuations. We
also note that inhomogeneous Kondo phases have appeared in
Ref. [35], but those are of very different character, i.e., weakly
modulated and away from Kondo breakdown.

B. Single impurity: Valence fluctuations vs Kondo breakdown

To set the stage, we discuss qualitative aspects of valence
fluctuations and their interplay with Kondo breakdown in a
single-impurity version of the Anderson model in Eq. (1). We
restrict ourselves to the low-temperature limit and place the
conduction-band chemical potential at μ = 0 (not necessarily
in the band center). We start by recalling the standard pa-
rameter regimes. On the one hand, large positive U and large
negative ε f lead to a stable LM, such that charge fluctuations
are suppressed, n f → 1, and a mapping to a Kondo model
via a Schrieffer-Wolff transformation is justified. On the other
hand, if ε f is comparable with or smaller than the c-electron
bandwidth, then n f strongly fluctuates, corresponding to a
regime of intermediate valence.

Kondo screening corresponds to a situation where the
coupling between the f level and the c band is relevant in
the renormalization group (RG) sense, leading to effectively
hybridized states. Thus, Kondo breakdown involves the loss
of this hybridization. In the single-impurity case, a Kondo
impurity is always screened as T → 0 for a metallic host,
but screening can break down if the conduction-band density
of states ρ(ω) vanishes at the Fermi level. The pseudogap
case ρ(ω) ∝ |ω|s [25,36,37] leads to well-studied continuous
quantum phase transitions between an unscreened impurity at
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FIG. 1. (a) Schematic phase diagram of a single-impurity An-
derson model with pseudogap density of states as a function of
f -level energy ε f and hybridization strength V , displaying a Kondo
breakdown transition between a screened (SC) and an unscreened
[local-moment (LM)] phase [26,27]. (b) Phase diagram as before, but
now for an Anderson-Heisenberg lattice model. The Kondo break-
down transition occurs between a heavy Fermi liquid (FL) and a
light-electron phase which is either magnetically ordered (AF) or a
fractionalized Fermi liquid (FL∗). In the valence-fluctuating region
of small V , the transition is masked by phase-separation tendencies
driven by finite intermoment exchange interactions, leading to inho-
mogeneous states (this paper).

small V (or small Kondo coupling) and a screened impurity at
large V (or large Kondo coupling), Fig. 1(a).

The traditional description of Kondo screening (or the
breakdown thereof) is done in the Kondo limit. In a parton
description, the onset of screening at T = 0 involves the
condensation of a charged slave boson which couples to a
half-filled level of spinons [6,25,38]. However, a detailed anal-
ysis of the Kondo breakdown quantum phase transitions in
the single-impurity pseudogap Kondo model [26,27,36] has
shown that, in this model, this picture is correct only for
small bath exponents s. In contrast, for larger s and in the
presence of ph asymmetry, the critical theory is of fermionic
character [26,27], and the critical fixed point involves critical
fluctuations in both spin and valence [26,28,29]. Importantly,
the RG flow at Kondo breakdown criticality is away from the
Kondo limit and toward a regime of strong valence fluctua-
tions with small effective ε f and V . In the relevant pseudogap
Anderson model with U = ∞, the transition can be traced all
the way to the limit V → 0, Fig. 1(a): In this limit, ε f < 0
corresponds to an unscreened LM and hence a Kondo break-
down phase, whereas ε f > 0 represents an empty orbital (i.e.
no LM degree of freedom), which is adiabatically connected
and therefore equivalent to a Kondo screened phase [26,27].

C. Lattice: Kondo breakdown and phase separation

Motivated by this insight, we now consider the T = 0
physics of the Anderson lattice model in Eq. (1) upon varying
ε f for small V . This is not the parameter regime traditionally
discussed for heavy-fermion materials with well-established
LMs but opens the way to additional physics. As will become
clear below, the chemical potential μ will play a key role when
discussing the phases at finite total electron number.

The situation is particularly transparent in the limit V → 0,
followed by J → 0. As above, ε f < μ yields stable LMs,
with n f → 1. For nonvanishing J , these moments will either
form a magnetically ordered state or realize a spin-liquid
phase, depending on the amount of frustration or quantum
fluctuations imposed by J on the particular lattice, such that

the resulting state is either a magnetically ordered metal or a
FL∗. In contrast, ε f > μ results in a FL phase with an empty
f band, n f → 0. Hence, tuning (ε f − μ) through zero can
drive an FL∗-FL transition. Importantly, this transition now
necessarily coincides with a valence transition involving a
massive change of the f -band occupation; such a change is
not present for an FL∗-FL transition in the Kondo regime.

In a canonical perspective, i.e., for fixed ntot = nc + n f ,
the change in n f across the transition must be compensated
by a corresponding change in nc. Assuming 1 < ntot < 2, this
inevitably leads to phase separation near the transition, as we
now show: For ε f < μ, we have nc = ntot − 1, and the chem-
ical potential takes a value μ− corresponding to this c-band
filling, see Fig. 2(a). Likewise, for ε f > μ, we have nc = ntot ,
and the chemical potential now takes the corresponding value
μ+, Fig. 2(c). This defines a range μ− < ε f < μ+, where
ntot − 1 < nc < ntot, and therefore, the f band must be par-
tially filled, Fig. 2(b). In the considered limit V, J → 0, where
the f band is flat, this implies a massively degenerate state.
Now introducing a finite J prefers spatial clustering of occu-
pied f sites to optimize magnetic exchange energy. In other
words, phase separation into regions with filled and empty
f sites will occur. In a grand-canonical perspective with μ

held fixed, this translates into a range of forbidden ntot upon
variation of ε f . We note that this argument does not rely on ap-
proximations or any further assumptions on the nature of the
f -electron state and hence applies even if the f -electron sector
prefers magnetic order. Furthermore, save for cases with flat
c bands, the argument does not depend on the precise form
of the c-electron band structure and should hold irrespective
of the details of the lattice geometry. It also remains true
whether or not the density-density interaction is included in
Eq. (1), and is unaffected by long-ranged RKKY interactions
because their spatial decay with distance still implies that
most magnetic energy can be gained by spatial clustering of
occupied f sites.

This discussion clarifies that increasing J amplifies phase-
separation tendencies. Conversely, increasing V will diminish
these tendencies, as finite V leads to a dispersion of the
effective f band, such that hybridization-induced f -electron
delocalization competes with their clustering due to J . The
anticipated qualitative phase diagram is in Fig. 1(b).

III. PARTON MEAN-FIELD THEORY

To obtain explicit results for the model in Eq. (1), we
employ a standard parton mean-field approach. As a con-
sequence of taking the infinite-U limit, the local f Hilbert
space is restricted to three states, the empty |i, 0〉 and the
singly-occupied ones |i, σ 〉. The Hamiltonian thus reads

H − μN = −t
∑
〈i j〉,σ

c†
iσ c jσ − μ

∑
i

(nc,i + n f ,i )

+ V
∑
i,σ

(|i, σ 〉〈i, 0|ciσ + H.c.) + ε f

∑
i

n f ,i

+ J
∑
〈i j〉

(
Si · S j − n f ,in f , j

4

)
, (2)
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FIG. 2. Schematic evolution of the band dispersion and chemical potential, with ε f increasing from (a) to (c), illustrating the phase-
separation tendency in the limit of small hybridization V . The blue and red curves represent unhybridized conduction electron and f -particle
bands, respectively, for details see text.

with N the total particle number operator, nc,i = ∑
σ c†

iσ ciσ ,
n f ,i = ∑

σ |i, σ 〉〈i, σ |, and Si = ∑
σσ ′ |i, σ 〉〈i, σ ′|τσσ ′/2. The

constraint of no double occupancies is resolved using a slave-
boson representation of the Hubbard operators [38]:

|i, σ 〉〈i, 0| = f †
iσ bi, |i, 0〉〈i, 0| = b†

i bi,

|i, 0〉〈i, σ | = b†
i fiσ , |i, σ 〉〈i, σ ′| = f †

iσ fiσ ′ . (3)

Here, bi and fiσ are standard bosonic and fermionic operators,
respectively. The representation in Eq. (3) is faithful if one
imposes the constraint Qi =b†

i bi + ∑
σ f †

iσ fiσ =1 for every
site i. With this, the Fock space at each site is reduced to
the subspace spanned by the states b†

i |0〉, f †
i↑|0〉, and f †

i↓|0〉,
which are in a one-to-one correspondence with |i, 0〉, |i,↑〉,
and |i,↓〉. Formally, the constraints are enforced by adding a
term

∑
i λi(Qi − 1), where each λi is a (fluctuating) Lagrange

multiplier.
By inserting this representation into the Hamiltonian in

Eq. (2), the hybridization and Heisenberg terms are mapped
onto three- and four-operator contributions. Since these
cannot be handled exactly, we resort to a mean-field approx-
imation consisting of two steps. First, we replace the slave
bosons bi (b†

i ) by their expectation value ri (r∗
i ), which is to

be later determined by the minimization of a thermodynamic
potential. Similarly, the λi are replaced by static numbers.
Second, we use the identity τββ ′ · ταα′ = 2δβα′δβ ′α − δββ ′δαα′

to write

Si · S j = 1
4 (2 f †

iα fiα − 2 f †
iβ f jβ f †

jα fiα − f †
iβ fiβ f †

jα f jα ), (4)

where summations over repeated spin indices are implied and
decouple the quartic terms by pairing up bilinears with the
same spin index. This amounts to decoupling the first and
second quartic terms in the ph and density-density channels,
respectively. This decoupling aims at describing spin-liquid
phases devoid of symmetry breaking. The ph decoupling
corresponds to the one which would be dictated within an
SU(N) large-N limit; for discussions of alternative decoupling
schemes, we refer the reader to Appendix B.

To proceed, we restrict our attention to a translation-
invariant system with a mean-field unit cell composed of a
single site. This allows us to replace the set of parameters
{ri, λi} by two real variables, r and λ, with nonzero r signaling

the presence of Kondo screening; furthermore, it implies that
n f ,i = ∑

σ 〈 f †
iσ fiσ 〉 is independent of the position i. Addition-

ally, we consider only mean-field solutions that preserve all
spin and lattice symmetries, such that the hopping ampli-
tude χi jσ = 〈 f †

iσ f jσ 〉 between nearest neighbor sites i and j
is spin and bond independent. Finally, if we assume a Bra-
vais lattice, the mean-field Hamiltonian takes the following
Fourier-transformed form:

HMF − μN =
∑
kσ

[(εk − μ)c†
kσ ckσ + (εk f − μ) f †

kσ fkσ ]

+ Ṽ
∑
kσ

( f †
kσ ckσ + H.c.) + Nsh0, (5)

where Ṽ = rV is a renormalized hybridization and

εk = −tzγk, (6)

εk f = ε f + λ + zJ

4
(2r2 − 1) − χzγk, (7)

h0 = −λ(1 − r2) + zJ

4

[(χ

J

)2
+ (1 − r2)2

]
, (8)

where χ is a mean-field parameter given by the self-
consistency condition χ = (J/2)

∑
σ 〈 f †

iσ f jσ 〉, z the coordi-
nation number, and γk = (2/z)

∑
δ cos(k · δ) encodes the

geometry of nearest neighbor bonds, with δ being the set of
primitive vectors of the underlying Bravais lattice.

One can diagonalize the quadratic mean-field Hamiltonian
in Eq. (5) by means of a transformation(

ckσ

fkσ

)
=

(
uk vk
vk −uk

)(
αkσ+
αkσ−

)
, (9)

with fermionic operators αkσ s and coefficients uk and vk sat-
isfying

u2
k = 1

2

⎛⎜⎝1 + mk√
m2

k + Ṽ 2

⎞⎟⎠, ukvk = Ṽ

2
√

m2
k + Ṽ 2

,

v2
k = 1

2

⎛⎜⎝1 − mk√
m2

k + Ṽ 2

⎞⎟⎠, mk = εk − εk f

2
. (10)
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The mean-field Hamiltonian thus becomes

HMF − μN = Nsh0 +
∑
ksσ

(Eks − μ)α†
kσ sαkσ s, (11)

with a dispersion given by

Ek± = εk + εk f

2
±

√
m2

k + Ṽ 2. (12)

For computational simplicity, we will obtain explicit re-
sults for a two-dimensional square lattice, for which z = 4
and δ ∈ {x̂, ŷ} in units where the lattice constant is set to
unity. We recall that our interest lies in spin-liquid phases
realized in the LM sector of the model in Eq. (1), and we
note that the square-lattice spin- 1

2 Heisenberg model realizes a
spin-liquid phase if a second-neighbor coupling J2 is included,
with 0.45 < J2/J < 0.56 [39–41]. The mean-field decoupling
chosen here targets such a spin liquid, and we refrain from
explicitly including J2. We further note that the mean-field
theory employed here displays additional solutions with larger
mean-field unit cells, see Appendix A, which we ignore for
simplicity. Importantly, we expect that our qualitative con-
clusions are much more general; phase-separation tendencies
will also occur if the LM sector tends to magnetic order as
opposed to spin-liquid behavior.

IV. PHASES AND PHASE DIAGRAMS
FROM MEAN-FIELD THEORY

We now discuss the numerical results obtained from the
parton mean-field theory described above.

A. Mean-field phases

We start by enumerating the possible phases; we recall that
we restrict ourselves to situations where the mean-field pa-
rameters obey all lattice symmetries. The phases are primarily
distinguished by whether the mean-field parameters χ and r
are nonzero.

First, there is a decoupled solution with χ = 0, r = 0
that is realized at high temperatures. Physically, it reflects
weakly interacting LMs, which only scatter conduction elec-
trons weakly.

Second, there are solutions with χ �= 0, r = 0 that cor-
respond to FL∗ [6,13]. These are low-temperature phases
without Kondo screening where only the c (but not the f )
electrons contribute to the volume of the Fermi surface, which
is thus dubbed small and violates Luttinger’s theorem. The
fractionalization of the LMs becomes manifest as the f sector
of FL∗ corresponds to a U(1) spin liquid with a Fermi surface
of neutral spinons. We note that the present mean-field theory
displays additional solutions which, however, require larger
mean-field unit cells, corresponding, e.g., to valence-bond
solids or a π -flux spin liquid, and we will briefly comment
on them in Appendix A.

Third, there are solutions with χ �= 0, r �= 0, where Kondo
screening is active. Depending on whether the chemical po-
tential is inside a band or in the bandgap, these are either
heavy FLs or Kondo insulators (KIs), the latter displaying
a total filling of ntot = 2 in the zero-temperature limit. The
heavy FLs (FLns) can be further distinguished based on the
number n = 1, 2 of Fermi sheets they possess and the sign

s = ± of the mean-field parameter χ [35]. The inequivalence
of states with the same n but different s can be established
by dividing the square lattice under consideration (or for that
matter, any bipartite lattice) into two sublattices and applying
a gauge transformation fiσ → − fiσ that only acts on sites i
belonging to one of them. This amounts to changing the sign
of χ while additionally giving the slave-boson expectation
values ri a staggered sign structure [35].

We finally note that a phase with χ = 0, r �= 0 does not
exist, as nonzero r inevitably generates nonzero χ because f
particles can hop via the c band.

B. Grand-canonical phase diagram

In the grand-canonical ensemble, i.e., at fixed μ, the
ground state of the system is obtained by minimizing the
thermodynamic potential:

� = Nsh0 − 2kBT
∑

ks

ln{1 + exp[−β(Eks − μ)]}, (13)

with respect to the mean-field parameters {r, λ, χ}. This yields
the set of mean-field equations:

1 − r2 = n f = 2

Ns

∑
k

(
u2

knk− + v2
knk+

)
, (14)

λr = 2V

Ns

∑
k

ukvk(nk− − nk+), (15)

χ = J

Ns

∑
k

γk
(
u2

knk− + v2
knk+

)
, (16)

where nks = {exp[β(Eks − μ)] + 1}−1 is the Fermi-Dirac dis-
tribution function. We shall focus on the low-T limit and
perform the numerics at a small nonzero T for numerical
stability.

Representative results are shown in Fig. 3, which contains
data for T = 10−4, μ = 1, and J = 0.1 in units where the
c-electron hopping amplitude t = 1. Panel (a) illustrates how
ntot varies across a V – ε f phase diagram. Starting at fixed
V , the limit ε f → −∞ places us deep inside the FL∗ phase,
where the f -band filling n f = 1. As we increase ε f within
the same phase, n f remains unchanged, but so does nc since
the c and f bands are completely decoupled. Consequently,
the total filling inside FL∗ is given by a constant n∗

tot (μ) =
1 + n∗

c (μ).
Upon further increasing ε f , the system is eventually driven

out of the FL∗ phase as the screening of the LMs ensues. This
process is signaled by the onset of a nonzero r which, on
account of Eq. (14), reduces n f and thus causes the observed
decrease in ntot . However, the nature of the phase transition
and the resulting state depend on the hybridization strength.
At large V , the system enters an FL2− phase through a con-
tinuous transition, across which ntot varies smoothly. On the
other hand, once V � 0.7, a first-order transition occurs and
leads to a KI or FL1− phase, depending on whether V is
moderate or low. In either case, the transition is accompanied
by a jump in ntot, which becomes increasingly pronounced as
V → 0, Fig. 4(a), as anticipated in Sec. II C.

The phase diagram also exhibits various phase transitions
that preserve the screening of the LMs but entail changes
in the topology of the Fermi surface. This is illustrated in
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FIG. 3. (a) and (b) Mean-field phase diagram of the Anderson lattice model at a fixed chemical potential μ = 1.0 and with parameters
T = 10−4 and J = 0.1 in units of the c-electron hopping amplitude t . Dashed and solid lines indicate continuous and first-order transitions,
respectively, whereas the color schemes show the variation of (a) the total filling ntot and (b) the mean-field parameter χ . (c) Evolution of the
Fermi surface for selected values of ε f and V = 1.7. Red and blue lines correspond to the bands Ek− = μ and Ek+ = μ, respectively. In the
leftmost panel, the spinon Fermi surface is represented in green, and the small electron Fermi surface is shown in black.

Fig. 3(c), which shows the evolution of the Fermi surface
along the line V = 1.7. The leftmost plot corresponds to the
FL∗ phase, where one identifies a small electron Fermi surface
centered at k = (π, π ) and a half-filled spinon Fermi surface.
Once screening sets in, the latter becomes a Fermi surface of
heavy electrons and loses its perfect nesting property. Upon
further increasing ε f , the two-sheet Fermi surface of FL2−
collapses onto a single-sheet Fermi surface of FL1− via a
first-order Lifshitz transition which is accompanied by a jump
in ntot . Though not visible on the scale of Fig. 4(a), this jump
is present nonetheless and grows with V . Further increase of
ε f causes the Fermi surface to shrink, disappear, and finally
reemerge as ntot falls below half-filling. This final transition
from the KI to the FL1− state is discontinuous for V � 0.5 and
introduces yet another case in which the system experiences
an abrupt large redistribution of charge, see Fig. 4(a).

Let us now adopt a different perspective and analyze a few
aspects of what happens as we vary V at a fixed ε f . In the inte-
rior of the FL∗ phase, this has no effect at all because the con-
dition r = 0 rescales the hybridization strength to zero. How-
ever, in the rest of the phase diagram, ntot follows a unified
trend of approaching 2 (half-filling) as V overcomes all the
other energy scales in the system. This behavior can be under-
stood via Eq. (12), which indicates that, for any r �= 0, the two
fermionic bands develop a gap proportional to V in the limit
V → ∞. It is this increasing gap that stabilizes the KI at large
V and explains the change in curvature of its right boundary.

Figure 3(b) in turn illustrates how the mean-field pa-
rameter χ evolves across the phase diagram. A prominent
feature therein is that solutions with χ < 0 are predominant,
especially near the boundary of the FL∗ phase or, more specif-
ically, when r is small and n f is close to one. This result was
previously noted in Ref. [35] and is related to the fact that
χ > 0 generates c and f bands with the same momentum
dependence, whereas for χ < 0, the minima of one band
coincide with the maxima of the other. In the limit of small r,
when the center of the f band is close to μ, the latter condition
promotes the formation of a bandgap and hence produces a
more stable solution by shifting the occupied states to lower
energies. On the other hand, our results also indicate that, as
we increase ε f to a point where both n f and |χ | approach zero,
the existence of such a bandgap ceases to be advantageous,
and the ground state acquires a positive χ . This gives rise to a
phase transition between FL1− and FL1+ in the regime of pos-
itive ε f . The same density plot also reveals that χ jumps across
first-order phase transitions in the model to accommodate the
discontinuities in ntot . It undergoes a sharp growth across the
Lifshitz transition between FL2− and FL1−, followed by an
interval of nonmonotonic behavior as the system enters the KI
phase.

Finally, Fig. 4(b) shows how ntot varies as a function of
μ for different values of ε f and V = 0.3. In preparation for
an analysis in the canonical ensemble, we can consider the
effect of tuning ε f at a fixed filling, such as ntot = 1.5. By
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FIG. 4. (a) Total filling ntot as a function of ε f for various values
of V and with T = 10−4, J = 0.1, and μ = 1.0. The two horizontal
dashed lines correspond, in ascending order, to half-filling and to
the maximum filling n∗

tot (μ = 1) ≈ 2.383. (b) Also ntot , but now as
a function of μ at fixed V = 0.3 and for different values of ε f . The
thick dashed line corresponds to the total filling in the absence of hy-
bridization, when the f band is half-filled, i.e., n∗

tot (μ) = 1 + n∗
c (μ).

starting from large values, where the ground state corresponds
to a FL, and decreasing ε f , we find that there is an extended
interval preceding the FL∗ phase in which none of the previ-
ous homogeneous mean-field states realize the specified ntot.
This defines a forbidden range of μ and signals the phase-
separation tendency discussed in Sec. II C. In the next section,
we will confirm this connection by showing that the mean-
field solution for such intermediate values of ε f is physically
unstable.

Results for other values of J and 0 < μ < zt are qualita-
tively similar; for μ < 0, the KI phase is not accessible.

C. Canonical phase diagram

If one approaches the problem from the perspective of the
canonical ensemble, then a fourth self-consistency condition:

ntot = nc + n f = 2

Ns

∑
k

(nk− + nk+), (17)

which fixes total filling to a specific value ntot, must be added
to the set of Eqs. (14) to (16). The ground state of the system
then corresponds to the mean-field solution that minimizes the
free energy F = � + μntotNs.

FIG. 5. Mean-field phase diagram of the Anderson lattice model
at a fixed total filling of ntot = 1.3 and with parameters T = 10−4 and
J = 0.1 in units of the c-electron hopping amplitude t . The hatched
regions indicate where the homogeneous mean-field solution with
the lowest free energy has a negative compressibility κ = ∂ntot/∂μ.
While we cannot access arbitrarily small V for computational rea-
sons, our results from Appendix B suggest that the area with κ < 0
extends to ε f → ∞ in the limit V, T → 0. The actual regime of
phase separation is larger than the hatched regions, see text and
Appendix C.

A representative phase diagram derived for ntot = 1.3, J =
0.1, and at T = 10−4 is shown in Fig. 5. For any fixed V ,
we see that the limits of large negative and large positive
ε f stabilize the FL∗ phase and an FL state, respectively, as
in the grand-canonical ensemble. However, by repeating the
calculation for each point in the phase diagram at a slightly
larger filling (�ntot = 10−3ntot), we found that the intermedi-
ate regime now includes two regions in which the mean-field
solutions have negative charge compressibility κ = ∂ntot/∂μ.
In such regions, the concavity of F (T, ntot ) around ntot = 1.3
implies that the system undergoes phase separation since the
configuration that minimizes the free energy is a mixture
of two homogeneous states, with fillings above and below
ntot = 1.3, respectively.

As predicted in Sec. II C, one of the regions with κ < 0
is connected to the limit V → 0, where the dispersion of f
electrons through the c band is suppressed and the system
profits from the formation of dense islands. The second of
such regions appears at larger V , where the physical grounds
for phase separation are not as clear. However, we recall
that κ > 0 is a necessary but not sufficient condition for the
convexity of F . Therefore, phase separation is not restricted
to occur in the hatched portions of the phase diagram. In
Appendix C, we provide evidence that the model features a
single region of phase separation, which covers both hatched
regions and therefore extends to sizable V .

V. BEYOND MEAN FIELD

In this section, we quickly discuss physics beyond the
zero-temperature mean-field analysis presented in Sec. IV.
This discussion has two separate parts.
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First, we discuss fluctuations effects on the FL-FL∗ tran-
sition, in part recalling the arguments of Refs. [6,13]. As
noted above, we have restricted our attention to mean-field
solutions preserving both spin and translation symmetries. For
FL∗, these correspond to homogeneous spin liquids in the f -
electron sector. Determining whether such a phase is realized
for a given microscopic spin model is a difficult task, with
the list of numerically established cases growing [42–44], al-
though the precise nature of the liquid state has often not been
clarified beyond doubt. Provided that the spin liquid exists as a
stable phase of matter for the spin model under consideration,
then the corresponding FL∗ phase exists as well [6]. In the
case of a U(1) gauge group, as discussed here, soft gauge
fluctuations will produce singular contributions to the specific
heat in both the FL∗ phase and the quantum critical regime of
the FL-FL∗ transition [13]. In the latter, critical fluctuations of
r will lead to power law spectral functions, i.e., critical Fermi
surfaces [45].

We note, however, that the quantum critical theory for
lattice Kondo breakdown has not been established beyond
doubt. In addition to the boson-condensation theory advo-
cated in Refs. [6,13,14,45] and used here, other proposals
have been made [5,21,46–48]. We recall that the single-site
version of the boson-condensation theory does not apply to
the ph-asymmetric pseudogap Kondo model where instead a
fermionic theory is appropriate [27]. Exact numerical results
have so far only been obtained for cases with Dirac fermions
(instead of a full Fermi surface) [49] and for one-dimensional
models [50]. We hope that this paper will also stimulate the
construction of field theories explicitly considering valence
fluctuations.

Second, we note that the global phase diagram as a func-
tion of parameters ε f and V may involve multiple different
(ordered) states of LMs, particularly if their interactions are
dominated by RKKY contributions, as those feature kF os-
cillations and are therefore density dependent. Irrespective
of such details, phase-separation tendencies inevitably exist
near the Kondo breakdown transition. We reemphasize that
the phase-separation tendencies also occur if the LM phase
is an ordered magnet instead of a FL∗, see the discussion in
Sec. II C.

VI. PHASE SEPARATION AND INHOMOGENEOUS
STATES

The analysis so far has uncovered phase separation in
regions of different electron density as a result of magnetic
interactions. It can be expected that long-range Coulomb
repulsion will render the phase-separated regime thermody-
namically stable: The competition of short-range attractive
and long-range repulsive forces leads to frustrated phase
separation, and states with spatially inhomogeneous elec-
tron density will appear. Phenomena of this type have
been discussed in the context of various strongly correlated
systems [51–55], for instance, for stripy charge order in un-
derdoped cuprate superconductors.

Details of such inhomogeneous or modulated states will
depend on both the precise form of the magnetic interactions
and the lattice structure. We therefore leave a detailed micro-
scopic study for future work and restrict ourselves to a few

qualitative remarks. (i) As the analysis in Appendix C shows,
the system tends to separate into Kondo and non-Kondo re-
gions, with different densities in both the c- and f -electron
sectors. This is a key difference with respect to known exam-
ples of phase separation in Kondo lattice models, in which
the constituents of the phase mixture, e.g., different itinerant
magnetic states, have the same f -electron density [56]. (ii)
While frustrated phase separation in the classical regime is
expected to lead to islands or bubbles, quantum kinetic en-
ergy can lead to subdimensional extended structures, such
as stripes in two-dimensional systems [51,53]. (iii) The in-
evitable presence of quenched disorder in real crystals will
lead to pinning phenomena of the resultant spatial structures,
as disorder generically couples linearly to the particle density.

VII. CONCLUSIONS AND OUTLOOK

Motivated by recent experimental findings in LM metals,
we have discussed Kondo breakdown transitions in a gener-
alized Anderson lattice model in the mixed-valence regime.
We have argued that, away from the Kondo limit, Kondo
breakdown is naturally accompanied by a sizable charge
redistribution between different bands. Together with mag-
netic interactions between the LMs, this induces tendencies
toward phase separation, which in turn leads to inhomoge-
neous states masking the Kondo breakdown transition. We
have obtained explicit results using a parton mean-field the-
ory for a transition between FL and U(1) FL∗ phases, but
we expect our qualitative results to be much more gen-
eral. They will also apply if the non-Kondo state displays
magnetic order.

To study this phenomenology in detail, future work should
include numerically exact studies of suitable microscopic
models. We note that the single-site dynamical mean-field
approximation is not sufficient to capture the phase-separation
tendency advocated here, as it cannot properly treat intermo-
ment interactions. In contrast, quantum Monte Carlo studies
of models designed to be sign free [49,57] appear to be a
viable route.

Experimentally, emergent inhomogeneous states may be
the reason for some of the puzzling phenomena observed in
quantum critical heavy-fermion compounds. These include
CeCu6−xAux [7], CeCoIn5 [11,12], as well as YbAlB4, which
displays strong valence fluctuations [18,19]. An interesting
case in point is CeRu2Si2, where recent thermodynamic
measurements [32] found indications for the presence of
magnetic clusters in a nominally clean compound. More
microscopic measurements are clearly called for. Comple-
mentarily, quantum chemistry studies could shed light on
the necessary conditions to promote strong valence fluctua-
tions and guide the synthesis of more candidates materials
for this so-far largely unexplored regime of heavy-fermion
metals.
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APPENDIX A: SADDLE POINTS OF LM PARTON
MEAN-FIELD THEORIES

As explained in this paper, our focus is to describe the
physics of Kondo breakdown transitions. These are realized
in a most clear-cut fashion for phase transitions between a
heavy FL and a FL∗ [6,13]. We therefore have restricted our
attention to the simplest symmetric mean-field solutions for
the non-Kondo phase, describing homogeneous spin liquids
in the f -electron sector.

It is known, however, that the parton mean-field theo-
ries display other saddle points with larger unit cells. We
quickly summarize the results obtained for the fermionic
SU(N) large-N limit, where the decoupling is exclusively in
the ph channel with spinon hopping. Here, a solution with
strong dimerization corresponding to a valence-bond solid
has the lowest ground-state energy on most lattices. More
homogeneous solutions can be stabilized by introducing ei-
ther biquadratic [58,59] or ring exchange [60]. On the square
lattice, a sufficiently large biquadratic exchange stabilizes a
homogeneous spin liquid which, however, has a 2 × 1 mean-
field unit cell and realizes a Dirac spin liquid with spontaneous
π -flux lattice [58,59]. We recall that, in parton mean-field
theories, symmetries are realized projectively; hence, such
a solution does not break physical symmetries [61]. Similar
considerations apply to the Sp(2N) large-N where the decou-
pling is instead in the particle-particle (pp) channel [62,63].

We emphasize again that our qualitative conclusions con-
cerning phase separation and inhomogeneous states do not
depend on details of the non-Kondo solutions but only rely
on the tendency of filled f sites to cluster in the presence of J
when V → 0 and n f < 1, see Sec. II C.

APPENDIX B: COMPRESSIBILITY OF HOMOGENEOUS
SPIN-LIQUID STATES IN PARTON

MEAN-FIELD THEORIES

While the argument in favor of f -site clustering for a frac-
tionally filled f band is intuitive, it is not a priori clear that a
given mean-field theory conforms to this physical expectation.
In this Appendix, we will present a quantitative analysis of
different f -sector mean-field theories. Our starting point is the
Hamiltonian:

H f − μN f = J
∑
〈i j〉

(
Si · S j − n f ,in f , j

4

)
− μ

∑
i

n f ,i, (B1)

where ε f has been absorbed into μ, as both quantities play the
same role.

We first discuss the results for the decoupling scheme
we considered in the main text. In this case, the relevant
mean-field equations can be derived by setting t = V = 0 in
Eqs. (14)–(17). At fixed n f , the slave-boson amplitude r is
determined directly from Eq. (14), which reads r2 = 1 − n f .
Meanwhile, Eq. (15) becomes λr = 0, implying that λ = 0 for

FIG. 6. Variation of the chemical potential μ with the f -band
filling nf in the absence of hybridization, i.e., for the isolated f sector
of the infinite-U Anderson-Heisenberg lattice model at T/J = 10−4.
The blue solid curve corresponds to the particle-hole (ph) decoupling
scheme presented in the main text, whereas the red dashed and
green dotted lines follow from decoupling the interaction term in
the particle-particle (pp) channel with s-wave and the energetically
favored s + id pairing, respectively. Differently from the ph solution,
for which κ < 0, the pp solutions have positive compressibility.

every n f < 1. The remaining mean-field equations are

χ = J

Ns

∑
k

γk

exp[β(εk f − μ)] + 1
,

n f = 2

Ns

∑
k

1

exp[β(εk f − μ)] + 1
, (B2)

with εk f = λ + zJ (1 − 2n f )/4 − zχγk.
To extract the compressibility κ , we solved the previous

system of mean-field equations for various n f ∈ [0, 1] and
plotted μ as a function of n f in Fig. 6. There, one can verify
that κ < 0 over the entire range of fillings, confirming that the
phase separation observed in the main text is indeed rooted in
the limit of small V . In fact, this analysis also indicates that
the hatched portion of the phase diagram in Fig. 5 extends
all the way to ε f → ∞ when V → 0. We have verified that
this qualitative result is independent of whether the density-
density term in Eq. (B1) is included or not.

Next, we consider an alternative parton mean-field theory
in which the interaction term in the Hamiltonian in Eq. (B1) is
decoupled in the pp channel, formally obtained in the large-N
limit of Sp(2N) [51,62,63]. To perform the decoupling, we use
the identity:

Si · S j − n f ,in f , j

4
= −1

2
( f †

i↑ f †
j↓ − f †

i↓ f †
j↑)( f j↓ fi↑ − f j↑ fi↓),

(B3)

and define the mean-field averages

1

2
〈 f j↓ fi↑ − f j↑ fi↓〉 =

{
ηx, if (i j) is horizontal,

ηy, if (i j) is vertical,
(B4)

for nearest neighbor sites i and j. By doing so, we allow
pairing fields to break the discrete rotational symmetry of the
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FIG. 7. Maxwell constructions and characterization of the phase mixtures at the three different points highlighted in the phase diagram of
Fig. 5. The top row superimposes the mean-field solutions (black) for the chemical potential μ at different ntot with the curve determined by the
Maxwell construction (red). The shaded region delimited by the vertical gridlines indicates the range of fillings in which the system undergoes
phase separation. The middle row depicts the evolution of the free energy F in the same interval of ntot . Black and red curves correspond,
as before, to the homogeneous mean-field solution and phase mixture, respectively, and the difference between the two is shown in a smaller
scale in the insets. Finally, the bottom row illustrates the variation of the mean-field parameter χ . Together with the Fermi surfaces shown in
the insets, this allows the identification of the two states that are mixed in the region of phase separation.

lattice but require full translational symmetry with a single
site per unit cell. One obtains the mean-field Hamiltonian:

H f ,MF − μNf = Nsh0 +
∑

k

�
†
kMk�k, (B5)

with

Mk =
[
λ − μ −�k
−�∗

k −(λ − μ)

]
, �k =

(
fk↑

f †
−k↓

)
, (B6)

and

�k = 2J (ηx cos kx + ηy cos ky),

h0 = −μ + λr2 + 2J (|ηx|2 + |ηy|2). (B7)

This free-fermion problem can be diagonalized by a standard
Bogoliubov transformation, after which

H f ,MF − μNf = Nsh0 −
∑

k

Ek +
∑
kσ

Ekγ
†
kσ γkσ , (B8)

with a dispersion Ek =
√

(λ − μ)2 + |�k|2. The grand-
canonical potential is then given by

� = Nsh0 − 2kBT
∑

k

ln cosh

(
βEk

2

)
, (B9)

apart from irrelevant constants. By minimizing Eq. (B9) with
respect to the complex parameters {η∗

x , η
∗
y }, we find

ηγ = 1

2Ns

∑
k

tanh

(
βEk

2

)
�k cos kγ

Ek
, (B10)

for γ = x, y. In principle, this yields a set of four mean-field
equations, but since the complex phases of ηx and ηy do not
enter the energetics of the system independently, we can elim-
inate one of them by fixing a gauge (e.g., by taking Imηx = 0).
Moreover, the condition Nsn f = −∂�/∂μ fixes the chemical
potential via

n f = 1 + μ − λ

Ns

∑
k

1

Ek
tanh

(
βEk

2

)
. (B11)

By solving the system of Eqs. (B10) and (B11), we
find that states with s + id pairing, for which ηy = iηx, are
favored [62,64]. The corresponding change in μ as a func-
tion n f is plotted in Fig. 6, and remarkably, we see that
κ > 0 over the entire range of n f . The same conclusion holds
for higher-energy mean-field solutions with different pairing
symmetries, such as s-wave pairing. Based on this observa-
tion, we conclude that the mean-field theory constructed from
a pure pp decoupling is completely oblivious to the phase-

235127-10



KONDO BREAKDOWN TRANSITIONS AND … PHYSICAL REVIEW B 106, 235127 (2022)

separation tendencies of the model and therefore becomes
problematic away from half-filling.

APPENDIX C: MAXWELL CONSTRUCTION FOR PHASE
SEPARATION IN THE CANONICAL ENSEMBLE

In this Appendix, we employ the Maxwell construction for
different points in the canonical phase diagram of Fig. 5 to
investigate the occurrence phase separation in more detail.
As we will show below, this provides deeper insight into the
physical origin of the phenomenon in the model.

In Sec. IV C, we discussed that the existence of mean-field
solutions with negative charge compressibility κ is a sufficient
but not a necessary condition for phase separation to take
place. The key ingredient behind phase separation is rather
that the free energy F (T, ntot ) built from an ensemble of
homogeneous states (as the one we considered in Sec. IV C)
becomes a concave function of ntot . Indeed, whenever this
happens, one can lower the free energy at a given value of ntot

by forming a mixture of two states with fillings n(1)
tot < ntot and

n(2)
tot > ntot, which appear in proportions such that the average

filling is fixed to ntot. According to the well-known Maxwell
construction [65], the values of n(1)

tot and n(2)
tot are determined by

simultaneously fulfilling the conditions:

F
[
T, n(1)

tot

] = F
[
T, n(2)

tot

]
, (C1)

∂F

∂ntot

[
T, n(1)

tot

] = ∂F

∂ntot

[
T, n(2)

tot

]
. (C2)

We carried out this procedure for the three different points
marked by stars in the phase diagram of Fig. 5, one in each of
the disjoint regions of negative κ plus a third point in between.
Figure 7 shows how the behavior of the chemical potential
μ, the free energy F , and the mean-field parameter χ as a
function of ntot changes from before (black) to after (red) the
Maxwell construction. In analyzing these results, two main
features stand out. First, all three (ε f ,V ) points give rise to
phase separation at the filling ntot = 1.3 adopted in Fig. 5. We
emphasize that this applies even to the intermediate-V point,
which has a homogeneous mean-field solution with positive
κ . Second, the bottom row of plots in Fig. 7 reveals that the
two constituents of the phase mixture are, in all three cases,
FL1+ and FL∗ states. Put together, these observations strongly
suggest that the separate domains with negative κ shown in
Fig. 5 belong to the same region of phase separation, which
emanates from V = 0 and extends up to V ≈ 1. If this is
indeed true, then there is a single physical mechanism driving
phase separation in the model, namely, that the gain in mag-
netic energy at small V outweighs the delocalizing tendencies
due to hybridization between the c and f bands.

In addition to the points raised above, we also note that
the difference in the total filling �ntot = n(2)

tot − n(1)
tot of the two

homogeneous states that are combined in the phase mixture
changes substantially as a function of V . More concretely, it
increases from �ntot ≈ 0.14 at the point with largest V (right
column) to �ntot ≈ 0.94 at the point with the smallest V (left
column).
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