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Full counting statistics in the many-body Hatano-Nelson model
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We study non-Hermitian many-body physics in the interacting Hatano-Nelson model with an open boundary
condition. The violation of reciprocity, resulting from an imaginary vector potential, induces the non-Hermitian
skin effect and causes exponential localization for all single-particle eigenfunctions in the noninteracting limit.
Nevertheless, the density profile of the interacting system becomes only slightly tilted relative to the average
filling. The Friedel oscillations exhibit a beating pattern due to the modification of the Fermi wave number. The
probability distribution of particles over any finite interval is the normal distribution, whose mean scales with
the imaginary vector potential and the variance is symmetric to the center of the chain. This is confirmed by
several numerically exact methods even for relatively small systems. These features are expected to be generic
not only for fermions, which naturally repel each other due to Pauli’s exclusion principle, but for interacting
bosons as well. Our findings indicate that many-body effects can significantly alter and conceal the single-particle
properties and the skin effect in non-Hermitian systems.
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I. INTRODUCTION

In the theory of probability, a classical random variable is
often successfully characterized by a few of its first moments,
and the powerful laws that follow, such as the central limit
theorem [1], have found numerous applications in diverse
areas of science [2]. In many cases, however, this approach
ceases to be satisfactory, and the full probability distribution
function is needed as it reveals salient features about the ran-
dom variable [3]. The quantum world is not much different in
this respect from the classical one. Already simple expectation
values of physical quantities often display rather complex
behavior, and their complete understanding requires a life-
long effort, such as, e.g., the phase diagram of the Hubbard
model [4]. Although they are often difficult to access, higher
moments of the observables encapsulate unique information
about nonlocal, multipoint correlators and entanglement and
contain much more information. Finding all these moments
is essentially equivalent to determining the entire distribution
function of the quantity of interest, i.e., the characteristic
function of full counting statistics [5–11].

Recent years have witnessed an explosion of interest to-
wards non-Hermitian quantum systems [12–15]. The ensuing
physics often arises from considering open quantum systems
interacting with their environment in the manner of Lind-
blad and continuous monitoring together with postselection
[16,17], giving rise to many unexpected phenomena with
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no obvious counterpart in a Hermitian setting. One unique
feature of non-Hermitian systems is the anomalous localiza-
tion of all eigenstates referred to as the non-Hermitian skin
effect [18–20] when all single-particle eigenstates become
exponentially localized at the boundaries of the system. A
paradigmatic model associated with this is the Hatano-Nelson
[21,22] model, where the breakdown of reciprocity, i.e., asym-
metric hoppings, induces the skin effect. While this occurs at
the single-particle level, several studies addressed the fate of
the non-Hermitian skin effect in a many-body setting, includ-
ing numerics [23–29] as well as the Bethe ansatz [30,31].

Here, we go one step further and combine the above two
concepts, namely full counting statistics and non-Hermitian
physics, by analyzing the probability distribution of the
particle number over a finite interval for the interacting
Hatano-Nelson chain. By using bosonization, we solve the
low-energy effective theory exactly and obtain analytical re-
sults for the real-space density profile, the correlation function
of the oscillating part of the particle density, as well as the
characteristic function of the particle density over a finite
interval. We find that many-body physics suppresses signif-
icantly the non-Hermitian skin effect both for fermions and
bosons. The Friedel oscillations exhibit a beating pattern as
the Fermi wave number gets modified by the presence of an
imaginary vector potential. In spite of the skin effect at the
single-particle level, the probability distribution of particle
density over a finite interval remains normal and depends on
the location of the interval within the open chain. The mean
value of the normal distribution scales with the imaginary
vector potential while the variance becomes independent from
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FIG. 1. Sum of absolute squares of amplitudes per site [12] of all
right single-particle eigenstates of the noninteracting HHN with U =
0, N = 100, and OBC with ha = 0.1 (upper blue) and 0.2 (lower
red), exhibiting the non-Hermitian skin effect.

it. Our analytical findings are corroborated by several numer-
ically exact methods even for relatively small systems.

II. HATANO-NELSON MODEL

The Hatano-Nelson model [21,22] consists of fermions
hopping in one dimension in the presence of an imaginary
vector potential. The interacting many-body version of the
Hamiltonian is

HHN =
N−1∑
n=1

J

2
exp(ah)c+

n cn+1 + J

2
exp(−ah)c+

n+1cn

+ Uc+
n cnc+

n+1cn+1, (1)

where J is the uniform hopping, h is the constant imagi-
nary vector potential and a represents the lattice constant,
N is the total number of lattice sites and we consider the
open boundary condition (OBC), and U represents the the
nearest-neighbor interaction between particles. We consider
half filling with N/2 fermions populating the lattice. The
model is PT symmetric [32] and possesses a real spectrum
for OBC, and the minimal energy configuration is the ground
state with a many-body wave function |�〉. Due to OBC, no
current is expected to flow in the system but the real-space
density profile is expected to be inhomogeneous due to the
imaginary vector potential. For a periodic boundary condition,
a finite persistent current circulates in the system [33,34] but
the real-space density profile is homogeneous.

In the noninteracting, U = 0 limit, the model can be di-
agonalized and the single-particle eigenfunctions �E (n) for
eigenenergy E can be obtained. With OBC, these are localized
to one end of the system (dictated by the sign of h) as a
manifestation of the non-Hermitian skin effect. This is shown
in Fig. 1.

Upon going to the continuum limit and bosonizing HHN in
Eq. (1) [35–37], the effective low-energy Hamiltonian reads
as

H =
∫ L

0

dx

2π
v

[
K[π�(x) − iπh]2 + 1

K
[∂xφ(x)]2

]
, (2)

where � and φ are dual fields satisfying [φ(x1),�(x2)] =
iδ(x1 − x2). This Hamiltonian is brought into conven-
tional Hermitian Gaussian form by applying a similarity
transformation, which eliminates the ih term using S−1HS

with

S = exp

(
− h

π

∫ L

0
φ(x′)dx′

)
. (3)

The resulting Hamiltonian can be brought to diagonal form
after introducing canonical bosonic fields [35] as

Hb =
∑
q>0

ω(q)b†
qbq, (4)

and the long-wavelength part of the local charge density is
∂xφ(x)/π with

φ(x) = i
∑
q>0

√
πK

qL
sin(qx)[bq − b†

q] (5)

for OBC and K the Luttinger liquid (LL) parameter [35]
[which carries all the nonperturbative effects of interaction
U from Eq. (1)], and ω(q) = vq with v the Fermi velocity
in the interacting systems, and q = lπ/L with l = 1, 2, 3 . . . .
The ground state of Eq. (4) is the vacuum state |0〉, and
the ground state of the original non-Hermitian model is ob-
tained as |�〉 = S|0〉/

√
〈0|S2|0〉 and S is Hermitian. The very

fact that we managed to manipulate the low-energy effective
theory into Eq. (4) indicates that the interacting Hatano-
Nelson model indeed forms a Luttinger liquid with collective
bosonic excitations in much the same way as for Hermitian
systems [35].

Any expectation value of an operator O is evaluated as

〈�|O|�〉 = 〈0|SOS|0〉
〈0|S2|0〉 , (6)

where the denominator accounts for the explicit normalization
of the many-body wave function.

III. CHARACTERISTIC FUNCTION
OF PARTICLE DENSITY

We focus our attention on the characteristic function of
particle density [38,39] in a finite spatial interval (or vertex
operator [40]), given by

Gλ(x, y) = 〈�|exp [2iλ(φ(x) − φ(y))]|�〉, (7)

where 1
π

[φ(x) − φ(y)] = ∑x
n>y c+

n cn with x > y is the particle
number operator within the finite interval from y to x and the
equality is valid within the realm of the low-energy theory
[38]. Due to OBC, the system is not translationally invariant,
therefore the characteristic function depends not only on x − y
but independently on the two coordinates.

From this, the long wavelength and 2kF oscillating part of
the density are obtained as

n0(x) = 1

π
lim
λ→0

∂xGλ(x, 0)/(2iλ), (8a)

n2k f (x) = G1(x, 0), (8b)

and at half filling and h = 0, kF = π/2a. By repeating this
procedure, any higher moments of the density can be easily
evaluated and by Fourier transforming with respect to λ, the
distribution function of the density over a finite interval x − y
can be obtained for the interacting Hatano-Nelson model.

235125-2



FULL COUNTING STATISTICS IN THE MANY-BODY … PHYSICAL REVIEW B 106, 235125 (2022)

In evaluating Eq. (7), we use [φ(x), φ(y)] = 0, which al-
lows us to merge all exponentials into a single one as

Gλ(x, y)

= 〈0| exp
(
2iλ(φ(x) − φ(y)) − 2h

π

∫ L
0 φ(x′)dx′)|0〉

〈0| exp
(− 2h

π

∫ L
0 φ(x′)dx′)|0〉

. (9)

Then, profiting from the fact that the expectation value now is
taken with respect to the bosonic vacuum, we use the standard
trick to evaluate the expectation value of the exponentiated
operator [35,40] to yield

ln Gλ(x, y)

= 2〈0|
(

iλ(φ(x) − φ(y)) − h

π

∫ L

0
φ(x′)dx′

)2

|0〉

− 2〈0|
(

h

π

∫ L

0
φ(x′)dx′

)2

|0〉. (10)

The term proportional to h2 drops out and after taking
the expectation values, and the characteristic function is
evaluated as

ln Gλ(x, y) = −2λ2C(x, y) − 4iλhL

π
[g(x) − g(y)], (11)

with

C(x, y) = 〈0|[φ(x) − φ(y)]2|0〉, (12a)

g(x) =
∫ L

0

dx′

L
〈0|φ(x)φ(x′)|0〉. (12b)

Here, the first term represent the autocorrelator of the φ field
with open boundary conditions [36], while the second term
carries all effects of the non-Hermitian term. These are evalu-
ated to yield

1

K
C(x, y) = ln

(
L

πα

)
+ 1

2
ln

[
sin

(πx

L

)
sin

(πy

L

)]

+ ln

[
sin

(
π |x − y|

2L

)]
− ln

[
sin

(
π (x + y)

2L

)]
,

(13)

g(x) = K

π
Im

∑
β=±

β polylog

[
2, β exp

(
iπx

L

)]
, (14)

where α is the short distance cutoff in the theory, a rem-
nant of the lattice constant in the a → 0 continuum limit,
and polylog(2, x) is the second-order polylogarithm [41].
This is valid in the scaling limit when L � [x, y, x + y, |x −
y|mod L] � α. This immediately allows us to obtain the long-
wavelength part of the density profile as

n0(x) = −2Kh

π2
ln

[
tan

(πx

2L

)]
(15)

on top of the homogeneous particle background. We note
that obtaining this result already in the noninteracting, K = 1
limit is far from being trivial due to the nonorthogonality of
the single-particle eigenfunctions. For repulsive interactions
(K < 1), the profile flattens out as the particles repel each
other, while for the attractive case (K > 1), the inhomoge-
neous profile becomes more prominent as a remnant of the

non-Hermitian skin effect. Interestingly, the very same low-
energy effective theory applies not only to fermions but to
repulsively interacting bosons as well, which then do not con-
dense to one end of the sample but produce a smooth density
profile due to repulsion.

IV. FRIEDEL OSCILLATIONS

On top of the long-wavelength part, there is also a contribu-
tion oscillating [42,43] with 2kF . Putting everything together
using Eqs. (8), the total particle density is

ρ(x) = ρ0 + n0(x)

+ c

(
πα

2L sin
(

πx
L

)
)K

sin

(
2kF x + 4hL

π
g(x) + δ

)
,

(16)

where ρ0 represents the homogeneous background, and the
coefficients c and δ are in principle model as well as K and h
dependent [36] and cannot be obtained from the low-energy
theory. For h = 0, there are no Friedel oscillations at half
filling since 2kF x is an integer multiple of π on the lattice
due to kF = π/2a, which makes the oscillations vanish for
δ = 0. Equation (16) represents one of our most important
results which indicate that (i) the homogeneous density profile
gets modified by the imaginary vector potential, (ii) the spatial
decay of the oscillating term remains intact compared to the
Hermitian case and (iii) the oscillation frequency picks up an
anomalous term through hLg(x).

Close to the middle of the chain, g(L/2) = 2GK/π with
G ≈ 0.916 the Catalan’s constant, and the oscillation fre-
quency is also modulated by the imaginary vector potential.
Close to the end of the chain, we obtain an effective x-
dependent wave number, summarized as

kF (x) = kF + 2

π
hK ×

{ 4
π

G, x � L/2,

ln
(

2eL
xπ

)
, x 	 L/2.

(17)

We compare the prediction of Eqs. (16) and (17) to the
numerics using exact diagonalization (ED) and density-matrix
renormalization group (DMRG) [44] calculations of Eq. (1) at
half filling, similarly to Ref. [45].

We employed the natural density matrix basis convention
[46] in which the density matrix is constructed solely from
the right eigenstate of the Hamiltonian when performing ED
and DMRG. This allows us to compare the expectation values
and the correlation functions of interest with the analytical
findings derived using (6). This is the most suitable choice,
and is the natural extension of the Hermitian realm, and
such a description also follows naturally from an open quan-
tum system perspective [16]. In the latter case, the Lindblad
equation approach combined with continuous monitoring and
postselection yields non-Hermitian physics, where expecta-
tion values are taken with respect to the right eigenstates.

For the Hermitian case with h = 0, the particle density is
homogeneous and is fixed to ρ0 = 1/2 even with OBC and
interactions.

It is plausible to assume that we can still use the LL pa-
rameter [35], K = π/2/[π − arccos(U/J )], valid for h = 0,
also for small h. It is remarkable that by using c = 1/2 and

235125-3



DÓRA AND MOCA PHYSICAL REVIEW B 106, 235125 (2022)

0 50 100
-0.2

-0.1

0

0.1

0.2

-0.8

0 50 100
-0.2

-0.1

0

0.1

0.2

-0.6

0 50 100
-0.2

-0.1

0

0.1

0.2

-0.4

0 50 100

-0.1

0

0.1

0.2

-0.2

0 50 100
-0.2

-0.1

0

0.1

0.2

0

0 50 100
-0.2

-0.1

0

0.1

0.2

0.2

0 50 100
-0.2

-0.1

0

0.1

0.2

0.4

0 50 100
-0.2

-0.1

0

0.1

0.2

0.6

0 50 100
-0.2

-0.1

0

0.1

0.2

0.8

FIG. 2. Real-space density profile and Friedel oscillations for
U/J = −0.8 : 0.2 : 0.8 as indicated in the panels, N = 100, and
OBC with ha = 0.1. The open circles denote the numerical data
from DMRG, while the red solid line represents bosonization from
Eq. (16) with c = 1/2, δ = 0, and L = Nα. The black dashed line
depicts the long-wavelength contribution from Eq. (15).

δ = 0 for all data in Fig. 2 as the only free parameters, we
obtain very good agreement with numerics with L = Nα. The
effect of the modulated Fermi wave number from Eq. (17) is
visible in Fig. 2, especially close to the boundary. In spite of
the strong localization of all single-particle eigenfunctions in
the noninteracting case due to the non-Hermitian skin effect,
the Friedel oscillations display rather smooth, nonlocalized
behavior due the many-body effects.

V. CORRELATION FUNCTION

The characteristic function in Eq. (7) allows us to evaluate
equal time correlation functions as well. Most importantly,
G1(x, y) represents the correlation function of the oscillating
part of the particle density, which is responsible for the most
dominant charge ordering instability [35,37] for repulsive
interactions. Equations (12)–(14) together with (17) predict
the behavior of this correlation function. The spatial decay
is dictated by C(x, y) and receives the very same exponent
K as for the Hermitian system [35,36]. The non-Hermitian
term, however, modulates its oscillation frequency from 2kF

through exp[2ikF (x)x − 2ikF (y)y].

VI. PROBABILITY DISTRIBUTION OF THE DENSITY

By the λ dependence of the characteristic function, it is
apparent that it corresponds to the normal distribution with
mean (μ) and variance (σ 2) given by

μ = 2hL

π2
[g(x) − g(y)], σ 2 = 1

π2
C(x, y). (18)

From Eqs. (13) and (14), both the mean and variance scales
with K and are enhanced/suppressed for attractive/repulsive
interactions. Moreover, the mean scales linearly with the
imaginary vector potential while the variance is insensitive
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FIG. 3. Probability distribution of the density of particles in the
first half of the chain (N/2 sites) from ED (N � 28) and DMRG (N =
80) for U/J = −0.8 : 0.2 : 0.8 and for ah = 0.1 and N = 28 (circle),
26 (square), for ah = 0.2 and N = 28 (triangle), 24 (star), and 80
(pentagram), and for ah = 0.3 and N = 80 (dot). The black solid
line denotes the standard normal distribution.

to it within the validity of bosonization. We emphasize that
the variance remains symmetric under the (x, y) ←→ (L −
x, L − y) transformation, namely the fluctuations are insen-
sitive to which end of the system we consider, while the skin
effect in Fig. 1 clearly distinguishes the two ends of the chain
within the realm of single-particle physics.

In the following, we analyze their behavior for some rel-
evant spatial range. Close to the middle of the chain with
x, y � L/2, boundary effects are the most negligible as de-
picted in Table I, where the variance depends only on x − y
and agrees with Ref. [38], while the mean value is negligibly
small. On the other hand, close to the boundary of the system,
the dependence on x and y independently from each other
becomes more prominent as summarized in Table I. Finally,
we also consider the case with y = 0 and x = L/2 in Table I,
i.e., the distribution of particles in the first half of the chain.

In order to test the Gaussian nature of the particle distribu-
tion, we analyze the distribution of particles in the first half
of the chain, namely N1 = ∑N/2

n=1 c+
n cn, which can take integer

values from 0 to N/2. Using ED and DMRG, we evaluated
numerically the characteristic function of the particle density,
〈�| exp(iλN1)|�〉 and after Fourier transforming with respect
to λ, the probability distribution of the particle density is ob-
tained. We plot this for several interaction strengths, ranging

TABLE I. Parameters of the normal distribution for various spa-
tial intervals.

Region μ/hK σ 2π 2/K

x, y � L
2

1
πL (x − y)(L − x − y) ln

( |x−y|
2α

)
x, y 	 L 2

π2 [x ln( 2eL
xπ ) − y ln( 2eL

yπ )] ln
(√

xy|x−y|
α(x+y)

)
(x, y) = ( L

2 , 0) 4GL
π3

1
2 ln

(
L

πα

)
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from strongly attractive through noninteracting to strongly
repulsive and for several h in Fig. 3, after rescaling it with
the mean and the variance. All data fall onto a universal
curve, dictated by the standard normal distribution P(n) =
exp(−n2/2)/

√
2π . Already for relatively small system sizes,

the data collapse is excellent, confirming the prediction and
validity of bosonization not only for simple expectation values
but also for the full distribution function in non-Hermitian
systems.

VII. CONCLUSIONS

We have studied the full counting statistics of particle
density in the interacting Hatano-Nelson model. While the
non-Hermitian skin effects localize the single-particle states
to one end of the chain, the many-body density profile be-
comes smooth along the chain, indicating the suppression of
the skin effect by many-body physics. Friedel oscillations
appear throughout the system with a beating pattern, which
arises from a spatially dependent Fermi wave vector due to
the imaginary vector potential.

The correlation function of the oscillating part of the
particle density, which accounts for the dominant instability
for repulsive interactions, decays similarly to the Hermi-
tian case albeit its spatial modulation is influenced by the

non-Hermitian term. The probability distribution of particles
over any finite interval is found to be normal with the mean
scaling with the imaginary vector potential in spite of the
non-Hermitian skin effect, which suppresses exponentially the
single-particle eigenfunctions in one end of the chain.

Our results apply not only to interacting fermions in the
Hatano-Nelson model, but the very same low-energy effective
theory through Eqs. (4) and (5) accounts for repulsively in-
teracting bosons [35] as well. Our findings indicate that some
peculiar features of single-particle non-Hermitian physics can
be washed out in the many-body realm and non-Hermitian
many-body systems behave rather similarly to their Hermitian
counterparts not only at the level of simple expectation values
but also for the full counting statistics.
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