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The generation of high-order harmonics in bulk systems is a young and fast-growing area of research.
Beginning in 2011 with the pioneering studies of high-order harmonic generation in bulk dielectrics, significant
progress has already been made in understanding the details of the microscopic mechanisms behind this
phenomenon, such as the role of intra- and interband polarization, the contribution of the electronic band
structure and dipole moments to the harmonic spectrum, and the effects of structural and electronic symmetry.
However, the role of electron-electron correlations in the excited system is much less understood. In this work, we
study the role of these effects in the high-order harmonic spectrum by using the Time-Dependent Density
Functional Theory (TDDFT) approach with the Dynamical Mean-Field Theory (DMFT) exchange-correlation
kernel. In this approximation, one takes into account the time-resolved on-site electron-electron interactions.
As we demonstrate, the correlation effects significantly affect the high-harmonic spectrum, most importantly
through ultrafast modification of the interband polarization of the system.
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I. INTRODUCTION

High-order harmonic generation (HHG) from solids is a
rapidly growing branch of ultrafast physics. After the phe-
nomenon was first observed in ZnO in 2011 [1] (see also
consequent studies of this material in Refs. [2–5]), it was
demonstrated that many other systems, such as MgO [6], Si
[7] SiO2 [8], GaSe [9], MoS2 [10], graphene [11,12], solid
Ar and Kr [13], ZnSe [14], and Al2O3 [15] emit high-order
harmonic radiation (for an overview, see the recent review
[16]). The emitted harmonics can be used to generate isolated
attosecond pulses [17], and it is expected that high-order
harmonic spectroscopy techniques can be used to study the
properties of solids, including band [3,14], measurements of
Berry curvature [18], orbital structures [6], the effects of
strong electron-electron correlations [19–21] and topological
states [22–26].

Naturally, to study the properties of solids, HHG mea-
surements must be closely bound with accurate theoretical
analysis to explain and predict experimental data. The Semi-
conductor Bloch Equations (SBE), which are the oldest and
most traditional approach to analyze ultrafast properties of
solids [27–30], have been actively applied to study HHG
in solids [23,31–33]. However, this approach, similar to
other phenomenological approaches [18,34–38], suffers from
shortcomings that forbid to accurately study the effects of
electron-electron interaction in the HHG. One reason for this
is that including higher-order correlation functions, which
can be done by generalizing the SBE in the nonequilibrium
Green’s function formalism, dramatically increases the com-
putational cost. In this case it is difficult to go beyond a
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few-band approximation and to extend calculations to long
times due to nonlinear and memory effects. Another important
shortcoming is the lack of ab initio accuracy. Indeed, it is
difficult to incorporate in the effective theory such quantities
as spatial inhomogeneity, the microscopic dielectric function,
and accurate band structure beyond the quadratic or cosine
dispersions.

For these reasons, an approach based on ab initio Den-
sity Functional Theory (DFT) is much more attractive:
DFT [39,40] is the theory of effective charge density. In
DFT, one needs to deal with the three-dimensional (3D)
space variable instead of multi-variables of the SBEs and
similar approaches. Once one properly chooses the exchange-
correlation (XC) potential, the effects of electron-electron
interaction are, in principle, treated exactly (though, in re-
ality only approximate potentials that might give accurate
but approximate solutions are available). In the other ap-
proaches discussed above these effects are in almost all
cases treated in some (often-uncontrollable) perturbation-
theory approximation. Static DFT was applied to study HHG
in some systems (in the framework of the time-dependent
density-matrix formalism; see, e.g., Refs. [41,42]). Unfor-
tunately, static DFT is not capable to reproduce correctly
the excited state energies, and thus it is doubtful if it
can be accurately applied in this case. Generalizations of
DFT on the excited states, specifically the GW+Bethe-
Salpeter Equation approach, was also applied to study HHG
[43]. However, the computational cost in this case is very
large.

In this sense, the time-dependent generalization of DFT
[44,45] is the most optimal approach: it correctly reproduces
excited states and is computationally much less expensive as
compared to the many-body approaches. TDDFT was already
applied to study HHG or ultrafast currents in several solid
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crystalline solids [46–53]. However, in most cases, the ex-
change and correlation effects are taken into account at an
insufficient level for treating strong correlations, for example
by employing adiabatic LDA [54] or modified Becke-Johnson
exchange potentials [55,56].

The first study incorporating the effects of strong electron-
electron correlations into the mechanism of HHG was
described in Ref. [21], where in the TDDFT+U approach was
applied to NiO and it was demonstrated that it is important
to take into account dynamical modulation (time-dependence)
of the local Coulomb repulsion between the electrons. How-
ever, it is well known that DFT+U (or its time-dependent
equivalent TDDFT+U) is relevant only in the case of very
large U’s. In the more relevant case of intermediate values
of U [of order of the kinetic energy, defined by the width
of the valence band(s)] one needs to apply the DFT+DMFT
approach [57,58], which takes into account time-resolved lo-
cal Coulomb interactions between the electrons. From the
many-body side, nonequilibrium DMFT has been applied to
analyze the HHG spectrum of a Mott insulator [20] and it was
shown that these dynamical effects play an important role.

In this work, we apply our recently-developed DMFT-
TDDFT approach [59] to analyze the role of the dynamical
(time-resolved) correlation effects in the HHG spectrum of
solids. We apply the approach to ZnO, probably the most stud-
ied material in the case of HHG in solids with a large amount
of available experimental and theoretical data on HHG, e.g.,
analysis of the role of the transition dipole moments modulus
and phase (in particular, in the appearance of even harmonics)
[32,33] the effects of the carrier-envelope phase and orienta-
tion [60], the role of the interband dynamics in mid-infrared
laser fields [2], tuning of the HH spectra in solids [61], effects
of the reconstruction of the electronic band structure [3] and
some other theoretical results [62–64]. However, in all these
studies the electron correlation effects were not included. We
perform an analysis of the role of these effects by using
an adiabatic local XC kernel obtained as described below
and changing its value from zero to the value obtained from
ab initio calculations (i.e., artificially tuning the strength of
the electron-electron correlations). The obtained results may
help to shed the light on the role of correlation effects in
the electronic and optical properties of strongly correlated
materials.

The article is organized in the following order. In Sec. II
we have discussed our theoretical models deriving equations
to add correlation in HHG. Then, we share our results, by
showing first the electronic properties calculation (Sec. III),
then the HH spectra considering both the case with no corre-
lation and with correlation (Sec. IV). Finally, we summarize
our findings in Sec. V.

II. DMFT-TDDFT APPROACH

A. Density-matrix TDDFT

In the DMFT-TDDFT approach one solves the TDDFT
Kohn-Sham equation with the XC potential/kernel obtained
from the charge susceptibility obtained from the effective
Hubbard model (see next Subsection). In detail, let us consider

the TDDFT Kohn-Sham equation:

Ĥ (r, t )�v
k (r, t ) = i

∂�v
k (r, t )

∂t
, (1)

where the Hamiltonian has the following form:

Ĥ (r, t ) = −∇2

2m
+ Vion(r) + VH [n](r, t ) + VXC[n](r, t )

+ e�r · �E (t ), (2)

with the standard notations for the ion, Vion(r), Hartree,
VH (r, t ) = ∫ n(r′,t )

|r−r′ | dr′, and the XC, VXC[n](r, t ), potentials. In
our case, the last term, the external potential, is laser pulse
potential with shape

�E (t ) = �E0e
− t2

T 2
P cos(ω0t + φ), (3)

where ω0, φ and TP are the pulse frequency, phase and dura-
tion, respectively.

Since VH [n](r, t ) and VXC[n](r, t ) are functionals of den-
sity, Eq. (1) is solved self-consistently with the electron
number equation:

n(r, t ) =
∑
k<kF

∣∣�v
k (r, t )

∣∣2
, (4)

where kF is the Fermi wave vector (i.e., this is formally-
defined constrain that means that we perform summation
over the valence-band (initially occupied) states, since the
evolution of the system can be completely described by the
time evolution of these states). Density dependence of the XC
potential would significantly complicate the numerical analy-
sis, since in this case one would need to include all bands in
calculating density (4) (that define XC potential). Fortunately,
the XC potential we use is density independent and a finite
set of bands can be used. To solve the system (1), (4),
we apply the density-matrix formalism (see Ref. [65] for
the main details and Refs. [66,67] for some extensions
of the approach), where the wave function is expressed in the
basis of a physically motivated set of the static (DFT) wave
functions ψ l

k (r) [see Eq. (14) below]:

�v
k (r, t ) =

∑
l=v,c

cl
k (t )ψ l

k (r). (5)

The number of included valence (v) and conduction (c)
bands depends on the pulse frequency and other pulse param-
eters.

Thus, the problem reduces to finding time-dependent co-
efficients cl

k (t ). Substituting Eq. (5) into Eq. (1), multiplying
Eq. (1) from the right by ψm∗

k (r) and integrating over the space
coordinates, one gets the equation for these coefficients:

i
∂cm

k (t )

∂t
=

∑
l=v,c

Hml
k (t )cl

k (t ), (6)

where

Hml
k (t ) =

∫
ψm∗

k (r)Ĥ (r, t )ψ l
k (r)dr (7)
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are the matrix elements of the Hamiltonian with respect to the
static wave functions. Similarly, for the complex conjugated
coefficients:

i
∂cm∗

k (t )

∂t
= −

∑
l=v,c

cl∗
k (t )Hlm

k (t ). (8)

Instead of solving Eq. (6) or Eq. (8), it is more convenient
to construct and solve the equations for the density matrix:

ρ lm
k (t ) = cl

k (t )cm∗
k (t ), (9)

since its elements have a clearer physical meaning (di-
agonal elements; band occupancies, nondiagonal, transition
probabilities), which allows one to truncate or to do other
approximations in a controllable manner.

One can obtain from Eqs. (6) and (8) the Liouville equation
of motion for the density matrix:

i
∂ρ lm

k (t )

∂t
= [H, ρ]lm(t )

≡
∑

n

(
H ln

k (t )ρnm
k (t ) − ρ ln

k (t )Hnm
k (t )

)
, (10)

which is an equivalent of the KS Eq. (1) in the density matrix
approximation. To express the number equation in the terms
of density matrix elements, one can write:

n(r, t ) − n(r, t = −∞)

=
∑
k<kF

∣∣�v
k (r, t )

∣∣2−
∑
k<kF

∣∣�v
k (r, t = −∞)

∣∣2

=
∑
k<kF

(
∑

l

cl∗
k (t )ψ l∗

k (r))

(∑
m

cm
k (t )ψm

k (r)

)

−
∑
k<kF

(∑
l

cl∗
k (t = −∞)ψ l∗

k (r)

)

×
(∑

m

cm
k (t = −∞)ψm

k (r)

)
.

This gives the number of electron equation in the density
matrix representation:

n(r, t ) − n(r, t = −∞)

=
∑

k<kF ,lm

ψm
k (r)ψ l∗

k (r)
(
ρml

k (t ) − ρml
k (−∞)

)
. (11)

The system of Eqs. (10), (11) is the density-matrix version
of the KS TDDFT Eqs. (1) and (4).

In this work we use the linear response approximation,
expanding the XC potential in linear fluctuations of the charge
density. It is important to stress that linear approximation
does not assume weak correlations: it is defined as the case
when the number of excited charges is small compared to the
number of electrons in the system (which is the case of the
problem considered here).

To derive the density matrix equations in the case of lin-
ear response, let us express the Hamiltonian Eq. (2) in the

linear approximation in terms of charge density fluctuations
Eq. (11):

Ĥ (r, t ) = Ĥ0(r) + δĤ (r, t ), (12)

where

Ĥ0(r) = −∇2

2m
+ Vion(r) + VH [n](r, t = −∞)

+VXC[n](r, t = −∞), (13)

is the nonperturbed (DFT) Hamiltonian that satisfies

Ĥ0(r)ψm
k (r) = εm

k ψm
k (r), (14)

and

δĤ (r, t ) = VH [n](r, t ) − VH [n](r, t = −∞) + VXC[n](r, t )

−VXC[n](r, t = −∞) + e�r · �E (t ) (15)

is the time-dependent (fluctuating) part.
The Hamiltonian matrix elements can be also divided into

static and time-dependent parts:

Hml
k (t ) =

∫
ψm∗

k (r)(Ĥ0(r) + δĤ (r, t ))ψ l
k (r)dr

= εm
k δml +

∫
ψm∗

k (r)δVH (r, t )ψ l
k (r)dr

+
∫

ψm∗
k (r)δVXC(r, t )ψ l

k (r)dr + �dml
k · �E (t ), (16)

where

�dml
k = e

∫
ψm∗

k (r) �rψ l
k (r)dr (17)

are the dipole matrix elements.
In the linear-response approximation,

VXC(r, t ) = VXC(r, t = −∞) +
∫ ∫

fXC(r, r′, t − t ′)

× δn(r′, t ′)dr′dt′, (18)

where

fXC(r, r′, t − t ′) = δVXC(r, t )

δn(r′, t ′) n(r,t )=n(r,t=−∞)
(19)

is the XC kernel (derived in the next Subsection).
Using Eqs. (11) and (18) one can show that∫
ψm∗

k (r)δVXC(r, t )ψ l
k (r)dr =

∑
q<kF ,a,b

∫ t

−∞
F̃ mlab

kq (t, t ′)

× (
ρab

q (t ′) − ρab
q (−∞)

)
dt′,

(20)

where

F̃ mlab
kq (t, t ′) =

∫ ∫
drdr′ψm∗

k (r)ψ l
k (r) fXC(r, r′, t, t ′)

×ψa
q (r′)ψb∗

q (r′) (21)

are the matrix elements that describe the effects of retarded
e-e interaction.
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Similarly, one can obtain the result for the
Hartree part,

∫
ψm∗

k (r)δVH (r, t )ψ l
k (r)dr = ∫

ψm∗
k (r)

[
∫

δn(r′,t )
|r−r′| dr′]ψ l

k (r)dr:∫
ψm∗

k (r)δVH (r, t )ψ l
k (r)dr =

∑
q<kF ,a,b

Amlab
kq

(
ρab

q (t ) − ρab
q (0)

)
,

(22)

where

Amlab
kq =

∫ ∫
drdr′ψm∗

k (r)ψ l
k (r)

1

|r − r′|ψ
a
q (r′)ψb∗

q (r′). (23)

These results need to be substituted into the Liouville
Eq. (10). Before using these equations, one still needs to

find expressions for the dipole moments. To calculate these
moments, it is more convenient to use momentum represen-
tation. Namely, from the DFT calculations one obtains the
dispersion ελ

�k and the wave functions ψλ
�k (�r). Then, from the

Bloch representation of the wave functions ψλ
�k (�r) = ei�k�ruλ

�k (�r)

one extracts their periodic (Bloch) parts uλ
�k (�r) that are used to

calculate the transition dipole moments:

�Dλλ′
�k = i

∫
cell

uλ∗
�k (�r) �∇�kuλ

�k (�r)d�r. (24)

The explicit form of the DMFT-TDDFT Bloch equations
we use in this work is

i
∂ρ

vic j

�k (t )

∂t
= (

ε
c j

�k − ε
vi

�k
)
ρ

vic j

�k (t ) + �E (t )
∑

cλ �=c j

( �Dcλvi

�k ρ
cλc j

�k (t ) − �Dcλc j

�k ρ
vicλ

�k (t )
) + �E (t )

∑
vλ �=vi

( �Dvλvi

�k ρ
vλc j

�k (t ) − �Dcjvλ

�k ρ
vivλ

�k (t )
)

+ i �E (t ) �∇�kρ
vic j

�k (t ) − [
1 − ρ

c j c j

�k (t ) − ρ
vivi

�k (t )
] �E (t ) �Dcjvi

�k (t ) +
∑
λ=c,v

(
U viλ

k (t )ρλc j

k (t ) − ρ
viλ
k (t )U λc j

k (t )
)
, (25)

i
∂ρ

cic j

�k (t )

∂t
= (

ε
c j

�k − ε
ci

�k
)
ρ

cic j

�k (t ) + �E (t )
∑

cλ �=c j

�Dcλci

�k ρ
cλc j

�k (t ) − �E (t )
∑
cλ �=ci

�Dcλc j

�k ρ
cicλ

�k (t ) + �E (t )
∑
vλ

( �Dvλci

�k ρ
vλc j

�k (t ) − �Dcjvλ

�k ρ
civλ

�k (t )
)

+ i �E (t ) �∇�kρ
cic j

�k (t ) + [
ρ

c j c j

�k (t ) − ρ
cici

�k (t )
] �E (t ) �Dcj ci

�k (t ) +
∑
λ=c,v

(
U ciλ

k (t )ρλc j

k (t ) − ρ
ciλ
k (t )U λc j

k (t )
)
, (26)

i
∂ρ

viv j

�k (t )

∂t
= (

ε
v j

�k − ε
vi

�k
)
ρ

viv j

�k (t ) + �E (t )
∑
vλ �=v j

�Dvλvi

�k ρ
vλv j

�k (t ) − �E (t )
∑
cλ �=ci

�Dvλv j

�k ρ
vivλ

�k (t )

+ �E (t )
∑

cλ

( �Dcλvi

�k ρ
cλv j

�k (t ) − �Dv j cλ

�k ρ
vicλ

�k (t )
) + i �E (t ) �∇�kρ

viv j

�k (t ) + [
ρ

v jv j

�k (t ) − ρ
vivi

�k (t )
] �E (t ) �Dv jvi

�k (t )

+
∑
λ=c,v

(
U viλ

k (t )ρλv j

k (t ) − ρ
viλ
k (t )U λv j

k (t )
)
, (27)

∂ρ
cic j

�k (t )

∂t
= −2Im

[
�E (t )

∑
cλ �=ci

�Dcicλ

�k ρ
cicλ

�k (t )

]
− 2Im

[
�E (t )

∑
vλ

�Dcivλ

�k ρ
civλ

�k (t )

]
+ �E (t ) �∇�kρ

cic j

�k (t )

+
∑
λ=c,v

(
U ciλ

k (t )ρλci
k (t ) − ρ

ciλ
k (t )U λci

k (t )
)
, (28)

∂ρ
viv j

�k (t )

∂t
= −2Im

[
�E (t )

∑
vλ �=vi

�Dvivλ

�k ρ
vivλ

�k (t )

]
− 2Im

[
�E (t )

∑
cλ

�Dcicλ

�k ρ
vicλ

�k (t )

]

+ �E (t ) �∇�kρ
viv j

�k (t ) +
∑
λ=c,v

(
U viλ

k (t )ρλvi
k (t ) − ρ

viλ
k (t )U λvi

k (t )
)
, (29)

where

U λλ′
k =

∑
q<kF ,a,b

∫ t

0
Fλλ′ab

kq (t − t ′)
(
ρab

q (t ′) − ρab
q (0)

)
dt′ (30)

and

F mlab
kq (t, t ′) =

∫ ∫
drdr′ψm∗

k (r)ψ l
k (r)

(
1

|r − r′|δ(t, t ′) + fXC(r, r′, t, t ′)
)

ψa
q (r′)ψb∗

q (r′). (31)

One more, missing, type of matrix element ρ
civ j

�k (t ) should not be calculated separately, since by definition ρ
civ j

�k (t ) = ρ
v j ci∗
�k (t ).
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B. DMFT XC kernel

To find the expression for fXC(r, t ; r′t ′), and hence the
interaction elements (31), we use Ref. [59] for the Hubbard
Hamiltonian for correlated systems:

H = −
∑

i, j,l,m,σ

t lm
i j,σ cl+

iσ cm
jσ − μ

∑
i,l,σ

cl+
iσ cl

l + U
∑

i,l

nl
i↑nl

i↓

+ (U − J )
∑
i,l �=m

nl
i↑nm

i↓ + (U − 2J )
∑

i,l �=m,σ

nl
iσ nm

iσ , (32)

where cm
jσ , cl+

iσ and nl
iσ are the electron annihilation, creation

and number operators with the respective orbital, spin and
space indices, nondiagonal t lm

i j,σ are the corresponding intersite
interorbital hopping parameters and diagonal t ll

ii,σ - energy
of electron (with minus sign) with spin σ on the orbital l
and site i (i, j is the site-, l, m is the orbital, and σ are the
spin indices), U is the intraorbital Coulomb repulsion at each
site (i.e., when electrons are at the same orbital), U − J and
U − 2J are the corresponding interorbital (different-orbital
electrons), opposite-spin and same-spin Coulomb repulsions
(J is the exchange energy parameter), and μ is the chemical
potential. In our calculations, we use U = 4 eV and J = 1 eV.
Most of the single-particle properties, collective excitations
and responses can be obtained from the spin- and orbital-
dependent single-particle Green′s function

Gll′
σσ ′ (r, t ; r′, t ′) = −〈

T̂ c
l
σ (r, t )cl ′+

σ ′ (r′, t ′)
〉

(33)

and two-particle susceptibility

χ ll ′
σσ ′ (r, t ; r′, t ′) = −〈

T̂ n
l
σ (r, t )nl ′

σ ′ (r′, t ′)
〉
, (34)

where T̂ is the time-ordering operator. In the DMFT ap-
proximation, which is usually a very good approximation
for bulk systems, only nonlocal-in-time and local-in-space
(site-diagonal) electron self-energy is taken into account,
which corresponds to taking into account time-resolved
local electron-electron interactions, and neglecting nonlo-
cal in-space interactions. The susceptibility (34) can be
also used to find the TDDFT XC kernel, through the
relationship:

χ (r, t ; r′, t ′) = −〈T̂ n(r, t )n(r′, t ′)〉 =
∑

l,l ′,σ,σ ′
χ ll ′

σσ ′ (r, t ; r′, t ′)

(35)

as

fXC(r, r′, ω) = χ−1
0 (r, r′, ω) − χ−1(r, r′, ω) − 1

|r − r′|
(36)

(in the real frequency representation). In Eq. (36), χ−1
0 is

the inverse susceptibility in the “noninteracting” (DFT) case.
Thus, provided the functions χ ll′

σσ ′ (r, t ; r′, t ′) are known, one
can find the total-charge XC kernel from Eqs. (35) and (36). In
our study, we use iterative perturbation theory approximation
to find the Green′s function (33) and one-loop approximation
to calculate the susceptibility (34).

In our TDDFT calculations, we neglect memory effects.
Thus, since the XC is also local in space,

fXC(r, r′, ω) = δ(r − r′)
[
χ−1

0 (ω) − χ−1(ω)
] − 1

|r − r′|
(37)

(where we use DMFT, local-in-space and site independent
susceptibilities), the matrix elements Eq. (31) become

F mlab
kq (t, t ′) = δ(t − t ′) fXC (ω = 0)

∫
dr ψm∗

k (r)ψ l
k (r)ψa

q

× (r)ψb∗
q (r), (38)

where fXC (ω = 0) ≈ 32.1 eV. Due to a very high computa-
tional (memory) cost (in particular, even to store this matrix
one needs several Gbs), for these matrix elements we use the
orbital- and momentum averaged value:

F mlab
kq (t, t ′) ≈ δ(t − t ′)G, (39)

where

G = fXC(ω = 0)
∫

dr ψm∗
k (r)ψ l

k (r)ψa
q (r)ψb∗

q (r) ≈ 1.5eV

Å3
.

(40)

In other words, the “correlation” parameter G is a product
of two parts; the XC kernel fXC (ω = 0) that is defined by the
Hubbard model parameters (most importantly, it is propor-
tional to some power of U ), and the overlap of localized (d)
orbitals through the average

∫
dr ψm∗

k (r)ψ l
k (r)ψa

q (r)ψb∗
q (r).

Though there is no direct relation between these two parts,
one may expect that they both, and hence G, grow with U in-
creasing (in particular, because stronger localized orbitals give
larger overlap integral, and at the same time they correspond
to larger U).

Similar to the case of the Green’s function, local-in-space
approximation for the XC kernel corresponds to neglect-
ing nonlocal-in-space interactions, which are less important
than local ones for extended correlated systems. Adiabatic
approximation for the kernel is expected to be an accurate
approximation for the dynamics that extends beyond 1–20 fs
(when, e.g., time dependence of the local repulsion plays an
important role [21], which is the case we study, since our pulse
is much longer than 20 fs and we expect memory should not
play a significant role in the HH spectrum.

To explore the role of correlation effects, we will perform
calculations by changing G from 0 to its actual value G ≈ 1.5.
The physical meaning of the coefficient G is the averaged-
over-orbitals overlap of the interacting on-site charges. While
in ZnO this overlap is not extremely large, in transition-metal
oxides and other materials where electron correlations are
much more pronounced, the value of G is an order of mag-
nitude larger.

C. High-order harmonic generation

Once the TDDFT problem Eqs. (25)–(29) is solved, the
HHG spectrum can be calculated:

SHHG(ω) = |ε̂.
∫ ∞

−∞
[ �Jintra (t ) + �Jinter (t )]eiωt dt |

2

, (41)
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FIG. 1. Left: ZnO (wurtzite) unit cell used in the calculations.
The grey and the red balls are the Zn and O atoms, respectively.
Right: the Brillouin zone and the high symmetry points.

where ε̂ is the pulse polarization,

�Jintra (t ) =
∑
λ=c,v

∫
BZ

�vλ
�k ρλ

�k (t )d�k (42)

is the intraband and

�jinter (t ) = ∂ �Pinter (t )

∂t
(43)

is the interband current, and

�Pinter (t ) =
∑
λ,λ′

∫
BZ

[ �Dλλ′
�k (�k)ρλλ′

�k (t ) + c.c.
]
d�k (44)

is the interband polarization.

In. Eq. (38), �vλ
�k = ∂ελ

�k
∂�k is the band dispersion.

III. ELECTRONIC PROPERTIES: DFT RESULTS

The DFT and DFT+U calculations were performed using
the QUANTUM ESPRESSO code [68,69] with norm-conserving
pseudopotentials, PBE XC potential [70], the energy cutoff
60 Ry and 11 × 11 × 11 k points in the Brillouin zone. The
unit cell of the systems and the Brillouin zone used in the
calculations are shown in Fig. 1.

The calculated DFT band structure of the system is shown
in the top left Fig. 2. The spectrum shows the direct bandgap
at the γ point, with strongly underestimated value (0.7 eV)
as compared to the experimental result of 3.3 eV. In our

FIG. 2. Top: The band structure of the system obtained with DFT calculations for U = 0, 4 and 10 eV respectively and the Fermi energy
is at 0 eV. Middle: The DOS of ZnO and Bottom: The DOS above the fermi label.
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FIG. 3. The pulse (left) and the interband current in the cases of no correlations (middle) and when correlations are taken into account
(right, G = 1.5).

DMFT-TDDFT calculations, we apply the scissors procedure
by shifting the bandgap to the experimental value. It is im-
portant to note that one can obtain the correct gap when one
applies the DFT+U approach, though values of U usually
used in the DFT+U calculations (as summarized, e.g., in a
recent review by Harun et al. [71] are unphysically large, 10–
15 eV. We have performed DFT+U calculations of the band
structure and projected density of states (DOS) at different
values of U (Fig. 2). As it follows from our results, indeed the
gap increases with increasing value of U. It is very important
that the shape of the bands (at least the ones we used in our
TDDFT analysis) changes very weakly. Another important
result is that we also did not find a significant change in the
hybridization of the valence and conduction Zn-d and O-p
orbitals as U increased from 0 to used in this work 4 eV
(middle and bottom Fig. 2; see also work by Yaakob et al. [72],
where a similar trend was found). Thus, our input DFT band
structure with scissor-shifted bandgap is basically equivalent
to the DFT+U input for the TDDFT calculations (Another
reason that constrained us from using the DFT+U input is
difficulties in getting the DFT+U static wave functions with
QUANTUM ESPRESSO to calculate interaction parameter G (see
below); though, we expect that they should be, similar to the
band structure, rather similar to the DFT ones).

The atom- and orbital-resolved DOS of the system is
shown in the right Fig. 2. As it follows from the results of our
calculations, the top valence band is predominantly of the O-p

states, while the bottom conduction band states consist of O-p
and several Zn orbital states, with dominant Zn-s contribution.

Using the obtained DFT electronic structure and the XC
kernel that describes correlation effects we analyzed the HH
spectrum of the system.

IV. HHG in ZnO

A. Current

To analyze the role of correlations in the response of the
system we begin with the calculation of the dominating inter-
band current Eq. (43) at different correlation strengths, i.e.,
different values of G (it must be noted that, as theoretical
studies show, the relative contribution of the intra- and in-
terband processes in the HH spectrum depends on systems,
e.g., in MoS2 the intra-band currents play a more important
role [42], in α−quartz, the interband ones [48], while in
Si coupled intra- and interband dynamics is important [50].
The results for the pulse with parameters, pulse duration ∼
33 fs, field strength E0 = 0.07 V/Å and pulse frequency ω0 =
0.3 eV, are shown in Fig. 3 (unless specified, we use these
parameters throughout the paper). In our calculations, we
included two valence and two conduction bands and use con-
stant (momentum-independent, with modulus equal 1) dipole
moments. As it follows from Fig. 3, the nonlinear effects, evi-
dent from high-frequency oscillations in the interband current,
grow with increasing correlations. The time dependence of
the components of the current strongly depends on the value

FIG. 4. Interband high harmonic spectrum for different strengths of correlations (For better visual clarity, each curve is normalized
individually). Pulse parameters − pulse duration ∼ 33 fs, field strength E0 = 0.07 V/Å and pulse frequency ω0 = 0.3 eV.
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FIG. 5. Comparing HH spectrum for different values of pulse duration at E0 = 0.07 V/Å, ω0 = 0.3 eV. (left) and for different values of
the laser-pulse frequency at pulse duration ∼ 33 fs and E0 = 0.07 V/Å (right) in the case of correlations.

of G, becoming more nonlinear as G ∼ U 2 increases. As a
result, one can expect emissions at high photon energies when
correlations are taken into account.

B. HH spectrum

Indeed, our results for the (interband response) HH spec-
trum at different G′s (pulse parameters defined in the previous
subsection, out-of-plane perturbation) shown in left Fig. 4
demonstrate that with the increase of correlations the har-
monic cutoff (the highest photon energy of the emission)
extends to higher photon energies. Importantly, the harmonics
spectral weight shifts to higher frequencies with increasing
G, similar to the results obtained for the 1D Fermi-Hubbard
model [19]. This can be easily seen from right Fig. 4. The
reason for the growing number of harmonics is new excited
states with energy ∼ U , created by correlations (U is the
energy of an electron when the second electron is present
at the same site). The energy of these states increases with
U , thus resulting in higher-frequency transitions, and hence,
in emission with high-order harmonics. In addition, the HH
cutoff energy in the case of no interaction is around the 12th

harmonic (3.6 eV) and in the interaction case, around the 18th

harmonic (5.4 eV). Therefore, correlations increase the cutoff
energy of the HH spectrum.

In Fig. 5, we demonstrate the effects of pulse duration and
laser pulse frequency on HHG in the case when correlations
are present. On the left Fig. 5 (pulse duration dependence),
the pulse parameters are: the field strength E0 = 0.07 V/Å,
G = 1.5, ω0 = 0.3 eV. For all values of the duration of the
pulse the cutoff value for the order of harmonic was found
to be around 18 (energy ∼5.4 eV). On the other hand, in the
case of long pulse duration, we have found that below-gap
harmonics have more discrete harmonic frequencies (e.g., for
50 fs one can see clear peaks corresponding to the 2nd, 3rd,
and 4th, harmonics, while for 33 and 25 fs these are smeared
out).

The dependence of the HH spectrum on pulse frequency
was analyzed for frequencies ω0 = 0.2, 0.25, and 0.3 eV
(right Fig. 5). For ω0 = 0.2 eV the spectrum cut-off energy
was found to be around 6 eV, while for both ω0 = 0.25 eV
and ω0 = 0.3 eV it is around 5.4 eV. The extension of the
harmonic cutoff for lower driving frequencies indicates that
obtained nonlinear response cannot be described perturba-

tively. A similar dependence of the spectrum on frequency
was found theoretically in diamond [51].

The dependence of the HH spectrum on the strength of
the pulse field is shown in Fig. 6. We found a quasilinear
relation between the field strength and the spectrum cut-off
energy. An increase in the number of harmonics with field
increase is expected, since in the more nonlinear case more
electrons are excited and correlations are more pronounced. A
similar result was obtained in the case of the Hubbard model
solved with nonequilibrium DMFT [20]. In general, as our
analysis shows, the dependence of the spectrum on the pulse
parameters is rather similar in the noninteracting (not shown)
and interacting cases, though the emission intensity is stronger
in the interacting case.

Finally, in order to analyze the role of the number of the
bands involved in the dynamics, we performed calculations
in the case of a smaller number of bands; one valence and
one conduction band. As it follows from our calculations,
in the case of two bands the HH spectrum depends more
weakly on the strength of correlations (left Fig. 7) compared
to two valence and two conduction bands (right Fig. 7). Thus,
correlation effects (electron-scattering) play a more important
role when a large number of bands are optically excited. The
reason for this is a larger number of excited and dynamically
interacting (moving to different sites) charges when the num-
ber of bands is larger, thus the interacting terms in the TDDFT
equations [proportional to matrix elements F , Eq. (31)] be-
come larger when the number of bands increases.

FIG. 6. HH spectrum for different values of the field strength at
pulse duration ∼ 33 fs and ω0 = 0.3 eV in the case of correlations.
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FIG. 7. HH spectrum for the case of one valence and one conduction band (left) and two valence and two conduction bands (right) with
and without correlation effects. Pulse parameters − pulse duration ∼ 33 fs, field strength E0 = 0.07 V/Å and pulse frequency ω0 = 0.3 eV.

V. CONCLUSIONS

We have generalized the DMFT-TDDFT approach [59]
in the case of HHG and other nonlinear optical effects in
materials where electron-electron correlations play an im-
portant role. We applied the approach to analyze the effects
of electron interaction in the HH spectrum of ZnO, proba-
bly the most studied material in the case of HHG in solids.
We have found that interband currents, proportional to the
time-derivative of the interband polarization, give dominat-
ing contribution to the HH spectrum, and this polarization
strongly depends on the strength of correlation effects. It is
demonstrated that correlation effects shift the peak of the
HH spectrum to higher-order harmonics, with the center-of-
mass of the spectrum at harmonic number n ∼ U/ω0. The
number of harmonics dramatically increases with the increase
of the strength of correlations and the number of optically
excited bands. While the exact value of U in this system
is not known, these results show that correlation effects are
expected to increase the number of harmonics and move the
spectrum in the ultraviolet direction. Also, as we found, while

the HH spectrum significantly depends on the value of some
of the pulse parameters, like the frequency ω0 and E0, it is
much less sensitive to the value of the pulse duration. Thus,
we have developed a methodology to study the effects of
strong electron-electron correlations on the optical response
of correlated materials and applied it to ZnO. We expect the
general trends of the found correlation effect, like a larger
of the number of harmonics in systems with larger U and
enhancement of the role of the correlation effects in the
case of stronger pulses (when a larger number of bands are
involved in the dynamics), will hold for other materials as
well.
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