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Spin and valley polarization of an MoS2 zigzag nanoribbon
with a magnetic barrier via Fano resonance
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For monolayer MoS2, a magnetic field causes the degeneracy of the K and K ′ valleys to be lifted, owing to the
valley Zeeman effect. Thus, in a monolayer MoS2 nanoribbon system with a magnetic barrier, electrons in these
valleys exhibit different conductance behaviors when passing through the barrier. One valley shows a strong
dip in conductance caused by Fano resonance, i.e., quantum interference between continuum states and Landau
levels in the magnetic barrier. This dip can be modulated by changing the strength and length of the magnetic
barrier. By calculating the asymmetric conductance for the K and K ′ valleys as a function of incident energy with
various values of the physical parameters, optimized conditions for spin and valley polarization can be found.
The results presented here provide useful information to enable implementation of spin- and valley-polarized
currents in future devices.
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I. INTRODUCTION

Since the realization of monolayer graphene [1], there has
been extensive research on 2D materials. Among such ma-
terials, transition metal dichalcogenides (TMDCs) have been
widely investigated, owing to their peculiar physical proper-
ties [2]. These properties open the way to possible device
applications such as Field Effect Transistors (FETs) at room
temperature [3], Light Emitting Diodes (LEDs) [4], photode-
tectors [5], and gas sensors [6]. TMDCs have the general
formula MX 2, where M is a transition metal in group IV and
X is a chalcogen element.

Monolayer MoS2, an example of a TMDC, has a direct
band gap of 1.8 eV at the K and K ′ points [7], whereas bulk
MoS2 has an indirect band gap of 1.2 eV [8]. One of the
features of these TMDCs is very strong spin–orbit interac-
tion (SOI); in particular, the intrinsic SOI of MoS2 is about
150 meV [9]. Similar to graphene, MoS2 has a conduction
band minimum and valence band maximum at the K and
K ′ points in the first Brillouin zone. These two points are
degenerate and related by time-reversal symmetry. Owing to
the large momentum separation between the K and K ′ val-
leys, intervalley scattering is suppressed [10]. Therefore, the
valleys can be considered as representing an additional degree
of freedom similar to the spin degree of freedom. Threefold
rotations and intrinsic inversion symmetry breaking give rise
to interesting phenomena associated with the valleys, such as
the valley Hall effect [11] and valley optical selection rules
[2,12–14]. Manipulating this valley degree of freedom has led
researchers to explore so-called valleytronics [15].
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One of the important issues that arise in the quest to realize
valleytronics is the control of valley polarization, i.e., the rela-
tive population ratio between the K and K ′ valleys. Typically,
this valley polarization can be manipulated by a magnetic
field [16,17], an electric field [18–20], strain [21], optical
pumping with circularly polarized light [14,22,23], and a val-
ley magnetoelectric effect [20]. With regard to applications
of valleytronics based on MoS2, diverse models and devices
have been proposed theoretically. For instance, a normal/
ferromagnetic/normal (NFN) MoS2 junction has been re-
ported to control spin and valley polarization by controlling
gate voltage [24,25]. It has also been found that with the ap-
plication of circularly polarized light, ferromagnetic materials
on monolayer MoS2 are able to generate high spin and valley
polarization [26,27]. Liu et al. [28] examined how strain on
NFN monolayer MoS2 affected spin and valley polarization.
For a system consisting of an array of ferromagnetic materials
on MoS2, valley-resolved conductance oscillations were ob-
served by modulation of its gate voltage [29]. Ferromagnetic/
superconductor/ferromagnetic [30], normal/superconductor
[31], and ferromagnetic/insulator/normal/ferromagnetic [32]
structures have also been reported.

Among interesting properties related to the valley, TMDCs,
including MoS2, exhibit the so-called valley Zeeman effect,
which is analogous to the ordinary Zeeman effect. In the
valley Zeeman effect, an applied magnetic field causes ener-
gies between valleys to be lifted and split. As with the valley
Hall effect and valley optical selection rules, it is the broken
inversion symmetry of the TMDCs that is responsible for the
valley Zeeman effect [17]. This effect has been studied exper-
imentally [33–36] and theoretically [37] in various TMDCs.

In this paper, we propose that valley polarization can be
achieved by Fano resonance in a zigzag nanoribbon (ZNR)
system with a magnetic barrier, basing our work on a three-
band model for MoS2. Fano resonance is a general wave
phenomenon caused by wave interference between a con-
tinuum state and a bound state. This interference results in
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FIG. 1. Schematic geometry of a MoS2 zigzag nanoribbon with
a magnetic barrier [ �B = B(x)êz]. The magnetic barrier with length
LB is represented by the gray region. The curves at the top of the
figure indicate the energy dispersion of the K and K ′ valleys in
nonmagnetic and magnetic barrier regions.

asymmetric line shapes, which can be observed in quantum
transport processes, including those in Aharonov–Bohm inter-
faces [38], quantum dots [39], cavities [40], and spintronics
[41–44]. In the system illustrated in Fig. 1, we will show
valley polarization by calculating the asymmetric conductance
within the Landauer–Büttiker formalism. The K and K ′ val-
leys exhibit different behaviors in magnetic fields, owing to
the valley Zeeman effect in the magnetic barrier region, which
is represented by the gray region of length LB in Fig. 1. As
a result of the valley Zeeman effect, Landau levels (LLs)
of one of the valleys are lowered as the magnetic field in-
creases. These LLs interact with continuum states, resulting
in a dip in conductance, i.e., there is strong backscattering
caused by Fano resonance. In this strong conductance dip, an
electron in another valley can propagate through the magnetic
barrier without being totally suppressed. In this process, a
fully valley-polarized current can be obtained. Furthermore,

we will touch on the possibility of spin- and valley-polarized
devices.

The remainder of this paper is organized as follows. In
Sec. II, we introduce a mathematical model for calculating
transport properties of the K and K ′ valleys in our system. In
Sec. III, we present our numerical results for the conductance
of the K and K ′ valleys and the spin and valley polarization.
Finally, in Sec. IV, we summarize our main results.

II. MATHEMATICAL MODEL

Monolayer MoS2 is made up of one layer of Mo and two
layers of S atoms. From first-principles calculations [45–47],
it has been shown that the electronic bands of MoS2 in the K
and K ′ valleys near the Fermi energy are mainly composed
of three d orbitals (dxy, dx2−y2 , dz2 ) of Mo atoms. A three-
band tight-binding model (TBM) of MoS2 provides a good
description of the properties of the K and K ′ valleys and the
edge states near the Fermi energy [45], and so such a model is
chosen for our calculations. The corresponding tight-binding
Hamiltonian is

H =
∑
i,μ

εMo
i,μ c†

i,μci,μ +
∑
〈i, j〉

∑
μ,ν

tMo-Mo
iμ, jν c†

i,μc j,ν , (1)

where ci,μ and c†
i,μ are, respectively, annihilation and creation

operators of electrons on d orbital μ for MoS2 at site i.
Here, 〈i, j〉 indicates that the summation runs over all
nearest-neighbor atoms. The on-site energy εMo

i,μ and hopping
parameters tMo-Mo

iμ, jν can be written in matrix form as follows:

εMo =
⎛
⎝ε1 0 0

0 ε2 iλMsz

0 −iλMsz ε3

⎞
⎠, (2)

tMo-Mo
E =

⎛
⎝ t0 t1 t2

−t1 t11 t12

−t2 −t12 t22

⎞
⎠, (3)

tMo-Mo
NE =

⎛
⎜⎜⎝

t0 − 1
2 t1 +

√
3

2 t2 −
√

3
2 t1 − 1

2 t2
1
2 t1 +

√
3

2 t2
1
4 t11 + 3

4 t22

√
3

4 (t11 − t22) + t12√
3

2 t1 − 1
2 t2

√
3

4 (t11 − t22) − t12
3
4 t11 + 1

4 t22

⎞
⎟⎟⎠, (4)

tMo-Mo
NW =

⎛
⎜⎜⎝

t0
1
2 t1 −

√
3

2 t2 −
√

3
2 t1 − 1

2 t2

− 1
2 t1 −

√
3

2 t2
1
4 t11 + 3

4 t22 −
√

3
4 (t11 − t22) − t12√

3
2 t1 − 1

2 t2 −
√

3
4 (t11 − t22) + t12

3
4 t11 + 1

4 t22

⎞
⎟⎟⎠, (5)

where sz = ±1 is the z component of the spin degree of
freedom. The values of the parameters used in the three-band
model are shown in Table I.

Based on the three-band TBM, an MoS2 ZNR of width
60 nm with a magnetic barrier is considered. The magnetic
field describing this barrier is given by

�B(x) = B

[
θ

(
x − LB

2

)
− θ

(
x + LB

2

)]
êz, (6)

where θ (x) is the Heaviside function, and LB and B are, re-
spectively, the length and strength of a single magnetic barrier.

The corresponding vector potential is �A = (0, Ay, 0), with

Ay = B0

[(
x + LB

2

)
θ

(
x + LB

2

)
−

(
x − LB

2

)
θ

(
x − LB

2

)]
.

(7)

To include the magnetic field in the three-band TBM,
the hopping terms are modified by multiplying by the
Peierls phase θP: t → eiθP t , where the Peierls phase is de-
fined by θP = (e/h̄)

∫ 2
1

�A · �dl . In our case, the Peierls phase
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TABLE I. Parameters of three-band model [45].

Parameter Value

ε1 1.046
ε2 2.104
t0 −0.184
t1 0.401
t2 0.507
t11 0.218
t12 0.338
t22 0.057
λM 0.073

becomes

θp = B0

2

y2 − y1

x2 − x1

[
f

(
x2,

LB

2

)
− f

(
x1,

LB

2

)

− f

(
x2,−LB

2

)
+ f

(
x1,−LB

2

)]
, (8)

where f (x, y) = (x + y)2θ (x + y).
KWANT, an open-source Python package [48], is used in

our simulation. In this program, within the Landauer–Büttiker
formalism, the conductance G = (e2/h)

∑
Ti j , where Ti j is

a transmission coefficient from the ith channel to the jth
channel. This software program has been applied to numerous
quantum transport problems with high accuracy and reason-
able computation times. Basing our study on the three-band
TBM with KWANT, we will focus on quantum transport
properties of conduction bands in the K and K ′ valleys.

III. RESULTS AND DISCUSSION

As is well-known, the degeneracy of the K and K ′ valleys is
broken when a magnetic field is applied. In Fig. 2, the energy
band structure of conduction electrons of an MoS2 ZNR is
shown in the case of uniform magnetic fields. The energy
splitting called the valley Zeeman effect is illustrated well
in Fig. 2(a) for a 10 T magnetic field. As the magnetic field
increases, the valley Zeeman effect becomes larger and the
parabolic bottom shapes of energy states change to flat. Note
that in this three-band model, zero energy is defined at the
valence band maximum [45]. Figure 2(b) shows the energy
dispersion of an MoS2 ZNR of width 60 nm as a function of
magnetic field. The solid and dashed lines indicate the LLs at
the K and K ′ valleys, respectively. For simplicity, we draw the
LLs without the spin splitting in this figure. The splitting of
LLs between the two valleys is enhanced when the magnetic
field increases, as we know. One interesting point is that for
our sample size, the zeroth LL of the K valley decreases as
the magnetic field increases. However, as shown in Fig. 2(c),
the energy differences between the zeroth LL and the other
LLs is the same for both valleys. This means that the energy
spacing between the valleys remains the same, i.e., the energy
shift between the two valleys due to the valley Zeeman effect
is constant. Because of this valley Zeeman effect, when elec-
trons move from source to drain, they are affected differently
by the magnetic field, depending on their valleys. We now turn
in Secs. III A and III B to consider how conduction electrons
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FIG. 2. (a) Energy dispersion of an MoS2 ZNR at 10 T near the
conduction band including the spin-orbit interaction. The blue (red)
lines indicate the spin-up (spin-down) states and the dotted lines
indicate the intrinsic edge states of the system. (b) Landau levels for
both the K (solid lines) and K ′ (dashed lines) valleys. (c) Energy
differences between the zeroth Landau level and the other Landau
levels for the K (solid lines) and K ′ (filled circles) valleys.

in the K and K ′ valleys are affected by the magnetic barrier
in our system. On this basis, we will discuss the valley and
spin polarizations of the system in Sec. III C. From now on,
we assume that the energy EF = E3band − 1.5975 eV, where
E3band is the energy calculated from the three-band model.
Also, from our numerical calculation, the ratio of intervalley
transitions to intravalley transitions is about 10−10, and so we
ignore intervalley transitions in this paper. In our calculation,
the first, second, and third modes determined by confinement
on both leads start at EF = 0.73 meV, 1.4 meV, and 2.6 meV.

A. K ′ valley

This subsection discusses the transport properties of the K ′
valley through the magnetic barrier for the MoS2 ZNR. The
schematic geometry of the magnetic barrier is shown in Fig. 1.
In Fig. 3, the conductance of the K ′ valley as a function of EF

is presented for different lengths and strengths of the magnetic
barrier.

Figures 3(a)–3(c) show the conductance for different
lengths LB of the magnetic barrier, ranging from 5 nm to
50 nm in 5 nm increments, at fixed magnetic fields 1 T,
5 T, and 9 T, respectively. In Fig. 3(a), the conductance at a
magnetic field of 1 T decreases monotonically as LB increases.
In Fig. 3(b), for the conductance at a magnetic field of 5 T, the
smaller LB has a weaker effect on the conductance. In addi-
tion, owing to the small length LB, there is a tunneling proba-
bility that electrons move across the magnetic barrier as in the
case of a 1D conventional potential barrier. However, as the
length LB increases, the conductance starts to be more strongly
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FIG. 3. (a)–(c) Conductance of the K ′ valley for a MoS2 zigzag nanoribbon as a function of Fermi energy (EF = E3band − 1.5975 eV). Each
line is for various values of LB from 5 nm to 50 nm with an increment of 5 nm for magnetic barrier strengths of 1 T, 5 T, and 9 T, respectively.
(d), (e) Conductance for various magnetic fields from 1 T to 10 T with fixed LB = 10 nm and 35 nm, respectively. Note that each line with
different parameters is vertically shifted from the blue line to show the different trends. (f), (g) Probability density profile with LB = 50 nm and
B = 5 T for two different energies E = 1.5 meV and 2.5 meV, respectively. The reddish shading indicates the single magnetic barrier regions.

suppressed. For instance, above LB = 35 nm, the conductance
is completely suppressed below 2.0 meV, and there are clear
plateaus where the conductance becomes constant. This step-
wise behavior in conductance becomes clear as LB increases.
This means that an electron cannot move across the magnetic
barrier via the tunneling process when its energy is below the
zeroth LL. For the cases where there is suppression (EF =
1.5 meV) or a plateau (EF = 2.5 meV) in the conductance
data for LB = 50 nm, we plot their local densities in Figs. 3(f)
and 3(g), respectively. Figure 3(f) shows that the electron
wave function in the K ′ valley cannot penetrate the magnetic
barrier and is totally reflected. However, Fig. 3(g) shows that
a conduction electron in the K ′ valley can be transported from
source to drain by means of the edge states of the magnetic
barriers. These features are also clearly revealed in the case of
a magnetic barrier strength of 9 T in Fig. 3(c).

The conductance in the K ′ valley for various magnetic
fields from 1 T to 10 T with two fixed values of LB (10 nm
and 35 nm) is shown in Figs. 3(d) and 3(e). For small LB = 10
nm, the conductance decreases monotonically as the magnetic
field increases. On the other hand, in the case of LB = 35 nm,
as the magnetic field increases, the conductance suppression
regions are broadened. The energy with which an electron can
start to penetrate through the barrier increases. These features
are related to the LLs. As the magnetic field of the barrier

increases, the zeroth LL increases, which means that the edge
channel energy also increases. If the incident energy is below
the zeroth LL, there is no channel through which an electron
can penetrate the barrier. Therefore, an electron will experi-
ence strong backscattering, which causes a reduction in con-
ductance. However, if a K ′ valley electron has an energy above
a certain LL, it can move to the drain via possible edge chan-
nels. In this case, the conductance exhibits a plateau (quantum
Hall effect). These LLs of the magnetic barrier could play a
role as a potential barrier against electrons in the K ′ valley. In
view of the conventional potential barrier, for the K ′ valley, as
LB becomes shorter, the possibility of penetration through the
barrier increases, whereas if LB becomes longer, the conduc-
tance begins to be suppressed except for the edge channel.

B. K valley

In this subsection, the transport properties of the K valley
through the magnetic barrier for the MoS2 ZNR are discussed.
Figure 4 shows the conductance of the K valley for different
lengths and strengths of the magnetic barrier. Compared with
the conductance of the K ′ valley as a function of EF , which
exhibits simple plateaus, that of the K valley has a more
complex structure. The conductance of the K valley is shown
in Figs. 4(a) and 4(b) for different magnetic fields from 1 T
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FIG. 4. (a)–(d) Conductance of the K valley as a function of Fermi energy for fixed LB of (a) 10 nm and (b) 35 nm and for fixed strengths
of the magnetic barrier of (c) 5 T and (d) 9 T. Note that each line with different parameters is vertically shifted from the blue line to show the
different trends. (e) Conductance near Fano resonance dips for 3 T in (a) and (b). To show the Fano resonance, the conductance for the n = 0
mode in the leads is represented. The black dashed lines are fitted lines based on Eq. (9). (f)–(k) Probability density profiles at different values
of B, LB, ε: (f) 2 T, 10 nm, 1.39 meV; (g) 2 T, 35 nm, 1.39 meV; (h) 6 T, 10 nm, 1.0 meV; (i) 6 T, 35 nm, 1.11 meV; (j) 10 T, 35 nm, 2.42 meV;
(k) 9 T, 50 nm, 2.32 meV. These are indicated by the black arrows and corresponding labels in the conductance graphs. The reddish shading
indicates the single magnetic barrier regions.

to 12 T and two fixed values of LB (10 nm and 35 nm,
respectively). For magnetic fields from 1 T to 3 T, one of the
characteristics that can be seen is the presence of strong dips
in conductance before the new channels in the source start at at
1.42 meV (n = 1) and 2.6 meV (n = 2), respectively. At these
conductance dips for 10 nm and 35 nm, the probability densi-
ties are as shown in Figs. 4(f) and 4(g), respectively. These
conductance dips are caused by strong backscattering due
to the interaction between continuum states and quasi-bound
states arising from the valley Zeeman effect. This type of res-
onance is called Fano resonance [49] and can be expressed as

T (ε) ∝ |ε + q|2
ε2 + 1

, (9)

where ε = (EF − Ei )/(�/2), and Ei and � are the resonance
energy and width of quasibound states, respectively. q is the
asymmetry parameter and is related to interaction between the
continuum and quasibound states. Figure 4(e) shows that fitted
lines based on Eq. (9) match the numerical results well around
the dip region. However, Fig. 4(e) shows that the intersubband
interaction causes the conductance curve to deviate from the
fitted line above 1.42 meV, where the second channel in the
leads starts to be involved. These resonance dips can also
be seen in other systems, such as the Fano–Rashba effect

[41–44], Fano resonance in a general quasi-1D system with
local potentials [50], and quantum dots [51,52].

Moreover, in Fig. 4(a), the positions of these conductance
dips are shifted as the magnetic barrier strength increases. As
the magnetic field increases, the energy bands or LLs for the K
valley in the barrier region become lower, owing to the valley
Zeeman effect. In view of the elementary potential well in a
quasi-1D problem [50], lowering of LLs should be considered
as the depth of potential well increases. Therefore, we can
deduce that the Fano resonance energy causing backscattering
becomes lower as the magnetic strength increases. As well
as the position of the Fano resonance dips, their widths also
become broader as the magnetic barrier strength increases.

Taking account of Fano resonance, we can see that mag-
netic edge states in the magnetic barrier can contribute to
conductance. Before the first Fano resonance starts to occur,
there is a conductance peak from 1 T to 9 T in Fig. 4(a). The
edge state in the barrier region is responsible for these peaks.
For instance, Figs. 4(h) and 4(i) show these edge states, whose
energy is marked by the black arrows in Figs. 4(a) and 4(b),
respectively. As the magnetic field increases further, the LLs
in the magnetic barrier become lower, and so the other edge
modes start to play a role in conductance. Therefore, above
9 T in Fig. 4(a), even though Fano resonance occurs, the
conductance is not suppressed totally, owing to edge modes

235123-5



DAEHAN PARK AND NAMMEE KIM PHYSICAL REVIEW B 106, 235123 (2022)

(a) (b)

FIG. 5. Valley polarization due to magnetic barriers with
(a) LB = 10 nm and (b) LB = 35 nm, with 1 T increments of the mag-
netic field from 1 T to 10 T. Polarizations of +1 and −1 correspond
to perfectly polarized K and K ′ states, respectively.

corresponding to higher LLs. Also, from 10 T to 12 T, there
is another conductance peak in which edge states in higher
LLs are involved. Therefore, depending on the strength of
the magnetic field, owing to Fano resonance and edge states,
the conductance exhibits repeated increasing and decreasing
trends. In Fig. 4(b), this oscillation in conductance becomes
clearer. It can be seen that the size of the magnetic barrier has
an effect on its quasibound states.

Figures 4(c) and 4(d) show the conductance in the K valley
as LB increases from 5 nm to 50 nm in 5 nm increments at
fixed magnetic fields of 5 T and 9 T, respectively. In these
cases, the width of the conductance dip increases as LB in-
creases. The generic features are similar to what is seen in
Figs. 4(a) and 4(b).

In addition, in the conductance in the K valley, there are
several transmission peaks that cannot be seen in the case of
the K ′ valley, for instance, the two peaks marked by black
arrows and labeled (j) and (k) in Figs. 4(b) and 4(d). The
probability densities at these peaks are shown in Figs. 4(j) and
4(k), respectively. Unlike strong backscattering due to Fano
resonance, electrons can move across the barrier via resonant
tunneling caused by localized states of the magnetic barrier.

C. Spin and valley polarizations

Based on the features of the K and K ′ valleys in the MoS2

ZNR, we consider spin and valley polarizations in this sub-
section. The spin polarization Ps and valley polarization Pv

are defined as follows:

Ps = GK↑ − GK↓ + GK ′↑ − GK ′↓
GK↑ + GK↓ + GK ′↑ + GK ′↓

, (10)

Pv = GK↑ + GK↓ − GK ′↑ − GK ′↓
GK↑ + GK↓ + GK ′↑ + GK ′↓

, (11)

where Ga,b is the conductance of the system, a ∈ (K, K ′), and
b ∈ (↑,↓).

First, Fig. 5 shows the valley polarization of MoS2 for
two different magnetic barrier lengths. Values of +1 and

Spin polariza�on Valley polariza�on

(b)(a)

(d)(c)

FIG. 6. (a) Spin polarization and (b) valley polarization of an
MoS2 ZNR with LB = 35 nm for six different magnetic barrier
strengths. (c) Spin polarization for 5 T and 35 nm. (d) Conductance
for different valleys and spins for 5 T and 35 nm.

−1 indicate fully polarized K and K ′ valleys, respectively.
For simplicity, we do not consider the intrinsic SOI in this
figure. In general, for both cases, in the low-energy range
below 1.2 meV, systems are almost entirely polarized in the
K valley. However, when the incident energy becomes close
to about 1.4 meV, where Fano resonance occurs, the valley
polarization is switched from K to K ′. For the case of LB = 10
nm [Fig. 5(a)], as the magnetic strength increases to 8 T, the
energy range, with the K ′ valley having become fully polar-
ized, becomes broader, and above this magnetic field, the dip
starts to disappear. At energies higher than 1.4 meV, the valley
polarization goes to zero, owing to mixing between valleys.

For the other case of LB = 35 nm [Fig. 5(b)], it is the K
valley that is fully polarized over a large energy range as the
magnetic field increases. This reflects the fact that conduction
electrons in the K ′ valley can penetrate the magnetic barrier
less easily than those in the K valley, as discussed in Sec. III A.
The results show that if LB is sufficiently large, the electrons
in the K ′ valley cannot penetrate the magnetic barrier, and
the width of the Fano resonance in the K valley becomes
narrower, which makes it difficult to manipulate the valley
polarization. Therefore, for switching valley polarization in
our system, a relatively small LB is preferred, so there is
nonzero conductance for the K ′ valley at the conductance dip
of the K valley. For instance, in Fig. 5(a), at B = 7 T, the valley
polarization is switched from K to K ′ between E = 0.85 meV
and E = 1.40 meV. Thus, by manipulating the strength and
length of the magnetic barrier, it is possible to find an energy
range where the valley polarization can switched from K to
K ′ without changing the direction of the magnetic field.

In Fig. 6, the spin polarization and valley polarization of
MoS2 ZNR with LB = 35 nm are presented for six differ-
ent magnetic barrier strengths. In this case, the intrinsic SOI
has been taken into account to reveal its detailed behavior.
For small magnetic barrier lengths, the general features are
the same as in the absence of SOI. Figure 6(a) shows the
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system’s spin polarization, which is close to zero in most en-
ergy regions for the different magnetic fields. However, there
is strong spin polarization near 0.7 meV and 1.4 meV, where
the Fano resonance occurs. In Fig. 6(b), it can be seen that
the valley polarization is initially confined to the K valley and
then approaches zero. For the six different magnetic fields, the
spin polarization and valley polarization for 5 T are compared
alongside one another in Fig. 6(c). It can be seen that near
1.4 meV, spin-up polarization switches rapidly into spin-down
polarization in the K valley. To examine this further, the con-
ductances from the different spin and valley components are
presented in Fig. 6(d). On the one hand, the valley Zeeman
effect suppresses the K ′ valley conductance until the energy
reaches about 1.8 meV. On the other hand, it is possible for
each spin component to become fully polarized, owing to
spin splitting and Fano resonance. These results show that
for a magnetic field barrier of 5 T and length 35 nm, the
spin polarization can be changed from spin-up to spin-down
entirely near 1.4 meV, where the conductance is purely K
valley. In addition, if we change the direction of the magnetic
field, spin-up and spin-down polarization of the K ′ valley can
be obtained in the same energy region. Thus, four distinct spin
and valley components can be obtained by manipulating the
direction and strength of the magnetic field.

IV. CONCLUSION

In summary, we have shown that spin and valley polariza-
tion can be achieved in a MoS2 ZNR with a magnetic barrier,

as a result of strong intervalley backscattering caused by Fano
resonance. Owing to the valley Zeeman effect, electrons in
the K and K ′ valleys behave differently in the magnetic field
barrier region. The energy dispersion, conductance, and local
probability density have been investigated to reveal the de-
tails of transport in the different valleys. In the presence of
the magnetic barrier, the K ′ valley exhibits simple plateaus
in conductance, resulting from magnetic edge states. On the
other hand, the K valley has a more complex conductance
structure, caused by magnetic edge states and LL states in
the magnetic barrier, which result in strong backscattering in
conductance dips. These conductance dips play an important
role in achieving a highly valley-polarized current. Because
the broadness of the Fano resonance deep in the K valley
can be manipulated by changing the width and strength of
the magnetic barrier, optimized conditions for spin and valley
polarizations can be found. The results presented here provide
a useful basis for the development of devices employing spin-
and valley-polarized currents.
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and A. Imamoğlu, Nat. Phys. 11, 141 (2015).

[36] Y. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D.
Kim, A. M. van der Zande, A. Rigosi, H. M. Hill, S. H. Kim, J.
Hone, Z. Li, D. Smirnov, and T. F. Heinz, Phys. Rev. Lett. 113,
266804 (2014).

[37] R.-L. Chu, X. Li, S. Wu, Q. Niu, W. Yao, X. Xu, and C. Zhang,
Phys. Rev. B 90, 045427 (2014).

[38] A. Ueda, I. Baba, K. Suzuki, and M. Eto, J. Phys. Soc. Jpn. 72,
157 (2003).
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