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Quantum phase transitions in the matrix product states of the one-dimensional
boson Hubbard model
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We study quantum phase transitions in the matrix product states of the one-dimensional boson Hubbard model,
whose amount of entanglement is limited by the size of the matrices used in the representation of the states. By
measuring entanglement entropy and other physical properties, we observe that the Mott-insulator-to-superfluid
transitions occur sharp and continuous, accompanied by shifting transition points that are not blurred by finite
entanglement effects. This strongly suggests that the transition always occurs between the Mott insulator and
a mean-field-like compressible state, followed by the more entangled superfluid state. Both O(2) and the
commensurate-incommensurate transitions are studied, whose properties can be characterized by entanglement
spectra and critical exponents.
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I. INTRODUCTION

Entanglement is a property of quantum systems charac-
terizing the peculiar nature of quantum correlations [1–5],
associated with the inseparability between the domains in the
formation of a quantum state. It is therefore an interesting
question how a limited amount of entanglement modifies this
nature and then alters the behavior of quantum phase tran-
sitions induced by the divergence of the correlation length.
In a restricted region of the Hilbert space accessible, whose
area defines the amount of entanglement, a finite length scale,
entanglement length, can be introduced that characterizes the
range of quantum correlations. It has been argued that the
existence of a finite entanglement length modifies the critical
properties of quantum phase transitions and results in finite-
entanglement scaling behavior [6–8], just as the finite size of
the system constraining the correlation length leads to finite-
size scaling [9,10]. The matrix product states [11–15] (MPS)
provide a very useful tool for realizing quantum systems with
a limited amount of entanglement. Here, many-body quantum
states are represented in the form of matrix products, the size
of which determines the amount of entanglement involved.
Numerically, an exact solution will be recovered at the limit
where the size of matrix is large enough. Systematic changes
in physical quantities near the critical point as a function of en-
tanglement length are expected to produce scaling behaviors.
It has been observed that the entanglement length is given in
an exponential relation [6,7] ξχ ∼ χκ , where χ is the matrix
size, with an exponent κ .

The finite-entanglement scaling behavior of various phys-
ical quantities near quantum phase transitions have been
found in various one-dimensional systems [6–8,16,17]. How-
ever, unlike the finite size effect that smoothes the transition,
blurring is seldom found in quantum phase transitions with
a finite amount of entanglement. Rather, sharp transitions
with shifted transition points appear [7,16], or discontinuous
first-order phase transitions are often observed [18,19].

Therefore, it is interesting to investigate whether a finite
amount of entanglement has the same effect as the finite size
of the system.

In this work, we study the Mott-insulator-to-superfluid
quantum phase transition of the one-dimensional boson
Hubbard model represented in the MPS. By measuring en-
tanglement entropy and other physical quantities, we explore
how the nature of the transition is modified as the size of
the matrices changes. We find that the entanglement entropy
is very sensitive to quantum mechanical states and changes
dramatically near the phase transition. The transition appears
continuous and sharp, even with small size matrices. One of
the surprising things is that when the transition from the Mott-
insulating to the superfluid phases has just occurred, there is
an interval in which the entanglement entropy rather decreases
and the state exhibits mean-field-like behavior.

II. MPS REPRESENTATIONS

The boson Hubbard model for one-dimensional infinite
chains is given by the Hamiltonian

H = U

2

∑
i

ni(ni − 1) − μ
∑

i

ni

− t
∑

i

(b†
i+1bi + b†

i bi+1), (1)

where i is the index for sites, U is the strength of the on-site
interaction, t is the hopping amplitude, and μ is the chemical
potential. ni represents the number operator and b†

i (bi ) denotes
the boson creation (annihilation) operator at the ith site. We
investigate the superfluid-insulator transition of the system by
taking the energy unit U = 1 and by tuning μ for a given t ,
leading to a commensurate-incommensurate (CI) transition in
boson density. We also explore O(2) transition by tuning t
while keeping the density expectation value fixed at 〈n〉 = 1
for each site by adjusting chemical potential.
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A variational ground state of the system is constructed in
the canonical form of the MPS wave function [20,21]

|�〉 =
∑
{si,ai}

A[s1]
aLa1

�a1 B[s2]
a1a2

�a2 A[s3]
a2a3

· · · B[sL]
aL−1aL

�aL

× |s1, s2, s3, · · · , sL〉, (2)

where, with L → ∞ for an infinite chain used in this work, A’s
and B’s are the MPS matrices of size χ × χ , ai = 1, · · · , χ

are the bond indices, and si are physical indices for the basis
states for which we use the number of occupied bosons (|si〉 =
|0〉, |1〉, |2〉, |3〉, · · · , |nmax〉) at the ith site. We choose nmax =
4, which appears to be big enough to take into account the
boson number fluctuations.

In order to find the lowest energy state by using the two-site
time-evolving block decimation (TEBD) algorithm [20,21],
we construct the wave function by multiplying two sets of
matrices A and B alternatively. At each site between the two
matrices A and B, the same column vector � is multiplied.
Its elements, �a, are the Schmidt coefficients, which are non-
negative real numbers, ordered such that �1 � �2 � · · · . In
the process of TEBD, we adopt a normalization scheme �1 =
1. Since �a decreases rapidly as a increases, it is sufficient for
practical calculations to choose a finite χ . The limited size χ

in the critical region induces a systematic error that reflects the
amount of entanglement contained in the ground-state wave
function, often leading to predicting scaling behavior as a
function of χ . In our study, when choosing χ in our calcula-
tion, we take into account whether its value commensurates
well with the structure of the entanglement spectrum. As
shown below in Fig. 4, in the Mott-insulating phase �a have
a structure with a mixture of double and single degeneracy
levels.

The half-chain entanglement entropy, S, is a useful
quantity to characterize the entanglement properties of a one-
dimensional quantum system, which is defined by

S = −
∑
i=1

wi log2 wi, (3)

where wi are the eigenvalues of the reduced density matrix.
Conveniently, in the MPS, wi are easily obtained as wi = λ2

i ,
where λi = �i/

√∑χ

a=1 �2
a.

We then use the imaginary TEBD method to determine A,
B, and � for the ground state by minimizing the energy of the
MPS given in Eq. (4). Starting with an arbitrary initial state
|�〉 and proceeding along the imaginary time τ , we obtain the
ground state |�0〉:

lim
τ→∞ e−τH |�〉 → |�0〉. (4)

By dividing time into small intervals of size 	τ , we apply the
the Suzuki-Trotter decomposition e−τH = (e−	τH )N (	τ =
τ/N ), so that

e−	τH =
L−1∏

i=1,3,···
e−	τhi,i+1

L∏
i=2,4,···

e−	τhi,i+1 ,

hi,i+1 = 1

2

(
h0

i + h0
i+1

) − t (b†
i+1bi + b†

i bi+1),

h0
i = Uni(ni − 1) − μni, (5)

FIG. 1. A schematic phase diagram of the one-dimensional bo-
son Hubbard model for different χ ’s. As χ decreases, the Mott
insulating phase area is reduced and the phase boundary, not blurred
even for small χ , moves inward. This means that the locations of
the CI and the O(2) transitions depend on χ , which is different from
what we expect from finite size effects.

where we bipartite the system into two parts containing odd
and even bonds. The number of repetitions N is determined
under the condition that the energy difference in the subse-
quent state is less than 0.1 − 0.5 × 10−12. A small tolerance
is essential to distinguish subtle differences in entanglement
entropy. If necessary, the TEBD process is extended and re-
peated more until we reach the state within the tolerance.

Smaller 	τ reduces the decomposition errors, but requires
a longer time for the TEBD process. We choose 	τ = 0.001
in our calculations, which costs a long time but is necessary
to obtain the lowest energy state, especially near the phase
transition. In a uniform system, we have

e−	τhi,i+1 |�0〉 = e−	τε0 |�0〉, (6)

where ε0 is the ground-state energy per site.

III. MOTT-INSULATOR-SUPERFLUID TRANSITIONS

We study the qunatum phase transitions of the model, rep-
resented by the MPS. By measuring the entanglement entropy
as well as other quantities such as the density and the single-
particle amplitude, we determine the phase boundaries and
investigate the critical properties. Figure 1 shows a schematic
phase diagram of the model with densities 〈n〉 ≈ 1 for differ-
ent χ ’s. For small χ , the Mott insulating phase area decreases
and the phase boundary moves inward. The locations of the
CI and O(2) transitions depend on χ . This is quite different
from what we expect from finite size effects that blur the
boundary instead of shifting it. Previously MPS studies for
this model have been reported [16]. Our study demonstrates
the properties of the phase transition in more detail near the
phase transition point and the presence of mean-field-like
states. We will discuss these transitions below.

A. O(2) transition

Repulsive interactions between bosons lead to the Mott
insulating phases with commensurate densities for small t
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FIG. 2. The scaling behavior of the energy ε0(χ ) + μ in the
Mott-insulating phase at t = 0.220 as a function of the matrix size
χ . In the Mott-insulating phase, the density is fixed at 〈n〉 = 1 so
that the chemical potential term just adds a constant −μ to the total
energy. By fitting the curve, we obtain that ε∗

0 + μ = −0.181167 and
κ = 1.65(5).

as shown in Fig. 1. The quantum correlation length of the
MPS represented by a matrix of size χ is limited by the
entanglement length ξχ ∼ χκ . We, therefore, expect that
the energy per site, ε0(χ ), at the ground state with the particle-
hole symmetry obeys the scaling relation

(ε0(χ ) − ε∗
0 ) ∼ χ−κ (d+1), (7)

where ε∗
0 is the value in the limit χ → ∞, and d = 1 is

the spatial dimension. Figure 2 shows the scaling behavior
of ε0(χ ) in the Mott-insulating phase at t = 0.220. Since
the density is fixed at 〈n〉 = 1, we plot ε0(χ ) + μ to offset
the constant chemical energy term. By fitting the curves,
we obtain κ = 1.65(5) for the gapped Mott-insulating state.
Note that this value is bigger than the theoretical prediction
κ = 1.34 for the model in the critical gapless states, which
is given by the formulas [6] κ = 6/[c(

√
12/c + 1)] with the

central charge c = 1.
The O(2) transition occurs through proliferation of the

particle-hole pairs while keeping the density constant. Here,
we induce the transition by changing t while we adjust the
chemical potential along [16] μ(t ) = 0.54067 − 1.32850t −
0.53479t2 (dotted line in Fig. 1) and slightly tune μ(t ) if
needed in the superfluid phase to make the density as close as
〈n〉 ≈ 1. It turns out that the half-chain entanglement entropy
is an outstanding quantity that clearly exhibits the signature of
the transition as shown in Fig. 3. The half-chain entanglement
entropy increases smoothly in the Mott-insulating phase as
t/U increases, and then drops as soon as the system crosses
the O(2) transition point.

The transitions are sharp and continuous for each χ . This
implies that the Mott-insulator-to-superfluid transitions with
different χ ’s are themselves well-defined phase transitions.
The discontinuity shown in the figure seems to be a residue
because it takes an impractically long time to achieve the
lowest energy state near the transition. Another finding is
that entanglement is rather reduced in superfluids near the
transitions. This is somewhat surprising, as we expect the

FIG. 3. The half-chain entanglement entropy of the MPS with
various χ ’s for the O(2) transition of the one-dimensional boson
Hubbard model. It exhibits a clear signature of the transition for each
χ even though the density stays constant with 〈n〉 ≈ 1.

superfluid to occur in a more entangled state. This behavior
will be discussed in detail later.

One of the most convenient tools for identifying phases is
the spectrum of the reduced density matrix eigenvalues, λ2

i ,
called the entanglement spectrum [22–24]. Figure 4 shows
a few λi’s in the Mott-insulating and the superfluid phases,
starting with the largest at the top. The number of dots repre-
sents the degeneracy of the eigenvalues. The hallmark of the
Mott-insulating phase is the double degeneracy of the second
level (i.e., λ2 = λ3), while the first level is singly degener-
ate, in the entanglement spectrum. Some higher levels are
also doubly degenerate. In the superfluid phase, on the other
hand, the double degeneracy of some levels are lifted and all
levels are singly degenerate. These features suggest that the
entanglement spectrum is like a fingerprint that distinguishes
phases [19].

Another important property of the entanglement spectrum
is the distribution of the eigenvalues. From the eigenvalue

FIG. 4. Some of the largest λi’s in the Mott-insulating and the
superfluid phases. The number of dots represents the degeneracy
of the level. The hallmark of the Mott-insulating phase is that the
second level has a double degeneracy, while the first level has a single
degeneracy. On the other hand, every level is singly degenerate in the
superfluid phase.
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FIG. 5. n(w) represents the mean number of eigenvalues larger
than a given w for different χ , obtained at (closed symbols) and off
(open symbols) the transition points. The dotted line is the theoretical
prediction given by I0(ξw ) for the one-dimensional critical systems.
At the critical point for each χ , the distributions are consistent with
the theoretical prediction. This means that the MPS with different χ

have their well-defined transition points.

distribution P(w) = ∑
i δ(w − wi ), one can define n(w), the

mean number of eigenvalues larger than w, as

n(w) ≡
∫ w1

w

du P(u), (8)

where w1 is the largest eigenvalue. Based on the conformal
field theory, it has been proposed that in the one-dimensional
critical systems n(w) follows a universal form [25,26]

n(w) = I0(ξw ), (9)

where I0(ξw ) is the modified Bessel function of the first kind,
ξw ≡ 2

√
b ln(w1/w), and b ≡ ln(w1). Figure 5 shows n(w)

for different χ at (closed symbols) and off (open symbols)
transition points. At the transition points, n(w) have the uni-
versal form consistent with the theoretical prediction, even
though the critical value of t depends on χ . A slight deviation
from I0(ξw ) when n(w) are large in the samples with large χ

appears to be numerical errors where the eigenvalues wi are
extremely small. Also, off the transition points, n(w) obvi-
ously does not follow the universal form. This implies that the
MPS shift their well-defined critical points as χ changes.

The critical value of the O(2) transition in the thermo-
dynamic limit, t0

c , has been studied in many works [27,28].
Here we estimate t0

c from tc(χ ) identified in Fig. 3 for the
MPS with finite χ by taking the limit χ → ∞. Using an
extrapolation, in Fig. 6, we obtain t0

c = 0.280(4) as the O(2)
transition point in the infinite systems, which is consistent
with the previous works [27,28]. Also, the critical value of
the chemical potential μ0

c = 0.127(6) can be obtained from t0
c

along the dotted line in Fig. 1.

B. Commensurate-incommensurate transition

For a given t , by tuning the chemical potential 0 � μ � 1,
we induce the CI transitions as shown in Fig. 1. Here, we
choose the case where t = 0.220. Larger t tends to require
very long TEBD processes, whereas for smaller t the χ

FIG. 6. From tc(χ ) in Fig. 3 for the MPS with finite χ , the critical
value in the limit χ → ∞, t0

c , is obtained by using an extrapolation.

dependency of μc(χ ), the critical value of the chemical po-
tential for a given χ , seems too weak to analyze the critical
behaviors.

Figure 7 shows the half-chain entanglement entropy, den-
sity, and single-boson amplitude near the transitions. Again,
the transitions appear sharp and continuous without blurring
even for small χ . The MPS representation of many-body
quantum states is a variational method, so we might end up
with many metastable states, especially for large χ and near
the transitions. We have tried several different initial states
in the TEBD processes until we achieve the lowest energy
state whose physical properties runs smoothly with adjacent

FIG. 7. Half-chain entanglement entropy, density, and single-
boson amplitude (top to bottom) near the CI transition at t = 0.220
induced by tuning the chemical potential are shown. The half-chain
entanglement entropy is very sensitive in representing quantum me-
chanical states, especially near the transitions. The transitions appear
continuous and sharp even in the MPS with small χ .
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FIG. 8. (a) and (b) are enlarged figures for the behavior of S
and 〈n〉 − 1 near the transitions. In the phase transition from the
Mott insulator to the superfluid, there is an interval where some
mean-field-like (MF) state occurs. Then strongly correlated (SC)
state appears as we move further into the superfluid phase. (c) and
(b) show the characteristics of the MF and SC states. By fitting the
curves of the density in the MF (black circle) and SC (red square)
regions, the transition point μ and the correlation length critical
exponent ν are obtained.

values. The half-chain entanglement entropy is so sensitive in
representing the state that a tiny energy difference can make a
big difference. For this reason, in practice, the transitions ap-
pear to be of first-order with discontinuities in some physical
quantity for systems with large χ , as found in some previous
works [18,19]. We believe, however, the discontinuities will
eventually disappear in longer TEBD processes since for both
small χ and χ → ∞ the CI transitions are continuous.

However, if the correlation length is constrained so that it
cannot be greater than ξχ , continuous phase transitions will
turn into crossovers and become blurred, as observed for finite
size systems. But this is not the scenario we observe in Fig. 7.
In the figure, the transition points are well defined. Moreover,
the entanglement entropy decreases in some intervals from the
point of transition to the superfluid. This strongly suggests
a possibility that the transition occurs between the Mott-
insulating state and a (cluster) mean-field-like state [29,30],
where the size of the cluster is characterized by ξχ .

In order to explore this possibility, we take a closer look
at what happens near the phase transition points. Figure 8
is an enlarged plot showing how entanglement entropy and
density change near the transition point. We investigate how
the density changes in the section where the entanglement
entropy sensitively changes. In the Mott-insulating phase, the
density remains constant as 〈n〉 = 1. In the compressible su-
perfluid phase, 〈n〉 − 1 arises as a function of μ with different
asymptotic behavior depending on χ . For small χ , the density
varies almost linearly (mean-field-like behavior) over fairly
large intervals. However, as χ increases, there is clearly a
crossover into the behavior where the density changes with
a smaller exponent as a function of μ (strongly-correlated be-

FIG. 9. Scaling behavior of the single-boson amplitude for the
strongly correlated states, following a standard scaling ansatz |〈b〉| ∼
ξ−d/2
χ X ((μ − μSC

c )ξχ
1/νSC

, where X is a scaling function, d = 1, and
ξχ ∼ χκ . Using μSC

c and νSC obtained from the asymptotic behaviors
in Fig. 8 as fitting parameters, we have a fairly good collapse of
the curves with κ = 1.34. Inset: The amplitude at μ = 0.26 shows
a logarithmic dependence on χ .

havior). Interestingly, the mean-field-like behavior occurs as
far as the entanglement entropy decreases, and the crossover
to the strongly-correlated behavior takes place at the bottom
of the valley-shape in Fig. 8(a).

The asymptotic properties of 〈n〉 − 1 can be investigated
by fitting the curves in the form

〈n〉 − 1 = C(μ − μc)ν, (10)

where ν is the correlation length exponent, μc is an effective
transition point for the curves, and C is a constant. The values
of the parameters determined by fitting the mean-field-like
(MF) and the strongly-correlated (SC) behaviors for given
χ are shown in Figs. 8(c) and 8(d). As expected, the corre-
lation length exponent νMF → 1 as χ → 1, the limit of the
single-site mean-field approximation. The figure also shows
that νSC → 1/2 as χ → ∞, the exact value of the exponent
for the generic commensurate-incommensurate transition [31]
driven by single-particle excitations. For finite but small χ , the
situation is quite analogous to cluster mean-field approxima-
tion with the cluster size ξχ . The mean-field-like behavior in
the MPS has been previously reported in Ref. 18. Our anal-
ysis shows that its signature appears as a valley shape of the
entanglement entropy with the critical exponents approaching
to the mean-field critical exponent as χ decreases.

It is an interesting question whether a physical quantity
such as the single-boson amplitude in Fig. 7 exhibits scaling
behavior in the region of strongly-correlated states. Figure 9
shows the analysis of this behavior following a standard scal-
ing ansatz

|〈b〉| ∼ ξ−d/2
χ X

((
μ − μSC

c

)
ξ 1/νSC

χ

)
(11)

with a length scale ξχ ∼ χκ , where X is an scaling function
and d = 1 is the spatial dimension. We use the exponent
κ = 1.34, the value based on the conformal field theory (CFT)
calculation [6], and the parameters μSC

c and νSC obtained from

235121-5



MIN-CHUL CHA PHYSICAL REVIEW B 106, 235121 (2022)

the asymptotic behaviors in Fig. 8. The figure shows a fairly
good collapse of the curves for different χ onto a single curve.

Furthermore, since X (0) = 0 (i.e., the superfluid order
parameter vanishes at the critical point), in the limit (μ −
μSC

c )ξ 1/νSC

χ � 1, we expect

|〈b〉| ∼ (
μ − μSC

c

)νSC/2
[a0 + a1 ln(χ )]. (12)

This form guarantees the expected behavior |〈b〉| ∼ (μ −
μSC

c )ν
SC/2 near critical point. Then, with a finite μ in the

superfluid phase, the amplitude has a logarithmic dependence
on χ as shown in the inset.

IV. SUMMARY

We study the quantum phase transition in the matrix prod-
uct states of the one-dimensional boson Hubbard model,
where the amount of entanglement is limited by the size of the
matrix, χ , used to represent the states. In order to obtain the
lowest energy state, we optimize this variational MPS by us-
ing the two-site TEBD method. It turns out that entanglement
entropy is a very sensitive tool for representing state properties
near phase transitions.

We find that the Mott-insulator-to-superfluid transition oc-
curs sharp and continuous without being blurred by the finite

entanglement effects with the shift of the transition points.
From the χ dependence of the transition points, we obtain
t0
c = 0.280(4) and μ0

c = 0.127(6) for the critical values of the
O(2) phase transition. The entanglement spectra follow a uni-
versal form at each χ dependent O(2) transition point. In the
superfluid phase where the transition just occurs, an interval
in which the entanglement entropy dramatically decreases and
then increases, forming a valleylike shape, is observed. As χ

increases, this valley becomes narrower and shallower. By an-
alyzing the critical exponent of the density, we argue that the
behavior in the decreasing part of the valley is governed by a
mean-field-like nature. This means that in the MPS where the
amount of entanglement is finite, the quantum phase transition
between the Mott insulator and the superfluid always occurs
through a mean-field-like compressible state.
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