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Adiabatic and periodic variation of the lattice parameters can make it possible to transport charge through a
system even without net external electric or magnetic fields, known as Thouless charge pumping. The amount of
charge pumped in a cycle is quantized and entirely determined by the system’s topology, which is robust against
perturbations such as disorder and interactions. However, coupling to the environment may play a vital role
in topological transport in many-body systems. We study the topological Thouless pumping, where the charge
carriers interact with local optical phonons. The semiclassical multitrajectory Ehrenfest method is employed
to treat the phonon trajectories classically and charge carriers quantum mechanically. We find a breakdown of
the quantized charge transport in the presence of phonons. It happens for any finite electron-phonon coupling
strength at the resonance condition when the pumping frequency matches the phonon frequency, and it takes
finite phonon coupling strength away from the resonance. Moreover, there exist parameter regimes with non-
quantized negative and positive charge transport. The modified effective pumping path due to electron-phonon
coupling accurately explains the underlying physics. In the large coupling regime where the pumping disappears,
the phonons are found to eliminate the staggering of the on-site potentials, which is necessary for the pumping
protocol. Finally, we present a stability diagram of quantized pumping as a function of the time period of
pumping and phonon coupling strength.
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I. INTRODUCTION

A Thouless charge pump, on a fundamental level, is a one-
dimensional dynamic equivalent to the quantum Hall effect.
The robust transport of quantized charge in an adiabatic pump
cycle, defined by periodic variation of lattice parameters, was
first introduced almost four decades ago by Thouless [1].
Recently, this fundamental physical phenomenon has been
experimentally demonstrated in a variety of quantum systems,
such as ultracold atoms in optical lattices and photonic lat-
tices [2–8]. The robustness of quantization is attributed to
the underlying topological protection, which is not altered
under small perturbations such as disorder and interaction. In
recent years, studying the effect of disorder, different kinds
of interaction and nonlinearity have been a topic of immense
interest [9–26]. On the experimental front, topological Thou-
less pumping has been studied in the presence of disorder
[27] and strongly correlated regimes [28]. In the attempt to
extend the concept of topology to finite temperature and open
quantum systems [29–39], Thouless charge pumping has also
been studied in these contexts [35,37,38].

The robustness of the topological properties of a system
against an open environment is important to study since quan-
tum systems, in general, always interact with the environment.
There are several studies that deal with open topological
systems that investigate the density matrix by solving the
master equation [40–42]. We study a closed system where the
topological system is a subsystem, and the rest of the system
acts as an environment. The dynamics, in this case, is unitary.
In our case, we consider an ensemble of uncoupled classical

harmonic oscillators as the environment. In the solid-state
context, this realizes Einstein phonons. Our primary goal is to
study the breakdown of topology in the presence of the cou-
pling to the environment. Note that the interplay between the
topology and the phonon has been studied before for different
systems such as quantum Hall and systems with Majorana
fermions [43–46].

One of the very crucial aspects of many-body physics is the
interaction with the lattice degree of freedom. Phonons arise
naturally as the lattice vibrations at any finite temperature
in a real material. The electron-phonon (e-ph) coupling can
cause instabilities in the metallic state, leading to a plethora of
important phenomena, e.g., polaron formation [47], supercon-
ductivity, and charge density waves [48–53]. The phononic
degrees of freedom show a drastic effect on the dynamical
properties as a result of the exchange of energies between
the electronic and phononic sectors [54–61]. A great deal of
research has been done to analyze the effect of phonons on
the dynamics of the charge density wave and Mott phases
[54,55,57,59,60], Bloch oscillations [58,61], the equilibration
of excited charge carriers [56], and thermalization [62]. The
formation of and evolution of polarons have also been exten-
sively studied [63–68]. One theoretical model that represents
such strongly correlated e-ph systems where the electrons are
coupled to the local phonons is the Holstein model [69].

In this work, we analyze the stability of the topology where
the system is coupled to a phononic environment. The trans-
port of charge in Thouless charge pumping is studied using the
Rice-Mele model [70] subjected to optical phonons, which we
dub the Rice-Mele-Holstein model. We use the semiclassical
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method known as multitrajectory Ehrenfest (MTE) [71–74]
and time evolve the initial state with the phonons in the ground
state. The trajectory-based mixed quantum-classical dynamics
was traditionally introduced to study electron-nuclear sys-
tems, which works best in the adiabatic limit of phonons with
oscillator frequencies smaller than the electronic bandwidth
[71–74].

In our analysis with the MTE method, we see a break-
down of topological charge pumping (TCP) in the presence
of phonons. At resonance, when the phonon frequency and
pumping frequency are equal, the TCP breaks for any finite
value of e-ph coupling. In the minimal e-ph coupling limit,
the TCP eventually disappears at the higher pump cycles. It
takes a finite e-ph interaction before the TCP breaks down
away from the resonance. In other words, the TCP is stable at
sufficiently finite e-ph coupling in this case. The breakdown
of TCP is complimented with a gap closing in the spectrum of
the instantaneous effective Hamiltonian during the evolution.

Apart from quantized pumping, parameter regimes where
nonquantized positive and negative pumping happen exist.
The analysis of an effective pumping path very efficiently
explains different aspects, such as the direction of pumping
and breakdown of pumping. Here, the effective pumping path
is the modified Rice-Mele path due to the coupling between
the phonon position, which changes dynamically, and on-site
electron density. The direction of winding around the origin
and the origin crossing by the effective pumping path deter-
mine the direction and breakdown of pumping, respectively.
We present a stability diagram for the quantized pumping as a
function of e-ph coupling strength and pumping period. For a
fixed e-ph coupling (small), the diagram displays a signature
of reentrant TCP as a function of time period of pumping;
that is, the quantization of the pumped charge reappears after
losing quantization near the resonance.

In summary, the main findings of this paper are as follows:
(i) We see a robust quantized pumping with finite electron-
phonon coupling for a wide range of parameters which
eventually disappears at large electron-phonon coupling. (ii)
A resonance effect exists where the quantized pumping breaks
down for any finite electron-phonon coupling. (iii) The system
exhibits a phenomenon of negative pumping, where the charge
flows opposite to the driving, in some parameter regime, but
this occurs outside the quantized regime.

The rest of this paper is organized as follows. In Sec. II, we
review the model and the methods used in this work. There
we introduce the Rice-Mele model that defines the Thouless
pumping protocol and extend it with a Holstein-like coupling
to local phonons. Next, we briefly explain the trajectory-based
semiclassical MTE method, which is employed to perform the
time evolution, and describe the observables used to analyze
the physics. The concept of an effective pumping path is
introduced at the end of that section. The discussion of results
starts in Sec. III. In that section, we explain the breakdown
of TCP and nonquantized pumping in terms of the pumped
charge, effective pumping paths, and instantaneous eigenvalue
spectra at resonance. In Sec. IV, we do an analysis similar to
that in Sec. III when the system is out of resonance. Then,
we describe the stability diagram obtained as a function of the
time period of pumping and e-ph coupling strength in Sec. V.
Finally, we draw conclusions in Sec. VI.

FIG. 1. A pictorial representation of system parameters is shown.
(a) Potential landscape at a specific point in time during a pump cycle
that determines the hopping dimerization δ and staggered potential
�. The phonon bath at every site is represented by the harmonic
oscillator potential, coupled to the site with strength γ . (b) The
pumping protocol. If the system parameter winds around the origin
adiabatically, quantized pumping is expected for γ = 0.

II. MODEL AND METHOD

A. The Rice-Mele model

The Thouless pumping protocol can be defined by the
Rice-Mele model [70], a time-dependent Hamiltonian with a
time t varying superlattice potential, given by

ĤRM(t ) =
L∑

i=1

−J (1 + (−1)iδ(t ))(ĉ†
i ĉi+1 + H.c.)

+
L∑

i=1

(−1)i �(t )

2
n̂i, (1)

that changes the hopping amplitude and on-site potential with
time. Here, ĉi (ĉ†

i ) and n̂i are the fermionic (say, electrons)
annihilation (creation) and on-site number operators, respec-
tively, at site i in a system consisting of L sites. δ(t ) and �(t )
are the hopping dimerization and on-site staggered potential,
respectively, that vary with t ,

δ(t ) = Aδ sin

(
2πt

T
+ φ

)
,

(2)

�(t ) = A� cos

(
2πt

T
+ φ

)
,

where T is the pumping period and τ = t/T can be considered
the pumping parameter. φ is an offset of the pumping protocol
which is considered to be φ = π/2 in this work, realizing
�(t ) = 0 and δ(t ) > 0 at t = 0, known as the Su-Schrieffer-
Heeger [75] limit. An example of the potential landscape is
shown in Fig. 1(a) for some t which demonstrates the hopping
dimerization and staggered potential. The unit cell of the lat-
tice consists of two sublattices A and B, implying the existence
of two bands. For finite Aδ and A�, the band gap is always
finite for all t at half filling, and t defines a pumping trajectory
that winds around the gap-closing point at � = δ = 0, as
shown in Fig. 1(b). For an adiabatic change of τ (large enough
T ), the topological nature ensures the pumping of a quantized
amount of charge Q in a pump cycle. We can quantify the
total number of charges pumped during the time evolution by
integrating the current at a particular bond between two sites
(the first odd bond is considered in our results) as

Q(t ) =
∫ t

0
Ii,i+1(t )dt, (3)
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where

Ii,i+1(t ) = −2ImJi,i+1(t )〈�(t )|ĉ†
i+1ĉi|�(t )〉 (4)

is the current at time t at the bond between sites i and i + 1,
which has a time-dependent hopping amplitude Ji,i+1 = J[1 +
(−1)iδ(t )].

B. The Rice-Mele-Holstein model

The coupling between charge carriers (electrons) and op-
tical phonons extends the Rice-Mele model [Eq. (15)] to the
Rice-Mele-Holstein model. The Holstein-like coupling is de-
fined by the dispersionless phonons, also known as Einstein
phonons, coupled to the local electronic state, given by

Ĥ (t ) = ĤRM(t ) + Ĥph + Ĥe-ph. (5)

Here, Ĥph and Ĥe-ph are the phonon and e-ph coupling parts of
the Hamiltonian, which are given by

Ĥph = h̄ω

L∑
i=1

b̂†
i b̂i (6)

and

Ĥe-ph = −γ

L∑
i=1

(b̂†
i + b̂i )n̂i. (7)

b̂i (b̂†
i ) are the bosonic annihilation (creation) operators of the

phonons at site i. ω and γ are the phonon frequency and e-ph
coupling strength, respectively. The e-ph coupling is shown in
Fig. 1(a), which illustrates how the phonon bath is coupled to
a site.

The Thouless pump in this scenario can be studied with the
real-time evolution of an initial state |�(0)〉 under the influ-
ence of a time-dependent Hamiltonian Ĥ (t ). In our calculation
we consider |�(0)〉 to be

|�(0)〉 = |�e(0)〉|�ph(0)〉, (8)

where |�e(0)〉 is the ground state of ĤRM(0) at half filling and
|�ph(0)〉 = ∏L

i=1 |ψ i
ph(0)〉 represents the ground state of Ĥph

where at each site i, phonons are in the ground state |ψ i
ph(0)〉

of each individual oscillator.

C. Multitrajectory Ehrenfest method

In principle, the problem can be simulated using numerical
methods such as exact diagonalization, Lanczos time evolu-
tion, and the time-dependent density matrix renormalization
group (tDMRG) methods to capture the exact dynamics for
relatively smaller systems [59,76–79], although not straight-
forwardly in the adiabatic regime. In this work, we employ a
semiclassical approximate approach called the multitrajectory
Ehrenfest method, which treats phonons classically and av-
erages over independent trajectories. Since we are primarily
interested in the regime of small phonon frequencies where
we expect the most immediate effect on the pump, we choose
MTE, which is efficient and reliable in this regime [74]. This
method simplifies our problem to such an extent that it can
be solved using the single-particle eigenstates of the Hamilto-
nian. The classical trajectory-based MTE method is described
extensively in Ref. [74], and in the following, we describe

it briefly. To apply the MTE method the phononic operators
are represented in real space via b̂†

i = √mω
2h̄ (x̂i + p̂i

mω
), and

by using the natural length scale for the harmonic oscillators

l0 =
√

h̄
mω

= 1 and h̄ = 1, we get

Ĥph = ω

2

L∑
i=1

(
x̂2

i + p̂2
i

)
, (9)

ignoring the constant term −ωL/2, and

Ĥe-ph = −
√

2γ

L∑
i=1

x̂in̂i. (10)

Under the MTE approximation, |�(0)〉 can now be evolved
by initializing the different sets of phonon coordinates
{xi(0), pi(0)}, which define different independent trajectories.
Here, {xi(0), pi(0)} are randomly drawn from the distribution
given by the Wigner function W0 centered around 〈x〉 = 0 and
〈p〉 = 0. W0 is the phase space representation of the harmonic
oscillator ground state |ψph(0)〉,

W0 = 1

π
e−(x−〈x〉)2−(p−〈p〉)2

. (11)

The electronic wave function |�e(0)〉 evolves under the
Hamiltonian

Ĥel = ĤRM(t ) −
√

2γ

L∑
i=1

xi(t )n̂i, (12)

which depends on only the dynamical position xi(t ) of
the phonons, i ∂

∂t |�e〉 = Ĥel|�e〉. The phonon coordinates si-
multaneously propagate in phase space via the Newtonian
mechanics under the influence of the classical Hamiltonian,

Hcl = ω

2

L∑
i=1

(
x2

i + p2
i

) −
√

2γ

L∑
i=1

xi〈�e(t )|n̂i|�e(t )〉, (13)

as ẋi = ∂Hcl
∂ pi

, ṗi = − ∂Hcl
∂xi

.

The expectation value of any observable Ô can be calcu-
lated by averaging over all the trajectories as

〈Ô(t )〉 = 1

Ntraj

Ntraj∑
i=1

〈�i(t )|Ô|�i(t )〉, (14)

where Ntraj is the number of trajectories and |�i(t )〉 is the
time-evolved initial electronic wave function |�e(0)〉 at time
t for the ith trajectory. In the following section, we present
the results where we always consider J = 1, making all the
parameters unitless, and express everything in units of J and
A� = 4Aδ = 3, defining a closed path around the gap-closing
point at the origin in Fig. 1(b). Considering the limitations of
the multitrajectory Ehrenfest method as mentioned above, we
take ω = 0.1J , which is small compared to J . In our numerical
simulation, we always start the pumping protocol from a short
negative time ( −T

16J ) without any phonon coupling and drive
it slowly (compared to the actual pumping speed) to t = 0,
where we quench γ . The slow drive before t = 0 leads to a
smoother pumping during the execution of the pump cycles
[13].
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FIG. 2. Observables obtained in the time evolution in 50 pump cycles at resonance for Ntraj = 100 and ω = 0.1J with T = 2π/ω. Q(t ) for
all the trajectories (lines with transparent colors) and the trajectory average Q(t ) (black line) are shown in (a)–(c) for γ = 0.05J, 0.15J , and
0.8J , respectively. Similar to what we did in (a)–(c), we plot the phonon density nph in (d)–(f), respectively.

D. Effective pumping path

As mentioned above, the electronic dynamics is deter-
mined by Ĥel given in Eq. (12), which has two parts. The
first part contains the control parameters [δ(t ) and �(t )],
which defines a pumping path, as shown in Fig. 1(b). We
expect the pumping to be positively or negatively quantized
depending on the direction of the winding around the origin.
The second part of Ĥel gives rise to another source of the
on-site potential on top of the staggered �(t ) by coupling
xi(t ) with the on-site n̂i. This additional source of the on-site
potential may alter the effective staggered potential between
the sublattices, leading to a deviation in the pumping path
from the original one defined by ĤRM. We can quantify the
effective pumping path in the (δ̄, �̄) plane, where δ̄(t ) = 2δ(t )
is the hopping dimerization, which is unchanged, and �̄(t )
is the trajectory and unit-cell-averaged potential difference
between two sublattices, given by

�̄(t ) = �(t ) − 2
√

2γ

LNtraj

Ntraj∑
i=1

(
L∑

j∈even

xi, j (t ) −
L∑

j∈odd

xi, j (t )

)
.

(15)

The following sections explain different phenomena, such
as the breakdown of pumping and negative charge pumping
using the effective pumping path. See Ref. [80].

III. RESONANCE CONDITION

While the Rice-Mele (RM) model shows robust TCP, the
nonzero coupling (γ > 0) with the phonons gives rise to very

rich physics. We begin the analysis with the condition when
the phonon frequency matches the pumping frequency (ω =
2π/T ). ω is considered to be 0.1J , which fixes the pumping
period as T = 2π/ω. In this scenario, the dynamics are adi-
abatic enough in the RM limit (γ = 0) with robust quantized
pumping. The question is whether this TCP survives at finite
γ . To answer this, we calculate different quantities during
50 pump cycles with different e-ph coupling strengths γ . In
Figs. 2(a)–2(c) we plot Q(t ) for γ = 0.05J, 0.15J , and 0.8J ,
respectively, for 100 trajectories (transparent lines) where the
average Q(t ) over the trajectories is represented by the opaque
black line. We can see that even for a very small value of
γ = 0.05J , the TCP breaks down in the later pump cycles.
For γ = 0.15J , we see a complex behavior in pumping; it
changes the direction of pumping after a few cycles. For a
large value of γ = 0.8J , the pumping ceases to occur. We
notice that when the quantization of pumping breaks down,
Q(t ) becomes trajectory dependent and fluctuates around the
average value. This behavior is similar to pumping in a disor-
der potential [21], which is not surprising since each trajectory
is initialized with random initial values of {xi(0), pi(0)}.

Interestingly, the phonon excitation is very distinct in dif-
ferent parameter regimes of γ . Figures 2(d)–2(f) show the
behaviors of the phonon density given by

nph = 1

L

∑
i=1

(
x2

i

2
+ p2

i

2

)
(16)

for the same parameters considered in Figs. 2(a)–2(c), respec-
tively. Even though Q(t ) is quantized in the first few pump
cycles for smaller γ [Figs. 2(a) and 2(b)], nph continuously in-
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FIG. 3. Trajectory-averaged quantities are displayed here at res-
onance for γ = 0.15J , ω = 0.1J , and T = 2π/ω with Ntraj = 100.
The trajectory-averaged effective pumping path is shown for three
different time windows in (a)–(c), corresponding to Fig. 2(b), which
is also shown in (d) for reference. The black triangles mark the
origins where the gap should vanish. The direction of winding around
the origin signifies the direction of pumping. Eg(t ) is shown in (e),
and ndn(t ) (solid line) and nup(t ) (dashed line) are plotted in (f).

creases, and eventually, the quantization of Q(t ) breaks down.
When the pumping is completely suppressed [Fig. 2(c)], nph

oscillates around a finite number with the frequency ω.

A. Negative charge pumping

The intricate evolution of Q(t ) seen in Fig. 2(b) is observed
in a finite range of γ . To explain the multiple changes in pump
direction, we analyze the effective pumping path. As dis-
cussed in Sec. II D, the instantaneous value of xi(t ) can modify
the effective pumping path. The pumping path defined by
(δ̄(t ), �̄(t )) is plotted for different time segments of the plot
shown in Fig. 2(b), where the pumped charge is first positive
(quantized) and then negative (nonquantized) and becomes
positive (nonquantized) again with time, in Figs. 3(a)–3(c),
respectively. The color bar represents the number of pump cy-
cles t/T . We can see from Figs. 3(a)–3(c) that the path winds
the origin (solid black triangle) first counterclockwise, then
clockwise, and then in a counterclockwise direction again,
respectively, which explains the direction of pumping. To
check further why the quantization breaks down, we look into
the trajectory-averaged gap in the spectrum of instantaneous
Ĥel(t ) given by

Eg(t ) = E el
L/2+1(t ) − E el

L/2(t ), (17)

where {E el
α (t )} is the time-dependent energy spectrum of

Ĥel(t ) along with the occupancy of its lower (ndn) and upper
(nup) bands with time. We can already see from Fig. 3(a) that,
at the end of the first few cycles, the effective pumping path
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FIG. 4. Explanation of the breakdown of pumping at resonance
for γ = 0.8J , ω = 0.1J , and T = 2π/ω. Different quantities are
plotted after averaging over 100 trajectories. The effective pumping
path is shown for three different time windows in (a)–(c), corre-
sponding to Fig. 2(c), which is also shown in (d) for reference. The
black triangles mark the origins where the gap should vanish. The
frequent crossing of the origin by the effective pumping path signifies
the breakdown of TCP. Eg(t ) is shown in (e), and ndn(t ) (solid line)
and nup(t ) (dashed line) are plotted in (f).

crosses the origin, where the gap in the spectrum of Ĥel(t )
should close. Eg(t ) plotted in Fig. 3(d) exactly captures this
gap closing. Until this point, ndn (solid line) and nup (dashed
line) show that particles in |�(t )〉 completely occupy the
lower band, giving rise to the quantized pumping in this time
segment. However, at Eg = 0, partial excitation to the upper
band happens nonadiabatically, which can be inferred from
the finite nup. After this first gap-closing point, Eg(t ) becomes
finite again, and since the effective pumping path winds in
the opposite direction in this segment [Fig. 3(b)], it results in
the negative charge pumping. The partial occupancy of the
lower band breaks the quantization. A similar gap closing
is detected again during the evolution, which populates the
upper band further. The counterclockwise winding of the ef-
fective pumping path [Fig. 3(c)] suggests a positive pumping
(nonquantized) since Eg(t ) is finite at later times.

B. Breakdown of pumping

To compare the previous situation with the case shown
in Fig. 2(c) where the pumping is entirely absent, we carry
out a similar analysis in Fig. 4. Here, the phonon coupling
drastically perturbs the staggering nature of the potential, and
the effective pumping path becomes flat along the δ̄ axis,
which crosses the origin in every pump cycle [Figs. 4(a)–4(c)].
As a result, Q(t ) does not change with time. The vanishing
Eg(t ), shown in Fig. 4(e), signifies nonadiabatic dynamics
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FIG. 5. Observables obtained in the time evolution in 50 pump cycles away from resonance for Ntraj = 100 and ω = 0.1J with T = 50/J .
Q(t ) for all the trajectories (lines with transparent colors) and the trajectory average Q(t ) (black line) are shown in (a)–(c) for γ = 0.2J, 0.4J ,
and 0.8J , respectively. Similar to what we did in (a)–(c), we plot the phonon density nph in (d)–(f), respectively.

under Ĥel(t ), leading to a breakdown of pumping. In this re-
gion, Eg(t ) is not exactly zero, which is a finite-size effect, and
is expected to be zero in the thermodynamic limit. ndn ∼ nup

shown in Fig. 4(f) also suggests no change in Q(t ) as |�(t )〉
is equally mixed in both bands.

IV. OUT OF RESONANCE CONDITION

Moving away from resonance, we encounter different
physical properties. In this regime, the pumping is found to
be quantized at a sufficiently finite value of γ . Ultimately,
with increasing γ , the TCP breaks down. We analyze the
same quantities studied in the previous section to capture the
physics. In Figs. 5(a)–5(c), we plot Q(t ) for γ = 0.2J, 0.4J ,
and 0.8J , respectively, for 100 trajectories (transparent lines)
where the average Q(t ) over the trajectories is represented
by the opaque black line. Even though the initial {qi, pi} are
different for different trajectories, for finite γ = 0.2J , we see
quantized Q(t ) all the way to the 50th pump cycle, and Q(t )
for all the trajectories merge together, which implies a robust
TCP at finite phonon coupling γ .

We observe different effects in the dynamics by increasing
γ to 0.4J . In this case, the charge pumping breaks down after
a few pump cycles, and Q(t ) is not quantized anymore in the
few initial pumping cycles that still exhibit finite pumping.
For different trajectories, Q(t ) shows a substantial fluctuation
from the average value as a result of topologically unpro-
tected dynamics, which stems from the breakdown of TCP and
largely depends on the initial conditions. Further increasing
γ = 0.8J , the pumping breaks down from the beginning, and
Q(t ) for all the trajectories shows a large fluctuation similar to
the γ = 0.4J case.

A. Quantized pumping with phonons

Unlike the resonance case where the TCP breaks down
for small γ [Fig. 5(a)] at later pump cycles, in this case,
TCP may remain stable at small γ . We confirm the stability
by analyzing the behavior of nph(t ). Figures 5(d)–5(f) show
nph(t ) for the same parameters considered in Figs. 5(a)–5(c),
respectively. We see that nph(t ) periodically reaches zero after
every few pump cycles [Fig. 5(e)] for the γ = 0.2J case. Also,
the extreme value of nph(t ) is comparatively smaller [compare
with Fig. 2(d)]. This behavior is completely different from the
resonance case where nph keeps increasing in the initial pump
cycles where pumping is quantized [compare with Figs. 2(d)
and 2(e)]. This regular oscillatory behavior of nph guarantees
the same dynamics for further pump cycles beyond the 50th
cycle, and TCP survives. In Fig. 5(f), for the first few cycles
where pumping is nonzero, the trend of nph(t ) looks similar
to the γ = 0.2J case. However, the features look comparable
to the resonance case when the pumping is absent [compare
Figs. 5(f) and 2(f)].

The effective pumping path for γ = 0.2J also suggests a
robust winding, which is shown in Figs. 6(a)–6(c). We can
see that the pumping path evolves similarly for different time
windows and does not have any trend to collapse towards
the origin, indicating robust TCP. Q(t ), Eg(t ), ndn, and nup

are plotted in Figs. 6(d)–6(f), respectively, for this case. The
finite Eg(t ) and ndn = 1 (nup = 0) at all times illustrate the
adiabatic dynamics under Ĥel(t ), securing the quantization
of pumping.

To summarize, we observe a significant difference at small
γ when comparing pumping at resonance and away from
resonance. The behavior of nph(t ) and the effective pumping
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FIG. 6. Different quantities are displayed here after averaging
over trajectories with Ntraj = 100 to analyze the quantized pumping
at finite γ = 0.2J away from resonance where ω = 0.1J and T =
50/J . The effective pumping path is shown for three different time
windows in (a)–(c), corresponding to Fig. 5(a), which is also shown
in (d) for reference. The black triangles mark the origins where Eg

should vanish. Eg(t ) is shown in (e), and ndn(t ) (solid line) and nup(t )
(dashed line) are plotted in (f).

path suggests stable pumping over the simulated time window
for the out of resonance case. We stress that this does not rule
out a change in behavior at very long times beyond the reach
of simulations.

B. Breakdown of pumping

As mentioned above, for larger γ the TCP breaks down.
To analyze the breakdown of pumping with increasing γ , we
again pay attention to Eg(t ). We show the trajectory-averaged
Q(t ) and Eg(t ) in Figs. 7(a) and 7(b), respectively, for the
first four pump cycles with T = 50/J . Here, we consider
Ntraj = 200 to calculate the average. Comparing the two plots,
we can see that Eg(t ) starts to vanish at certain times near
the critical region (γ ≈ 0.4J) and finally vanishes during the
entire pump cycle for larger γ . The vanishing of Eg with time
makes the dynamics under Ĥel nonadiabatic, and as a result,
the TCP breaks down. Note that the negative charge pumping
is also present in the off-resonant case [see the deep blue
region of Fig. 7(a)].

V. STABILITY DIAGRAM

Until now, we have considered only two time periods of
pumping (T = 2π

0.1J and 50/J) in our analysis to detect the
breakdown of TCP. Now we uncover this phenomenon by
varying T . To this end, we perform the calculation for dif-
ferent γ and T for the first 50 pump cycles with Ntraj = 100
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γ(J)

0.0

2.0

4.0

t/
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Q-2.0 0 2.0 4.0

0.0 0.4 0.8
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FIG. 7. (a) The trajectory-averaged Q(t ) and (b) Egap(t ) are
shown away from resonance with T = 50/J , ω = 0.1J , and Ntraj =
200. The breakdown of quantized pumping near γ ∼ 0.4J is
portrayed.

and calculate the trajectory-averaged Q in a pump cycle by
averaging the pumped charge in all the cycles. We portray the
result in Fig. 8(a) as a function of γ and T , where the color
bar represents the average Q in a cycle. The properties of the
stability diagram are discussed below.
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FIG. 8. Stability diagram in the T vs γ plane depending on the
trajectory-averaged (a) Q in a cycle and (b) n̄ph. Here, we consider
Ntraj = 100 and average Q and n̄ph over 50 pump cycles. The dashed
lines represent the time period of phonons ( 2π

ω
).
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In the limit of very small T ∼ 1/J , the TCP is always
absent due to a very fast pumping speed which leads to
a nonadiabatic evolution. For higher values of T , the TCP
breaks down after a critical γ except at resonance (marked
by the dashed line), where it breaks down immediately
for γ > 0. An important feature of the stability diagram
is the reentrance of quantized pumping as a function of
T in a certain parameter regime. For example, with γ =
0.2J , the quantization of pumping occurs in the order of
a nonquantized-quantized-nonquantized-quantized manner as
T increases. The reentrance of TCP with increasing T is
clearly a consequence of the resonance at T = 2π/ω. Sim-
ulations with other values of small ω exhibit qualitatively
similar physical phenomena at the resonance and away from
the resonance (not shown).

We also calculate the time-averaged phonon density, given
by

n̄ph = 1

t

∫ t

0
nphdt (18)

and shown in Fig. 8(b) as a function of γ and T . Like in
the previous calculation, n̄ph is averaged over Ntraj = 100 tra-
jectories and 50 pump cycles. The result complements the
stability diagram of Q [Fig. 8(a)] very well. We notice that
the phonon excitation in the TCP region is small compared to
the TCP-broken region. Around the resonance (T = 2π/ω),
marked by the dashed line, n̄ph grows faster for smaller γ ,
which is responsible for the early breakdown in this region.

VI. CONCLUSIONS

In conclusion, we have studied the Thouless charge pump-
ing in the presence of optical phonons. The Rice-Mele
pumping protocol extended with Holstein-like coupling to the
local dispersionless phonons was used. We considered the
initial conditions where the subsystems are decoupled and the
phonons are in their ground state. We utilized a semiclassical
approach known as the multitrajectory Ehrenfest method to
analyze the system’s dynamics where the electrons are treated
quantum mechanically and phonon trajectories are evolved
classically.

The analysis revealed a breakdown of quantized pump-
ing induced by the phonons for any finite value of the e-ph
coupling when the phonon frequency and pumping frequency
match. Moreover, in this case, for smaller e-ph coupling,
nonquantized positive and negative pumping is observed. The
direction of pumping is accurately explained using the effec-
tive pumping path, which is the modified Rice-Mele path due
to the coupling of phonon position with the electronic density.
The effective pumping path was found to be winding around
the origin in counterclockwise and clockwise directions for

the time windows with positive and negative pumping, respec-
tively. The nonadiabatic nature of the dynamics affects the
quantization of pumping in this regime. The nonadiabaticity
is visible from the gap in the energy spectrum of the instan-
taneous Hamiltonian. When the pumping vanishes at higher
values of e-ph coupling, the effective pumping path is seen
to cross the origin in every cycle during the evolution, which
explains the breakdown.

When the pumping period is out of resonance, the phonon-
induced breakdown of the quantized pumping still exists. Yet
a parameter regime of robust quantized pumping exists before
it breaks down at the larger e-ph coupling. The periodically
oscillating phonon number evolution and nonshrinking stable
effective pumping path signal the robustness of quantization
in this case. The adiabatic nature of the pumping does not
hold after the breakdown of pumping for larger e-ph coupling,
which is visible from the energy spectrum of the instantaneous
Hamiltonian.

We obtained a stability diagram as a function of e-ph
coupling and the time period of pumping. A wide region of
quantized pumping was observed in the parameter space of
finite e-ph coupling. As a result of resonance, a reentrant
behavior of the quantized pumping was observed where, at a
fixed e-ph coupling, the quantization reappears after a break-
down near the resonance as a function of the time period of
pumping.

These results lead to an avenue of further analysis worth
studying. One could do a similar analysis for quantum
phonons. The system could be simulated using the tDMRG
method with the local basis optimization technique [59,76].
Starting the pump from different initial states may lead to
interesting outcomes. One should further consider scenarios
of stable quantized pumping even in the presence of phonons.
A half-filled Holstein model, for instance, could host a charge
density wave state [48–50], depending on parameters, with
a many-body gap. One could also extend the model for the
phonons with dispersion. The addition of dispersion allows
the phonons to transport energy to other sites, whereas local
oscillators can do that only via electrons. The sign of the dis-
persion may also matter as the minimum changes its position
in k space from k = 0 to k = π with the sign.

The numerical data plotted in the figures are partially avail-
able [80].

ACKNOWLEDGMENTS

We thank M. ten Brink for helpful discussions. This re-
search was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) via Research Unit FOR
2414 under Project No. 277974659.

[1] D. J. Thouless, Phys. Rev. B 27, 6083 (1983).
[2] M. Lohse, C. Schweizer, O. Zilberberg, M. Aidelsburger, and I.

Bloch, Nat. Phys. 12, 350 (2016).
[3] C. Schweizer, M. Lohse, R. Citro, and I. Bloch, Phys. Rev. Lett.

117, 170405 (2016).

[4] S. Nakajima, T. Tomita, S. Taie, T. Ichinose, H. Ozawa,
L. Wang, M. Troyer, and Y. Takahashi, Nat. Phys. 12, 296
(2016).

[5] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg,
Phys. Rev. Lett. 109, 106402 (2012).

235118-8

https://doi.org/10.1103/PhysRevB.27.6083
https://doi.org/10.1038/nphys3584
https://doi.org/10.1103/PhysRevLett.117.170405
https://doi.org/10.1038/nphys3622
https://doi.org/10.1103/PhysRevLett.109.106402


PHONON-INDUCED BREAKDOWN OF THOULESS … PHYSICAL REVIEW B 106, 235118 (2022)

[6] Y. Ke, X. Qin, F. Mei, H. Zhong, Y. S. Kivshar, and C. Lee,
Laser Photonics Rev. 10, 995 (2016).

[7] A. Cerjan, M. Wang, S. Huang, K. P. Chen, and M. C.
Rechtsman, Light: Sci. Appl. 9, 178 (2020).

[8] Z. Fedorova, H. Qiu, S. Linden, and J. Kroha, Nat. Commun.
11, 3758 (2020).

[9] P. Titum, E. Berg, M. S. Rudner, G. Refael, and N. H. Lindner,
Phys. Rev. X 6, 021013 (2016).

[10] Y. Ke, X. Qin, Y. S. Kivshar, and C. Lee, Phys. Rev. A 95,
063630 (2017).

[11] A. Hayward, C. Schweizer, M. Lohse, M. Aidelsburger, and F.
Heidrich-Meisner, Phys. Rev. B 98, 245148 (2018).

[12] M. Nakagawa, T. Yoshida, R. Peters, and N. Kawakami, Phys.
Rev. B 98, 115147 (2018).

[13] L. Privitera, A. Russomanno, R. Citro, and G. E. Santoro, Phys.
Rev. Lett. 120, 106601 (2018).

[14] M. M. Wauters, A. Russomanno, R. Citro, G. E. Santoro, and
L. Privitera, Phys. Rev. Lett. 123, 266601 (2019).

[15] B. A. van Voorden and K. Schoutens, New J. Phys. 21, 013026
(2019).

[16] R. Wang and Z. Song, Phys. Rev. B 100, 184304 (2019).
[17] Y. Kuno and Y. Hatsugai, Phys. Rev. Res. 2, 042024(R)

(2020).
[18] L. Lin, Y. Ke, and C. Lee, Phys. Rev. A 101, 023620 (2020).
[19] P. Marra and M. Nitta, Phys. Rev. Res. 2, 042035(R) (2020).
[20] S. Greschner, S. Mondal, and T. Mishra, Phys. Rev. A 101,

053630 (2020).
[21] A. L. C. Hayward, E. Bertok, U. Schneider, and F. Heidrich-

Meisner, Phys. Rev. A 103, 043310 (2021).
[22] S. Mondal, S. Greschner, L. Santos, and T. Mishra, Phys. Rev.

A 104, 013315 (2021).
[23] Y. Kuno and Y. Hatsugai, Phys. Rev. B 104, 045113 (2021).
[24] E. Bertok, F. Heidrich-Meisner, and A. A. Aligia, Phys. Rev. B

106, 045141 (2022).
[25] Q. Fu, P. Wang, Y. V. Kartashov, V. V. Konotop, and F. Ye, Phys.

Rev. Lett. 128, 154101 (2022).
[26] T. Tuloup, R. W. Bomantara, and J. Gong, arXiv:2205.10978.
[27] S. Nakajima, N. Takei, K. Sakuma, Y. Kuno, P. Marra, and Y.

Takahashi, Nat. Phys. 17, 844 (2021).
[28] A.-S. Walter, Z. Zhu, M. Gächter, J. Minguzzi, S.

Roschinski, K. Sandholzer, K. Viebahn, and T. Esslinger,
arXiv:2204.06561.

[29] J. E. Avron, M. Fraas, G. M. Graf, and O. Kenneth, New J. Phys.
13, 053042 (2011).

[30] C.-E. Bardyn, M. A. Baranov, C. V. Kraus, E. Rico, A.
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