
PHYSICAL REVIEW B 106, 235117 (2022)
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The scattering theory of low-energy (slow) electrons has been developed by Evans and Mills
[Phys. Rev. B 5, 4126 (1972)]. The formalism is merely based on the electrostatic Coulomb interaction of
the scattering electrons with the charge-density fluctuations above the surface and can describe most of the
interesting features observed in the high-resolution electron energy-loss spectroscopy experiments. Here we
extend this theory by including the spin-orbit coupling in the scattering process. We discuss the impact of this
interaction on the scattering cross section. In particular, we discuss cases in which a spin-polarized electron beam
is scattered from nonmagnetic surfaces with a strong spin-orbit coupling. We show that under some assumptions
one can derive an expression for the scattering cross section, which can be used for numerical calculations
of the spin-polarized spectra recorded by spin-polarized high-resolution electron energy-loss spectroscopy
experiments.
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I. INTRODUCTION

Experimental techniques based on particle scattering be-
long to the most powerful tools for probing and investigation
of elementary collective excitations in solids. The type and the
excitation probability of such collective modes is determined
by the type and the strength of the microscopic physical inter-
action describing the coupling between the scattering particle
and the sample. In the case of neutrons or neutral atoms
the interaction is mainly between the incoming particle and
the atomic nuclei. If the particle possesses a spin (e.g., in
the case of neutrons) the spin-spin interaction shall also be
taken into account [1–3]. Since electrons are charged parti-
cles, when a beam of low-energy (slow) electrons is scattered
from a surface, it interacts with the charge-density fluctuations
near the surface region and can couple to collective charge
excitations. The interaction is of Coulomb nature and hence
is strong and long range. This is the central mechanism be-
hind probing collective excitations associated with the charge
degree of freedom, e.g., phonons and plasmons (or any hy-
brid mode of these two) using low-energy (slow) electrons in
high-resolution electron energy-loss spectroscopy (HREELS)
experiments [4]. The spectral function probed by these exper-
iments is, in fact, directly proportional to the dynamic charge
response of the sample.

In the electron scattering experiments, e.g., HREELS one
usually distinguishes two regimes, i.e., dipole and impact scat-
tering. Dipole scattering refers to scattering geometries in the
vicinity of the specular reflection. This is commonly referred
to as the dipolar lobe and exhibits a very narrow angular
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distribution. In this regime, the cross section can be calculated
without knowing the microscopic details of the sample [5].
However, at large deflection angles a detailed and microscopic
knowledge of the sample is required in order to describe the
scattering process. The scattering at large deflection angles
outside the dipolar lobe is commonly referred to as impact
scattering. The angular distribution of impact scattering is
very broad and the scattering intensity is by several orders of
magnitude smaller than that of the dipole scattering.

The theory of low-energy electron scattering was devel-
oped by Evans and Mills a long time ago [4–6]. In that
formalism the spin degree of freedom of electrons and the
relativistic effects have not been taken into account. Perhaps
this is due to the fact that there has been no demand and inspi-
ration from the experimental side. The conventional HREELS
experiments have been performed using an unpolarized elec-
tron beam. Hence, the spin-dependent effects could not be
measured in those experiments. The focus has mainly been on
the investigation of surface phonons [4]. The scattering cross
section obtained within that framework has successfully been
used for the numerical calculations of the HREELS spectra
using the numerical scheme developed by Lucas and cowork-
ers [7–9]. The theory has recently been extended to the case
in which electrons transfer a momentum equal to a reciprocal-
lattice vector to the sample during the scattering process [10].
It has been shown that the formalism of Evans and Mills is
also valid for such cases [10]. In addition to their charge,
electrons possess also a spin and hence spin-polarized electron
scattering experiments can provide valuable information on
spin-dependent excitations. In the traditional spin-polarized
electron energy-loss spectroscopy experiments the energy and
momentum resolution have not been sufficient to resolve the
low-energy collective excitations and their spin dependence.
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The central idea of those experiments has mainly been to
study concepts like Stoner excitations at magnetic surfaces or
inter- and intraband transitions, both of which take place at
rather high energy losses (typical a few eV) [11–15].

Here we revisit the theory of low-energy electron scattering
and extend it to a case in which a spin-polarized electron beam
is scattered from a surface with a large spin-orbit coupling
(SOC). We restrict ourselves to the dipole scattering regime
and nonmagnetic surfaces. We will show that the main advan-
tage of our approach is that it does not require the microscopic
details of the sample.

The spin-polarized scattering experiments become of im-
portance in two classes of materials, i.e., (i) magnetically
ordered solids and (ii) solids with a large SOC. In the for-
mer class, in particular in the case of ferromagnetic metals,
the exchange process is of great importance and it is the
underlying mechanism of spin-flip excitations, e.g., magnons
as quanta of spin waves and single-particle Stoner excita-
tions [11–24]. The mechanism leading to these excitations is
the so-called exchange scattering, which is of Coulomb na-
ture. The fundamental physical mechanisms behind inelastic
electron scattering leading to spin-flip excitations are inher-
ently different from those of inelastic neutron scattering, even
though both lead to very similar results. Since electrons are
indistinguishable particles, in electron scattering processes the
exchange mechanism plays an important role. On the contrary,
in neutron scattering experiments the type of the interaction
that is important is the magnetic spin-spin interaction between
the neutron’s magnetic moment and the magnetic moment of
the unit cell, which leads to the magnon excitations. In the
electron scattering experiments one may imagine the magnon
excitation process within the following classical picture. Let
us assume that an electron with the spin parallel to that of
the minority electrons of the ferromagnetic sample is incident
onto the surface. Suppose that the incident electron fills an
unoccupied state above the Fermi level while a majority elec-
tron from an occupied state below the Fermi level is scattered
out. This exchange process leads to a virtual spin flip and con-
sequently an electron-hole pair with total angular momentum
1 h̄ across the Fermi level (h̄ is the reduced Planck’s constant).
The excitation of magnons by spin-polarized electrons is
based on such a process. The scattering itself is elastic and the
observed energy loss (or gain) of electrons is due to the fact
that the ejected electron originates from a lower (or higher)
energy level of the excited solid. Such a process is mediated by
exchange interaction that is of Coulomb nature and no explicit
spin-spin interaction is needed to be taken into account. The
magnon excitation process is very fast and occurs within a few
attoseconds. For an extended discussion the reader is referred
to Refs. [22,23]. Based on the arguments discussed above and
since we do not deal with magnetic surfaces here, we do not
consider any spin-spin interaction in our formalism [25].

It has been realized that when a beam of spin-polarized
slow electrons is elastically scattered from a surface with a
large SOC, the scattering intensity can exhibit a spin asym-
metry, depending on the relative orientation of the spin of
the incoming beam with respect to the scattering plane [13,
26–28]. The effect is a direct consequence of SOC [13,26–
33]. The asymmetry caused by SOC is also present in the
inelastic part of the scattering. However, there are still several

FIG. 1. A schematic representation of the scattering geometry
used to describe the scattering process. A spin-polarized beam with
a given polarization vector is incident onto the sample surface. The
incident energy and wave vector are denoted by Ei and ki, respec-
tively. The energy and the wave vector after the scattering event are
indicated by Es and ks, respectively. The laboratory frame is depicted
in the left corner with coordinates x, y, and z. The sample surface is
placed in the x-y plane at z = 0. The incident and outgoing angles
are called θi and θs, respectively. The total scattering angle is θ0. The
unit vector of surface normal is indicated by n̂. The scattering plane
is shown by the shaded area.

unresolved fundamental questions. (i) How is the asymmetry
of the inelastic part of the scattering connected to that of
the elastic scattering in high-resolution experiments? (ii) How
does SOC influence the scattering cross section? (iii) Does
the observed spin asymmetry depend on the energy loss and
momentum transfer?

We discuss the influence of the SOC term on the scattering
cross section and the SOC-induced spin asymmetry for both
the elastically and inelastically scattered electrons. The results
are particularly important to describe spin-polarized high-
resolution electron energy-loss spectroscopy (SPHREELS)
experiments performed close to the specular reflection on
nonmagnetic surfaces with a strong SOC. We note that a fully
relativistic theory shall take into account both SOC and the
exchange interaction and hence should describe all the details
of the spin-polarized spectra, regardless of the magnetic state
of the sample. However, developing such a theory requires
(i) a sophisticated description of the exchange process within
both the dipole and impact scattering regimes and (ii) all the
microscopic details of the sample, e.g., details of the geometri-
cal structure near the surface, details of the electronic structure
as well as the electronic states involved in the scattering pro-
cess. Although state of the art first-principles calculations may
provide the latter requirement, it is not easy to include the
exchange process in the scattering event, in particular in the
inelastic part and in the impact regime.

II. BASIC THEORY

We consider a case in which a well-defined spin-polarized
electron beam with a given energy Ei and momentum ki is
scattered from a surface. The energy and momentum of the
electron after the scattering process are Es and ks, respectively.
The geometry of such a scattering event is schematically
drawn in Fig. 1. The angles θi and θs denote the incident and
scattered angles, respectively, and θ0 = θi + θs indicates the
total scattering angle. Assuming that the polarization vector
of the incident beam is an arbitrary but known vector in
the laboratory frame, one can define its components in the
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Cartesian coordinates shown in Fig. 1, using its polar and
azimuthal angles.

We first define the many-body states of the sample with
the energies Em and En as |m〉 and |n〉, respectively. The
total charge-density operator is given by ρ̂(R) and includes
both negative, e.g., electrons as well as positive charges, e.g.,
protons. The three-dimensional position vector R can be de-
composed into an in-plane r and an out-of-plane component z
via R = (r, z). Here z represents the coordinate normal to the
surface and the sample is placed in the x-y plane at z < 0 (the
surface is located at z = 0, see Fig. 1). The charge operator
ρ̂(R) acts on the many-body states of the sample with matrix
elements 〈n|ρ̂(R)|m〉.

The general definition of the differential scattering cross-
section is given by [3]

d2S

d�dh̄ω
=

(
2π

h̄

)4

m2
e

ks

ki

1

Z

∑
mn

e−Em/kBT |〈n, s|

× T̂ (Em + Ei )|m, i〉|2δ(Em + Ei − En − Es),

(1)

where d� represent the solid angle of the scattering, me

is the mass of electron, ki and ks represent the norms of
the three-dimensional wave vectors of the incident and scat-
tered electron, respectively, Z = ∑

m e−Em/kBT is the partition
function, kB is the Boltzmann constant, and h̄ω = Ei − Es

represents the energy loss of electrons during the scatter-
ing process. We are mostly interested in cases in which
Es ≈ Ei and h̄ω � Ei. T̂ (E ) is the many-body t-matrix
given by T̂ (E ) = V̂ + V̂ (E + i0 − Ĥ )−1T̂ (E ) with Ĥ the
Hamiltonian of the sample and V̂ the interaction energy of
the incident electron with the sample. Using the first-order
(Born) approximation, the many-body t-matrix reduces to
the interaction energy T̂ (E ) ≈ V̂ . Now if one ignores the
exchange-correlation potential, the interaction energy of the
incident electron with the sample can be written as the sum of
the Coulomb (Hartree) and SOC terms V̂ = V̂H + V̂SOC. V̂H is
the Hartree energy, i.e., the electrostatic interaction with the
charge density ρ̂(R)

V̂H(R) = σ0 e
∫

dR′ ρ̂(R′)
4πε0|R − R′| . (2)

σ0 = (1 0
0 1) is the identity matrix in spin space. The Hartree

potential is diagonal in spin space and conserves the spin of
the electron during the scattering process. V̂SOC is the spin-
orbit interaction given by

V̂SOC(R) = eh̄

4m2
ec2

σ · [Ê(R) × p]. (3)

σ is the vector of Pauli matrices with the compo-
nents σx = (0 1

1 0), σy = (0 −i
i 0 ), and σz = (1 0

0 −1). Ê(R) =
−∇V̂H(R)/e is the electric field due to the charge distribution
ρ̂(R), and p = −ih̄∇ is the momentum operator.

According to Eq. (1), one needs the square of the scatter-
ing matrix elements |〈n, s|V̂ |m, i〉|2 in order to calculate the
scattering cross section in the Born approximation. To do so,
one first needs to define the wave functions of the incident
and scattered beams. These wave functions are the solutions

of the single-particle Schrödinger equation with scattering
boundary conditions in the half space above the surface z > 0.
Following Refs. [5,6,10], we assume a flat surface acting
as a hard wall and preventing the incident electrons from
penetrating the half space z < 0. We furthermore generalize
these previous works by allowing the surface to display spin-
dependent reflection, as may arise due to SOC in the sample
or any other mechanism. Under these assumptions, the wave
functions of the incident ψi(R) and scattered ψs(R) electrons
can be written as

ψi(R) = Nie
iki·r(ieikz

i z + Rie−ikz
i z )�(z), (4a)

ψs(R) = Nse
iks·r(seikz

s z + Rse−ikz
s z )�(z). (4b)

Here Ni and Ns are normalization factors. �(z) is the Heavi-
side step function and ensures that the electrons do not cross
the surface. i and s are two-component vectors representing
the initial and final states in some spin-1/2 basis and R is the
reflection matrix expressed in the same basis. It is a 2 × 2 ma-
trix with elements representing the spin-dependent reflection
coefficients.

Equations (1)–(4) define the spin-resolved scattering cross
section. In the next section, we provide explicit expressions
for the Hartree and SOC matrix elements.

III. SCATTERING MATRIX ELEMENTS

It is important to mention that while evaluating Eq. (1) both
Hartree V̂H and spin-orbit V̂SOC terms should be considered
in the matrix element |〈n, s|V̂ |m, i〉|2. This is a tedious task
and leads to long expressions due to the cross terms. Instead,
one may first calculate the Hartree and SOC contributions
separately, in order to see whether these terms can lead to
a momentum or energy-loss dependence of the scattering
cross section. Of particular interest is to see whether the spin
asymmetry caused by SOC depends on these variables. In the
following, we carefully analyze the Hartree and SOC matrix
elements.

A. Hartree matrix element

The matrix element of the Hartree energy Eq. (2) between
the incoming and scattered wave functions given by Eq. (4) is
(see Appendix A)

〈n, s|V̂H|m, i〉 = eNsNi

2ε0q

[
s† · i

q + iq−
z

+ s† · (Ri)
q + iq+

z

+ (Rs)† · i
q − iq+

z

+ (Rs)† · (Ri)
q − iq−

z

]
Pnm(q), (5)

where q±
z = kz

s ± kz
i and q = |q| is the norm of the two-

dimensional vector q = ks − ki. Note that in scattering from
surfaces the parallel component of the electron’s momentum
is important, since it provides information on the momentum
of the elementary excitations at the surface. The quan-
tity Pnm(q) is given by Pnm(q) = ∫ 0

−∞ dz 〈n|ρ̂(q, z)|m〉e−q|z|,
where ρ̂(q, z) is the two-dimensional Fourier transform of
ρ̂(R) ≡ ρ̂(r, z). The scattering cross section including only
the Hartree term can now be calculated by inserting Eq. (5)
into Eq. (1). We will discuss the consequences of the reflection
matrix on the Hartree cross section in Sec. IV.
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B. Spin-orbit matrix element

In a similar way one can calculate the matrix element of
the SOC term. We first express it for an unspecified electric
field and, in a second step, we specialize to the Coulomb
field −∇V̂H(R)/e, which provides the relativistic correction to
the Hartree scattering. For convenience, Eq. (3) is written in
the from

V̂SOC = eα
∑

ν∈{x,y,z}
σνÔν, (6)

where α = h̄2/(4m2
ec2) and the operators Ôν only act on the

orbital part of the electron wave function, for instance Ôx =
−i(Ê × ∇)x = −iÊy∂/∂z + iÊz∂/∂y and similarly for Ôy and

Ôz. For the electron wave function Eq. (4), one sees that the
derivatives ∂/∂x and ∂/∂y are equivalent to multiplication by
ikx

i and iky
i , respectively. Furthermore, when calculating the

matrix element 〈s|V̂SOC|i〉, the in-plane integral on r = (x, y)
simply yields the Fourier components of the electric field at
the wave vector q. One can, therefore, define the operators
Ôν (z) for the remaining integral on z:

Ôx(z) = −iÊy(q, z)
∂

∂z
− ky

i Êz(q, z), (7a)

Ôy(z) = kx
i Êz(q, z) + iÊx(q, z)

∂

∂z
, (7b)

Ôz(z) = ky
i Êx(q, z) − kx

i Êy(q, z). (7c)

It follows that the SOC matrix element is given by

〈s|V̂SOC|i〉 = eαNsNi

∑
ν

[
s† · σν i

∫ ∞

0
dz e−ikz

s zÔν (z)eikz
i z�(z) + s† · σν (Ri)

∫ ∞

0
dz e−ikz

s zÔν (z)e−ikz
i z�(z)

+(Rs)† · σν i
∫ ∞

0
dz eikz

s zÔν (z)eikz
i z�(z) + (Rs)† · σν (Ri)

∫ ∞

0
dz eikz

s zÔν (z)e−ikz
i z�(z)

]
. (8)

In the above equation the summation is on ν = x, y, z. Among them, the case of Ôz is the simplest as it does not involve ∂/∂z.
The integrals may be expressed using the partial Fourier transform of the electric field along z:

Ê(q, qz ) ≡
∫ ∞

0
dz Ê(q, z)e−iqzz. (9)

The first of the four terms involving Ôz(z) in Eq. (8) can thus be evaluated as∫ ∞

0
dz e−ikz

s zÔz(z)eikz
i z�(z) = ky

i Êx(q, q−
z ) − kx

i Êy(q, q−
z ). (10a)

The three other terms yield the same result with q−
z replaced by q+

z , −q+
z , and −q−

z , respectively. We continue with Ôx,y(z),
which yield additional contributions due to ∂/∂z acting on �(z):∫ ∞

0
dz e−ikz

s zÔx(z)eikz
i z�(z) = kz

i Êy(q, q−
z ) − i

2 Êy(q, z = 0) − ky
i Êz(q, q−

z ), (10b)

∫ ∞

0
dz e−ikz

s zÔy(z)eikz
i z�(z) = kx

i Êz(q, q−
z ) − kz

i Êx(q, q−
z ) + i

2 Êx(q, z = 0). (10c)

The three subsequent terms have (q−
z , kz

i ) replaced by (q+
z ,−kz

i ), (−q+
z , kz

i ), and (−q−
z ,−kz

i ), respectively. Collecting everything,
we arrive at the following expression for the SOC scattering matrix element:

〈s|V̂SOC|i〉 = 〈s∣∣V̂ (v)
SOC

∣∣i〉 + 〈s∣∣V̂ (s)
SOC

∣∣i〉, (11a)

〈s∣∣V̂ (v)
SOC

∣∣i〉 = eαNsNi(Ê+
xyz − Ê+

xzy + Ê+
yzx − Ê+

yxz + Ê−
zxy − Ê−

zyx ), (11b)

〈s∣∣V̂ (s)
SOC

∣∣i〉 = −ieαNsNi
1
2 (s + Rs)† · [σxÊy(q, z = 0) − σyÊx(q, z = 0)](i + Ri). (11c)

We have separated the “vacuum” terms proportional to Ê(q, qz ), denoted by the superscript (v), from the “surface” terms
proportional to Ê(q, z = 0), denoted by the superscript (s). In the ideal geometry with translation invariance in the x-y plane, the
electric field is parallel to z and the latter terms drop. In Eq. (11b), the quantity Ê is defined as

Ê±
γ νμ = kγ

i [s† · σν i Êμ(q, q−
z ) ± s† · σν (Ri)Êμ(q, q+

z ) + (Rs)† · σν i Êμ(q,−q+
z ) ± (Rs)† · σν (Ri)Êμ(q,−q−

z )]. (11d)

If the electric field is the one due to the Hartree potential, we have (see Appendix B)

〈n|Ê(q, qz )|m〉 = (−iqx,−iqy, q)

q + iqz

Pnm(q)

2ε0q
, (12a)

〈n|Êx,y(q, z = 0)|m〉 = −iqx,y
Pnm(q)

2ε0q
. (12b)
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We deduce the SOC matrix elements in this case:

〈n, s
∣∣V̂ (v)

SOC

∣∣m, i〉 = eαNsNi

2ε0q
[q(F+

xy − F+
yx ) − iqx(F+

yz − F−
zy ) + iqy(F+

xz − F−
zx )]Pnm(q), (13a)

〈n, s
∣∣V̂ (s)

SOC

∣∣m, i〉 = eαNsNi

4ε0q
(s + Rs)† · (qxσy − qyσx )(i + Ri)Pnm(q), (13b)

F±
γ ν = kγ

i

[
s† · σν i
q + iq−

z

± s† · σν (Ri)
q + iq+

z

+ (Rs)† · σν i
q − iq+

z

± (Rs)† · σν (Ri)
q − iq−

z

]
. (13c)

In Sec. IV, we will discuss the importance of the SOC matrix
elements introduced in Eq. (13).

IV. DISCUSSION

The spin-resolved Hartree cross section can be calculated
by inserting Eq. (5) into Eq. (1). It reads as

d2SH

d�dh̄ω
=

(
2π

h̄

)4

m2
e

ks

ki

(
e

2ε0q

)2

(NsNi )
2

∣∣∣∣∣
s† · i

q + iq−
z

+ s† · (Ri)
q + iq+

z

+ (Rs)† · i
q − iq+

z

+ (Rs)† · (Ri)
q − iq−

z

∣∣∣∣∣
2

×
∫ 0

−∞
dzdz′ S (q, z, z′, ω)e−q|z+z′ |, (14)

where S (q, z, z′, ω) is the spectral function

S (q, z, z′, ω) = 1

Z

∑
mn

e−Em/kBT 〈m|ρ̂(−q, z)|n〉

× 〈n|ρ̂(q, z′)|m〉δ(h̄ω + Em − En). (15)

The cross section (scattering intensity) provides direct infor-
mation on the frequency and momentum dependent dynamic
(charge) response of the sample. It is important to notice that
this quantity is probed over a depth which scales with 1/q.
Given the rather high momentum resolution of the experi-
ments (on the order of 0.03 Å−1) this probing depth can be
rather large. This means that the information on the dynamic
response is not only restricted to the surface region but also
several tens of nanometers below the surface. Owing to the
long-range nature of the Coulomb interaction, this is not sur-
prising. The penetration depth and the mean free path of the
involved electrons are not relevant in this context.

If the reflection coefficient does not depend on the spin of
the electrons and is real, the reflection matrix has the form
R = Rσ0 with R a real constant. In this case, the spin-resolved
Hartree cross section becomes

d2SH

d�dh̄ω
≈

(
2π

h̄

)4 ks

ki

(
mee

ε0

)2

(NsNi )
2 R2|s† · i|2

[q2 + (q+
z )2]2

×
∫ 0

−∞
dzdz′ S (q, z, z′, ω)e−q|z+z′ |. (16)

Note that while expressing | · · · |2 in Eq. (14) we kept only the
middle terms. This is justified by the fact that for nearly spec-
ular reflection, we have q ≈ 0 and kz

s ≈ −kz
i , such that |q+

z | �
|q−

z |. Consequently, the terms proportional to (q ± iq+
z )−1 are

dominant relative to those proportional to (q ± iq−
z )−1. The

same simplification is used in Refs. [5,6,10]. The factor |s† ·
i|2 expresses the conservation of spin. It can be replaced by
unity for a non-spin-resolved experiment. The quantity q+

z can
be expressed as q+

z = (v‖q − ω)/v⊥ (here v‖ and v⊥ denote
the components of the incident electron’s velocity parallel and
perpendicular to the surface, respectively). Hence the results
are exactly the same as those of Refs. [5,6,10]. Obviously, no
spin asymmetry is expected in this case.

Likewise, the SOC cross section can be expressed by in-
serting the matrix elements given by Eq. (13). On a crystalline
surface, the electric field has the periodicity of the lattice in
the x-y plane with Fourier amplitudes only at the reciprocal-
lattice vectors. The x and y components of the electric field
have vanishing amplitude at the center of the two-dimensional
Brillouin zone, unlike the z component. Hence at low q only
the z component of the electric field contributes significantly
to the scattering. The surface terms in Eq. (13), that only
stem from the x and y components of the field, can therefore
be neglected. The same holds for disordered surfaces, as the
low-q scattering probes the spatial average of the electric field,
which by symmetry must be oriented along z.

Ignoring the surface terms for further evaluation of the
SOC cross section leads to

d2SSOC

d�dh̄ω
=

(
2π

h̄

)4

m2
e

ks

ki

(
e

2ε0q

)2

(NsNi )
2α2|q(F+

xy

− F+
yx ) − iqx(F+

yz − F−
zy ) + iqy(F+

xz − F−
zx )|2

×
∫ 0

−∞
dzdz′ S (q, z, z′, ω)e−q|z+z′ |. (17a)

If one only keeps the terms proportional to R in | · · · |2, similar
to the case of the Hartree cross section, then

F±
γ ν ≈ kγ

i

[
± s† · σν (Ri)

q + iq+
z

+ (Rs)† · σν i
q − iq+

z

]
. (17b)

Now one can calculate the spin asymmetry caused by the
SOC term. Since in the usual SPHREELS experiments only a
spin-polarized incident beam is used, the scattering intensity
is a sum over the partial intensities of both spin states after
the scattering. We define the intensity I|+〉 (I|−〉) as the sum
of the partial intensities when an electron of |+〉 (|−〉) initial
state is scattered to either a |+〉 or a |−〉 final state. If the
reflection matrix is independent of the spin, R = Rσ0, we
find that the asymmetry vanishes [34]. This is an important
result and indicates that the asymmetry is almost entirely
defined by the reflection matrix. This means that the electrons
inelastically scattered from a surface with a large SOC follow
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the same spin asymmetry as that of the elastically scattered
ones. We emphasize that this is true only for small energy
losses (h̄ω � Ei).

The asymmetry of elastically scattered electrons from sur-
faces with a large SOC has been investigated in great details
[13,27,27–33]. It has been realized that the presence of the
surface barrier at the surfaces cannot create a noticeable
spin asymmetry [13,27]. This is due to the fact that the po-
tential gradients caused by such potential profiles and the
associated electric fields are usually too small, compared
to the potential gradients in the vicinity of the nuclei. The
presence of the SOC and the surface barrier has indirect
consequences on the electron transmissivity and reflectivity.
One, therefore, may assume that the electron reflectivity is
spin dependent [13,27,30]. This consideration can drastically
simplify the situation. Based on Eq. (17) the scattering cross-
section by the SOC term is scaled by a factor ∼(αqki )2 and,
therefore, might be neglected in the total intensity for slow
electrons. In this case, the Hartree cross section considering
spin-dependent reflection coefficient may be used to describe
the results of SPHREELS experiments. In order to show that
such an assumption is valid, we calculate the spin asymmetry
caused by this term. Starting from Eq. (14) and assuming
that R is a Hermitian matrix, the spin asymmetry is then
given by

I|+〉 − I|−〉
I|+〉 + I|−〉

= |R++|2 − |R−−|2
|R++|2 + |R+−|2 + |R−−|2 + |R−+|2 . (18)

The real values |Rσσ ′ |2 can be measured by elastic reflec-
tivity measurements. They represent the partial intensities of
the scattered electrons when the spin of the incoming and
outgoing beam is of σ and σ ′ character, respectively. In
the so-called complete experiment, where a spin-polarized
beam is used as the source and the detection is also spin
resolved, all the four possible partial intensities are known
[14]. Such experiments can be designed with a high mo-
mentum resolution but usually suffer from a poor energy
resolution, due to the inefficiency of the spin detectors for
the inelastic part of the scattering [35]. Hence, in the usual
SPHREELS experiments only the incoming beam is spin po-
larized and the detection is not spin-resolved [11,22,23,36].
Therefore, the partial intensities of both spin characters
in the final state are added up. This means that in the
experiment the values of |R|+〉|2 = |R++|2 + |R+−|2 and
|R|−〉|2 = |R−−|2 + |R−+|2 are measured and Eq. (18) can be
simplified to

I|+〉 − I|−〉
I|+〉 + I|−〉

= |R|+〉|2 − |R|−〉|2
|R|+〉|2 + |R|−〉|2 . (19)

Equation (19) has an important implication. In the limit of
h̄ω � Ei the asymmetry of the inelastic scattering is indepen-
dent of h̄ω and q and follows that of the elastic scattering.
Hence, one can use the same numerical scheme originally
developed for HREELS experiments [7–9] to simulate the
SPHREELS spectra. The important observation is that one
needs to consider the spin-dependent reflection coefficients.
Recall that the reflection matrix is a 2 × 2 matrix with the
reflection coefficient being its elements. In a general form
these coefficients are complex entities and may be calculated

using state of the art first-principles calculations. Such cal-
culations require primarily the details of the geometrical and
electronic structures of the sample. However, the square of
the reflection coefficients are real values and can be measured
by elastic reflectivity experiments. In this case one needs to
measure the partial intensities of the elastically reflected beam
for the incoming spin states |+〉 and |−〉 as a function of the
incident electron beam by placing the detector in the specular
geometry.

One more important point is that all the elements of the
reflection matrix depend on the energy and angle of the in-
cident beam [37,38]. Obviously, the asymmetry depends on
these variables. For large values of energy losses the situation
can become rather complicated. In such cases one may ob-
serve a strong energy-loss dependence of the spin asymmetry
due to the fact that the reflection coefficients depend on the
electron’s energy just before scattering. If this energy is much
different than the incident energy, the reflection coefficient is
also different.

Very recently, high-resolution experiments have been re-
ported on quantum materials with a large SOC and interesting
spin-dependent effects associated with SOC have been ob-
served [36,39]. Our results shall provide the fundamental basis
required to numerically calculate the spin-polarized spectra
and understand the experimental results in details (an example
may be found in Ref. [39]).

V. CONCLUSION

The successful theory by Evans and Mills describes
the scattering cross section of low-energy electrons from
a nonmagnetic surface. The scattering process is based on
the electrostatic Coulomb interaction of the electrons with
the charge-density distribution of the sample. The theory
describes most of the important features observed in the
HREELS experiments, namely phonons, plasmons, and any
other collective excitation associated with the charge-density
fluctuations. Aiming at a detailed understanding of the impact
of SOC on the scattering cross section of low-energy electrons
scattered from a nonmagnetic surface, we extended the theory
to the cases in which SOC is included in the formalism. In
the presence of this term the scattering cross section becomes
spin-dependent. For a more appropriate description one has
to also take into account that the elements of the reflection
matrix are spin dependent. We show that, if one assumes that
the scattering cross section caused by the SOC term is small,
and the effect of SOC is to cause spin-dependent reflection
coefficients, the spin asymmetry will be independent of the
electron energy loss and the momentum transfer. Assuming
a Hermitian reflection matrix, one can derive a simplified ex-
pression for the scattering cross section, which can be used for
numerical calculation of the spin-polarized spectra recorded
in SPHREELS experiments. In principle, one can use the same
machinery developed and implemented by Lucas and Šunjić
[7–9] and simulate the SPHREELS spectra [39,40]. The only
difference in this case will be to use spin-dependent reflection
coefficients. These quantities can be obtained by the elastic
reflectivity measurements.
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APPENDIX A: MATRIX ELEMENT OF THE HARTREE
POTENTIAL

Upon substitution of the two-dimensional Fourier
representations of the charge-density operator, ρ̂(R) =
(2π )−2

∫
d2k eik·rρ̂(k, z), and of the Coulomb potential,

1/|R| = (2π )−2
∫

d2k eik·r(2π/k)e−k|z|, the matrix element of
the Hartree operator, Eq. (2), becomes

〈s|V̂H|i〉 = e

4πε0

∫
dR ψ∗

s (R)
∫

dR′
∫

d2k

(2π )2
eik·r′

× ρ̂(k, z′)
∫

d2k′

(2π )2
eik′·(r−r′ ) 2π

k′ e−k′ |z−z′ |σ0ψi(R).

For the wave functions given by Eq. (4), the in-plane integrals
on r and r′ yield (2π )4δ(k′ − q)δ(k − k′), where the in-plane
wave vector transfer is q = ks − ki. Considering that the wave
functions vanish if z < 0 and that there are no charges for z′ >

0, the matrix element reduces to

〈s|V̂H|i〉 = e

2ε0q

∫ ∞

0
dz ψ∗

s (0, z)
∫ 0

−∞
dz′

× ρ̂(q, z′)e−q|z−z′ |σ0ψi(0, z).

The integral on z can now be evaluated by means of the
identity ∫ ∞

0
dz e−q|z−z′ |eiqzz = e−q|z′ |

q − iqz
, (A1)

which leads directly to Eq. (5).

APPENDIX B: COMPONENTS OF THE ELECTRIC FIELD

The electric field due to the charge distribution ρ̂(R) is
Ê(R) = −∇V̂H(R)/e, which after Fourier transform reads

Êx,y(q, z) = −iqx,yV̂H(q, z)/e for the in-plane components and
Êz(q, z) = −∂/∂zV̂H(q, z)/e for the z component. The x and y
components are readily evaluated by introducing the Fourier
representations of the charge density and Coulomb potential,
like in Appendix A:

Êx,y(q, z) = −iqx,y

4πε0

∫
d2r e−iq·r

∫
dR′

∫
d2k

(2π )2
eik·r′

× ρ̂(k, z′)
∫

d2k′

(2π )2
eik′ ·(r−r′ ) 2π

k′ e−k′ |z−z′ |

= −iqx,y

2ε0q

∫ 0

−∞
dz′ ρ̂(q, z′)e−q|z−z′ |.

This leads to Eq. (12b). We now perform the partial Fourier
transform as in Eq. (9), using Eq. (A1),

Êx,y(q, qz ) =
∫ ∞

0
dz Ê(q, z)e−iqzz

= −iqx,y

2ε0q

∫ 0

−∞
dz′ ρ̂(q, z′)

e−q|z′ |

q + iqz
,

which establishes Eq. (12a) for the components x and y. The
expression of Êz(q, z) is the same as that of Êx,y(q, z) with
−iqx,y replaced by −∂/∂z:

Êz(q, z) = 1

2ε0q

∫ 0

−∞
dz′ ρ̂(q, z′)

(
− ∂

∂z

)
e−q|z−z′ |

= 1

2ε0

∫ 0

−∞
dz′ ρ̂(q, z′)sign(z − z′)e−q|z−z′ |.

The partial Fourier transform is performed using the identity
∫ ∞

0
dz sign(z − z′)e−q|z−z′ |e−iqzz

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e−q|z′ |

q + iqz
z′ < 0

e−q|z′ |

q − iqz
− 2iqz

q2 + q2
z

e−iqzz′
z′ > 0,

(B1)

which proves Eq. (12a) for the z component.
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