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We use the first-principles and effective Hamiltonian methods to study the electronic structure and magnetic
properties of a recently synthesized layered antiferromagnetic square-net topological semimetal EuZnSb2 [Phys.
Rev. Res. 2, 033462 (2020)]. The main message of the paper is that effects of small changes in the band
structure produced by the magnetic ordering and changes in the orientation of the Néel vector are amplified
in such transport properties as the spin Hall conductivity. We predict that the effects of the broken symmetry
introduced by the ordering of the Néel vector, being very weak in the bulk, are pronounced in the surface
electronic dispersion, suggesting that surface probes may be more suited to measure them. The coexistence of
the magnetism with many other competing phases make this material interesting and possibly useful for quantum
spintronics applications.
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I. INTRODUCTION

Interplay of the topological bands and competing magnetic
orders could result in novel physical properties such as large
anomalous Hall effect [1] and axion electrodynamics [2].
It also presents a possibility to use magnetic reordering to
manipulate electronic transport [3]. The recent discoveries
of magnetic topological insulators [4] and magnetic Dirac
[5–7] and Weyl [8–11] semimetals have triggered a flurry of
research activities on this topic [12]. In particular, antiferro-
magnetic (AFM) systems with broken parity (P) and time
reversal (T ) symmetries but unbroken PT symmetry have
attracted a lot of interests recently for novel effects such as
the electrical control of AFM magnetization [13,14] and the
Dirac band topology [15,16].

After Young and Kane proposed the existence of topologi-
cal nodal fermions in square-net motifs [17], different variants
of the square-net topological materials have been studied
extensively [18,19]. Recently, antiferromagnetic semimetals
consisting of strongly correlated 4 f electrons in the 111
family of type LnSbTe [Ln = lanthanide elements] [20,21]
and 112 family of type LnMn(Bi,Sb)2 have been reported
to host a topological Fermi surface similar to the well-
known ZrSiS family of materials [22–25]. It is known that
when the magnetic atoms directly contribute to the forma-
tion of the conduction bands as in such transition metal
antiferromagnetic Dirac semimetal (AFM-DSM) systems as
CuMnAs, Mn3Ge, etc., the magnetic ordering and, in particu-
lar, the orientation of the magnetic moments can bring subtle
changes in the electronic structure and related transport prop-
erties [16,26]. Such subtle changes in the band topology and
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associated transport signatures in AFM-DSM caused by
changes in the orientation of the magnetic moments may be
useful for spintronics applications such as low power electron-
ics and magnetic memory devices [27,28].

An influence of magnetism on the electronic dispersion and
transport is less explored in the aforementioned f -electron
square-net systems, where it may also lead to interesting
effects. However, the conduction bands in these systems are
formed by the px-py orbitals of the (Bi, Sb) square nets weakly
hybridized with the f -electron bands lying far away from the
Fermi level. This makes a connection between the f -electron
magnetism and the conduction bands as well as the associated
transport anomalies less obvious. Given the potential advan-
tages of f -electron systems over conventional semiconductors
for spintronics applications [29,30] and the availability of rich
material pool and magnetic properties obtained by varying Ln
elements [31], it is important to study the systems where the
itinerant electrons coexist with the localized ones.

Recently, Wang et al. have reported a discovery of a layered
4 f square-net material EuZnSb2 [32]. This material is the zintl
cousin of the more famous Mn-based 112 phases. Because
of the unpaired 4 f electrons, it orders antiferromagnetically
with a Néel temperature (TN ) of 20 K. Density functional the-
ory calculations showed the presence of the extended Fermi
surface formed by the p electrons. In this paper we study in
detail the electronic structure of various AFM phases of this
material. We aim to establish if and how the orientation of the
Néel vector influences the band topology and related trans-
port properties. We find that magnetic orderings introduce
small but non-negligible corrections in the gap size across the
Fermi surface which have consequences in the Berry curva-
ture related transport properties. More importantly, we find
that depending on the orientation of the Néel vector, different
crystalline symmetries are broken globally. Such broken sym-
metries are manifested in the electronic structure and transport
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properties. Our findings suggest that systems with coexisting
itinerant and localized f electrons can be useful platforms for
topological spintronics applications and more studies along
this direction are necessary.

The organization of this paper is as follows. In Sec. II we
present the details of our computational methods. In Sec. III
we present our results and discuss them in detail. Finally, in
Sec. IV we present our conclusion and future outlook. The
derivation of the tight-binding model and the effective Kondo
exchange Hamiltonian is relegated to the Appendixes.

II. COMPUTATIONAL DETAILS

The density-functional-theory (DFT) calculations were
done using the WIEN2K DFT package [33]. The basis size
was determined by RmtKmax = 7 and the primitive Brillouin
zone (BZ) was sampled with a regular 18 × 18 × 7 k mesh
to achieve energy convergence of 1 meV. A 10 000 k-point
mesh was used for the Fermi surface calculations. Some of the
calculations, especially in the paramagnetic phase, were ver-
ified using the QUANTUM ESPRESSO (QE) [34] package. The
Perdew-Burke-Ernzerhof (PBE) exchange-correlation func-
tional [35] within the generalized gradient approximation
(GGA) was used in all the calculations. The GGA + Ueff

method was used to handle the Eu 4 f orbitals. Ueff of 6 eV
was chosen in our calculations [36–39]; however we have
also verified that the results presented here remain robust for
a large range of Ueff values. The spin-orbit coupling (SOC)
was treated in the second variation method. The spin Hall
conductivity calculations were done using WANNIER90 soft-
ware [40,41] by taking an 80 × 80 Wannierized Hamiltonian.
All Eu 4d, 4 f orbitals and Sb 5s, 5p orbitals were used in the
Wannierization procedure in order to accurately reproduce the
DFT bands in the energy window from −1 to 1 eV.

III. RESULTS AND DISCUSSION

A. Crystal structure

EuZnSb2 is a layered square-net material in the space
group P4/nmm (No. 129) similar to the well-known nodal-
line family of materials of ZrSiS [32]. The crystal structure
of EuZnSb2 is shown in Fig. 1. The unit cell consists of
stacking of square lattices of Eu, Zn, and two types of Sb
atoms (called Sb1 and Sb2 here) along the c direction in the
arrangement of —Zn-Sb1-Eu-Sb2-Eu-Sb1-Zn—. Sb2 and Zn
atoms form a denser (

√
2 × √

2) square lattice (also known
as 44 square lattice in the crystallographic community [42]),
with two atoms in each two-dimensional (2D) square plane,
whereas Sb1 and Eu atoms form a less denser square lattice
with just one atom in each 2D square plane. Sb2 and Zn
atoms occupy the same site when projected on the a-b plane,
whereas Eu (and Sb1) atoms above and below Sb2 atoms
occupy the interstitial site of the 44 lattice and are related by
inversion (or a glide) symmetry.

B. Nonmagnetic phase and Wannier tight-binding analysis

It was shown in Ref. [32] that the lowest energy antiferro-
magnetic phase of EuZnSb2 hosts broad band dispersion close
to the Fermi level. Before investigating how the band topology

FIG. 1. The unit cell of EuZnSb2. (a) The stackings of the layered
square lattices along the c axis and (b) the projection onto the a-b
plane and the denser (

√
2 × √

2) square lattice of Sb2 atoms. Eu
atoms above and below Sb2 atoms occupy the interstitial site of
the Sb2 square lattice and are related by the glide (or inversion)
symmetry; Zn atoms occupy the same site as Sb2 atoms.

changes with the change in the magnetic texture, we would
like to understand the origin of the conduction bands. For this
end we first study the nonmagnetic phase in the absence of
the Eu-4 f electrons within the open core approximation to
simplify the problem. Since we are interested in the electronic
dispersion in the vicinity of the Fermi level, such open core
electron description is approximately equivalent to the appli-
cation of the Hubbard U within the mean-field approximation
that pushes the localized states away from the Fermi level.

The DFT calculated band dispersion for nonmagnetic cal-
culation in the absence of SOC are shown in Fig. 2(a) (gray
lines). The band diagram shows crossings along �-M and �-X
directions close to the Fermi level. Such crossings are the
consequence of the band folding due to the doubling of the
unit cell and are formed between the dispersive px-py orbitals
from the denser square nets of Sb2 atoms. The pz states from
Sb2 atoms have smaller bandwidth and are almost completely
filled. Sb1 p orbitals also contribute to the states close to the
Fermi level (see band character plots in Appendix A, Fig. 10).

The red and blue dots overlapped onto the gray lines in
Figs. 2(a) and 2(b) are the results from four- and six-band
Wannier function descriptions, respectively, obtained by using
the method of disentanglement [40]. Hopping parameters only
up to the next-nearest neighbor (nnn) given in Table I are
used for this comparison. The four-band model reproduces
the crossings between the dispersive px-py bands along the
�-M and X -� directions but it cannot describe other features
in the vicinity of the Fermi level. It appears that the six-band
tight-binding (TB) model is the minimal model to describe
the band structure in the vicinity of the Fermi surface. Even
with the nnn TB model, one can describe approximately the
generic features as seen in Fig. 2(b). In fact, by including the
long range hopping terms, we can reproduce all the features
in the periphery of the Fermi level exactly (see Fig. 12 in
Appendix A where all long range hopping matrix elements
are included in the six-band model). The Wannier orbitals
are formed by the bond directed px, py, and pz-like orbitals
centered on the Sb2 atoms forming the square lattice as shown
in Fig. 2(c).
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(a) (b)

(c)

FIG. 2. Comparison between the DFT calculated bands (gray
lines) with (a) four- and (b) six-band TB Hamiltonian eigenvalues
(red-blue dots) for the paramagnetic phase without SOC obtained
using the parameters in Table I. In (c) we show the six px , py, and
pz-like Wannier orbitals used in the description of the six-band TB
Hamiltonian.

Qualitatively, the four-band model Hamiltonian in the basis
of the px and py orbitals is sufficient to understand the origin
of the band dispersion along the �-M and X -� [43]. Hence,
in the following we only discuss the simple four-band model
to understand the effect of R4 symmetry breaking introduced
by the magnetic Eu atoms and the action of the spin-orbit
coupling. Notice that in the absence of the nnn term, fourfold
degenerate bands are present right at the X high symmetry
point, whereas the nnn term makes the bands twofold degen-
erate slightly away from the X point (see Fig. 11). We refer the
reader to Appendix A for an exact analytical expression of the
eigenvalues from the 4 × 4 Hamiltonian and other effective
Hamiltonian analysis.

Gap on the Fermi surface: The Fermi surface (FS) can be
gapped partially along �-M by breaking the sublattice sym-
metry (or equivalently inversion or glide symmetry of the 2D
square plane). This can be done easily in our TB Hamiltonian
by introducing the on-site anisotropy term. However, in order
to open a gap at the X -� direction, one needs to break both
sublattice and R4 symmetry; the latter can be introduced in
our TB model by making the σ and π hoppings asymmetric
along the x̂ and ŷ directions. Figure 3(a) presents the case of
opening gaps in the band crossings by introducing such terms
in our TB model.

(a) (b)

FIG. 3. Band structure from a nnn 4 × 4 Hamiltonian using the
tight-binding parameters in Table I. (a) Sublattice and R4 is broken
explicitly in the 4 × 4 model by introducing on-site anisotropy and
making the σ and π hopping different along x̂ and ŷ direction. (b) The
effect of SOC is included. The insets show the gap openings in the
band crossings.

In the presence of the SOC, the entire Fermi surface gaps
out. We find the form of SOC in our TB Hamiltonian to be
(λσzτy + δγzσzτz ) where λ and δ are constants and γ , σ , τ are
the Pauli matrices acting on the site, spin, and orbital indices,
respectively. The first term introduces coupling between the
px and py orbitals of the same site and same spin, whereas
the second term introduces the on-site asymmetry. Figure 3(b)
shows the action of SOC on the nnn tight-binding model
using δ = 0.1 and λ = 0.2 which are extracted from the ab
initio Wannier function analysis. In addition to gapping out the
entire Fermi surface, the introduction of SOC breaks twofold
degeneracy at the � point but preserves crossings at M and
X points away from the Fermi level. These observations are
consistent with the DFT calculation.

C. Magnetic phases and electronic structure

Having explored the electronic dispersion of the nonmag-
netic phase in detail, we are now in the position to understand
the influence of magnetic texture in the electronic properties.
Reference [32] found that two AFM patterns (referred to as
AAF and AAF3) of EuZnSb2 are competing for the ground
state, i.e., having very small energy differences well within the
error bar of the calculations. The different magnetic patterns

TABLE I. Tight-binding parameters (in eV) for the six-band
Wannier functions in the basis of the px , py, and pz-like Wannier
orbitals centered on the Sb2 atoms forming square lattice. The near-
est neighbor (nn) pi-pi hopping integrals are tσ = 1.9 and tπ = −0.5
for the σ - and π -bonding-like orbital overlaps, respectively.

〈W Fs|H |W Fs〉 Sb px py pz

Sb ε-μ 0.12 0.12 −1.0
Sbnn px tσ ; tπ 0.00 −0.05
Sbnn py 0.00 tσ ; tπ −0.05
Sbnn pz −0.05 −0.05 −0.10
Sbnnn px 0.00 ±0.10 0.00
Sbnnn py ±0.1 0.00 0.00
Sbnnn pz 0.00 0.00 0.20
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TABLE II. Calculated energy difference per formula unit in meV
for different magnetic patterns (see text).

GGA + SO + GGA + SO +
Pattern GGA GGA + SO U (3 eV) U (6 eV)

AAF-x 0 0 0 0
AAF-z – 0.804 0.24 0.017
AAF3-x – −2.85 −0.41 1.29
AAF3-z −6.46 −6.18 −0.53 1.35
FM 1.13 −0.53 – 3.71
NM 7297 5795 – –

studied in this work are shown in Fig. 4. Throughout this
paper, the ẑ and x̂ magnetic phase (alternatively called soz and
sox phases in the paper) imply the direction of the Néel vector
(�n) parallel to the [001] and [100] direction, respectively. Our
DFT calculations find that the energy differences between the
magnetic phases depend on the value of the Hubbard inter-
action U . As shown in Table II, for U = 0, AAF3 has lower
energy, whereas as U is increased, AAF becomes lower in en-
ergy. Also, the magnetic anisotropy energy is very small, i.e.,
the energy differences between the ẑ and x̂ AFM pattern are
almost the same. Note that the ferromagnetic (FM) state is also
closer in energy, but the nonmagnetic (NM) phase is a very
high-energy state, due to the Eu2+ 4 f 7 high-spin electronic
configuration but with weak coupling between well-localized
f electrons. The relevant information about magnetic space
groups and symmetry relationships is listed in Table III.

1. AAF phase

The AFM arrangement of the two Eu atoms in the primitive
unit cell located above and below the Sb2 square lattice gives
the AAF phase. The two antiferromagnetically aligned Eu
atoms are no longer inversion symmetric irrespective of any
direction of the Néel vector. This is because inversion symme-
try does not operate on the spin degree of freedom. However,
because of the broken inversion (P) and broken time rever-
sal symmetry (T ), their product PT is a conserved quantity
which makes the bands doubly degenerate throughout the BZ.
Such a magnetic space group (MSG) falls into type-II MSG.

Unlike inversion symmetry, rotation (or screw) and mirror
(or glide) symmetries act on the spin degree of freedom.
Hence, depending on the orientation of the Néel vector,
some of the symmetries could be broken. For example, x̂ (ẑ)
direction of the Néel vector preserves (breaks) glide symme-
try Gz = {m001| 1

2
1
2 0} but breaks (preserves) twofold rotation

FIG. 4. (a) and (b) AAF and (c) and (d) AAF3 magnetic patterns
of EuZnSb2 with magnetization along the x̂ and ẑ axes, respectively.

symmetry R2z = {2001| 1
2

1
2 0} which can be seen from the fol-

lowing action of the symmetry operation on the space and spin
degree of freedom:

(x, y, z)
Gz−→

(
x + 1

2 , y + 1
2 ,−z

)
,

(x, y, z)
Rz−→

(
− x + 1

2 ,−y + 1
2 , z

)
,

(mx, my, mz )
Gz/Rz−−−→ (−mx,−my, mz ). (1)

Similarly, other symmetries absent in the AAF-x̂ mag-
netic phase are fourfold rotation symmetries along the
c axis {4±

001| 1
2 00}, twofold rotation along the [110] axes

{2110| 1
2

1
2 0}, {21−10|0}, and the product of these symmetries

with PT symmetry. The details of the symmetry operations
present for different magnetic patterns are shown in Table III.

In the following paragraphs we will first present results
from the DFT calculations which show clear differences in
the bulk and surface electronic dispersion between the ẑ and
x̂ phase. We will then derive an effective Kondo exchange
Hamiltonian using parameters extracted from DFT calcula-
tions to understand some of the major findings.

a. Bulk states: The bulk band structure comparison between
the AAF-x̂ and AAF-ẑ phases in a narrow energy window
of ±1 eV is shown in Fig. 5(a). Figure 15 in Appendix C
shows the electronic dispersion and density of states (DOS)
in a wider energy range. The Eu-4 f states are 1 eV below

TABLE III. The magnetic symmetry group and symmetry operations of different magnetic patterns. In the first and last two rows, the
symmetry operations which are different for the x̂ and ẑ Néel vector orientations of the same AFM patterns are colored in gray. Other symmetry
operations can be generated by the action of PT for the AAF phase and by the action of P , T ′, and PT for the AAF3 phase, hence not
mentioned here for clarity.

Pattern MSG Symmetry operations

AAF-z 129.419 (P4/n′m′m) {4+
001| 1

2 00}, {4−
001|0 1

2 0}, {2100| 1
2 00}, {2010|0 1

2 0}, {2001| 1
2

1
2 0}, {2110| 1

2
1
2 0}, {21−10|0}, {−1′|0}

AAF-x 59.407 (Pm′mn) {m100| 1
2 00}, {2010|0 1

2 0}, {m001| 1
2

1
2 0}, {−1′|0}

AAF3-z 130.432 (Pc4/ncc) {4+
001| 1

2 00}, {4−
001|0 1

2 0}, {2110| 1
2

1
2

1
2 }, {21−10|00 1

2 }, {2001| 1
2

1
2 0}, {2100| 1

2 0 1
2 }, {2010|0 1

2
1
2 }, {−1|0}, {1′|00 1

2 }
AAF3-x 62.450 (Panma) {2001| 1

2
1
2

1
2 }, {2100| 1

2 00}, {2010|0 1
2

1
2 }, {−1|0}, {1′|00 1

2 }
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FIG. 5. Comparison of the electronic structure between the AAF-ẑ and AAF-x̂ phases with the inclusion of SOC and U of 6 eV. (a) Band
structure along �-M-X -�-Z-A-R-Z high symmetry direction for the two phases. The cyan (red) lines show bands for magnetization along x̂ (ẑ)
direction. (b) and (c) Fermi surface plots on the 3D Brillouin zone with red and blue colors showing hole and electron pockets, respectively.
(d) and (e) Intensity plot of the inverse band gap value between the valence and conduction band on the kx-ky plane at kz = 0 which shows
the formation of the gapped nodal line feature around the � point. The rectangular boxes are drawn to highlight the fact that the x̂ phase has a
broken R4 symmetry, whereas ẑ phase obeys R4 perfectly. (f) and (g) Contour plot of the Eu-4 f orbital distribution on the valence band. The
intensity range (color bar) is shown in a narrow region to amplify the small differences between the two magnetic phases. These figures again
highlight that R4 is weakly broken for the x̂ phase. See text for details.

the Fermi level and the small DOS at the Fermi level mainly
comes from the Sb2 px-py orbitals.

We find that despite the absence of some symmetries in the
AAF-x̂ phase, as mentioned in the previous section, the bulk
band structure for both phases in the vicinity of the Fermi level
looks almost identical except for small momentum dependent
shifts. This is expected as the localized Eu-4 f orbitals are
pushed away from the Fermi level due to the application of the
Hubbard U correction. The Fermi surface plots in Figs. 5(b)
and 5(c) highlight this fact which show similar features except

for a slight difference at the � point. In fact, the electronic
dispersion from the nonmagnetic phase (Fig. 2) is not very
different from the AAF phase which shows that the effect of
magnetism in the electronic dispersion is small in this system.
In the absence of SOC, the valence and conduction bands form
a gapped nodal line on the kx-ky plane with band crossings
along the �-M direction. All the crossings are gapped by the
action of SOC for both phases. This is similar to the case of
nodal line semimetal ZrSiS where SOC has been found to
open a gap in the Dirac crossings [18].
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FIG. 6. Comparison of the slab Fermi surface between the
(a) AAF-ẑ and (b) AAF-x̂ phase. The gray lines are the bulk-derived
states and the red-blue lines denote the hole and electron Fermi
pockets obtained from the three-layer slab calculation. Notice that
the broken R4 symmetry is amplified in the surface dispersion in (b).

Although there are no protected crossings for both phases,
the magnitude of the band gap is different for the two mag-
netic phases. In Figs. 5(d) and 5(e) we show the inverse of the
eigenvalue difference between the valence and the conduction
bands on the kx-ky plane at kz = 0 to highlight the presence
of the gapped nodal line feature. In the ẑ phase, the gap
distribution is identical in all four quadrants, however, that is
not the case in the x̂ phase. This is a clear signature of the
broken global R4 symmetry on the x̂ phase only [Fig. 5(e)].
To understand further the origin of the R4 symmetry breaking,
we also looked at the k-dependent valence band occupancy
of the 4 f electrons on the kx-ky plane [Figs. 5(f) and 5(g)].
In the vicinity of the � point, we find that the 4 f -electron
contribution to the valence band is not symmetric across the
four quadrants unlike the ẑ phase indicating that R4 symmetry
is weakly broken due to the orientation of the Eu-4 f magnetic
moments.

b. Surface states: We also performed slab calculation to
see how the orientation of the Néel vector affects the surface
states. Figure 6 shows the slab Fermi surface of the AAF-ẑ
and x̂ phases obtained from a three-layer slab calculation (see
Appendix C, Fig. 16, for results from the semi-infinite slab
calculation). The surface is terminated on the Zn and Sb1
layers. The slab calculations show a number of additional
features compared to the bulk states which are shown as a gray
background. The most notable feature which is absent in the
bulk dispersion is the closed loop (red lines) state around the �

point connecting the gray ellipsoids. Remarkably, the surface
states are different for the two phases with the breaking of
the R4 symmetry clearly visible now for the x̂ phase unlike
the subtle differences we found in the bulk-band features.
For example, along the �-X as well as �-M directions, the
surface states, especially the hole ones (red lines), are related
by the mirror symmetry Mx but are asymmetric with respect
to the R4 symmetry, i.e., the pockets are not identical along
the four quadrants only for the x̂ phase. This is amazing
given the fact that the slab is not terminated on the Eu atoms
and the Eu-4 f states have negligible contribution to the Fermi
surface. This demonstrates that the magnitude of the broken
symmetry in the electronic dispersion are more amplified on
the surface compared to the bulk states. Hence, we anticipate

that surface probes could be more suitable for resolving the
broken symmetry phases.

In order to understand further how Eu- f states can affect
the Fermi surface properties, we have derived an effective
Kondo exchange Hamiltonian for the px-py electrons in the
presence of the Eu- f spins in Appendix B. From such ef-
fective Hamiltonian analysis, we find that the Eu magnetic
moments can affect the dispersion of the itinerant px-py elec-
trons through exchange coupling which introduces hopping
between the p electrons through Eu sites. In addition, we show
that depending on the orientation of the Eu- f spins, the band
spectrum as well as their spin texture will be different. This
will have consequences in the spin transport properties which
will be discussed later.

2. AAF3 phase

We also studied another competing AFM phase AAF3 in
detail. AAF3 phase requires the doubling of the unit cell along
the c axis as seen in Figs. 4(c) and 4(d). Unlike the AAF
phase, P is preserved here. Moreover, despite breaking of
the T symmetry, T ′ = T τ , i.e., T followed by translation
τ = {0, 0, 1

2 } is the symmetry of the system. Such MSG with
nonsymmorphic T falls into type-IV category and has been
found in another AFM Dirac material EuCdAs2 [44]. PT ′
symmetry makes the bands doubly degenerate throughout the
Brillouin zone. In addition, because of the half-translation
along with T , there are interesting symmetry properties.

Similar to the AAF magnetic pattern, the ẑ phase here has
more symmetry compared to the x̂ phase due to the direction
of the spins. For example, R+

4 symmetry is preserved for
magnetization along ẑ direction, whereas it is not preserved
for magnetization along x̂ or ŷ directions. The complete list of
symmetry operations are tabulated in Table III.

Following closely the arguments given in Refs. [6,16],
we prove that due to the extra rotational symmetries in the
AAF3-ẑ phase, Dirac band crossings along different high
symmetry directions are preserved, whereas they are avoided
(or gapped) in the AAF3-x̂ phase. First, we find the eigen-
values of the fourfold rotoinversion symmetry operator R̄+

4 =
{± − 4+

001| 1
2 , 0, 0}:

(x, y, z)
R̄+

4−−→ (
y + 1

2 ,−x,−z
) R̄+

4−−→ ( − x + 1
2 ,−y − 1

2 , z
)

R̄+
4−−→ (

y, x − 1
2 ,−z

) R̄+
4−−→ (x, y, z), (2)

Hence, (R̄+
4 )4 = −1 and the eigenvalues are Jm = ei (2m+1)π

4 ,
where the minus sign is from the spin rotation and m = 0,
1, 2, 3 such that

J0 = eiπ/4 = J∗
3 , J1 = ei3π/4 = J∗

2 . (3)

Because of the PT ′ symmetry, the bands are twofold degen-
erate throughout the BZ. If |ψ〉 is the simultaneous eigenstate
of the Hamiltonian operator and the R̄+

4 , we would like to
find the PT ′ partner of |ψ〉. For this we need to find the
commutation of R̄+

4 with PT ′:

(x, y, z)
R̄+

4−−→ (
y + 1

2 ,−x,−z
) PT ′−−→ ( − y − 1

2 , x, z − 1
2

)
,

(x, y, z)
PT ′−−→ ( − x,−y,−z − 1

2

) R̄+
4−−→ ( − y + 1

2 , x, z + 1
2

)
,

(4)
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FIG. 7. (a) Comparison of the electronic dispersion between the
AAF3-x̂ (cyan) and ẑ (red) magnetic phases. The inset shows band
crossings near the Fermi level for the ẑ phase, whereas the crossing
is avoided for the x̂ phase. (b) Intensity plot of the inverse band gap
between the valence and conduction bands for the ẑ phase showing
crossings along the �-M directions and in the vicinity of the X point.
The small gap of ∼10 meV seen in the plot is due to the finite k
mesh.

i.e.,

R̄+
4 PT ′ = τ (1, 0, 1)PT ′R̄+

4

⇒ R̄+
4 PT ′|ψ〉 = e−i(kx+kz )PT ′R̄+

4 |ψ〉,
RHS = e−i(kx+kz )PT ′R̄+

4 |ψ〉
= e−i(kx+kz )PT ′Jm|ψ〉
= e−i(kx+kz )J∗

me(ikz/2)PT ′|ψ〉
= e−i(kx )e−(ikz/2)J∗

mPT ′|ψ〉. (5)

This implies that if |ψ〉 is an eigenstate of R̄+
4 operator with

eigenvalue Jm, then PT ′|ψ〉 is also an eigenstate of R̄+
4 with

eigenvalue e−i(kx−kz/2)J∗
m. Now, let us examine the R̄+

4 eigen-
values of |ψ〉 and its PT ′ partner at different high symmetry
points which are invariant under the R̄+

4 operation.
At the � point, where k = 0, states with R̄+

4 eigenvalues
of (J0, J3) and (J1, J2) form degenerate pairs. Similarly, at
the M high symmetry point (π, π, 0), because of the extra
e−ikx factor, (J0, J2) and (J1, J3) form degenerate pairs, i.e.,
the R̄+

4 eigenvalues of the Kramer’s pairs switches partner

(a)

(b)

FIG. 8. Comparison of the σ z
xy component of the SHC tensor as a

function of the chemical potential between the x̂ and ẑ phases of the
(a) AAF and (b) AAF3 magnetic patterns. The dots are calculated
values and dashed lines are obtained from cubic spline interpolation.

compared to the � point. This makes the Dirac band crossing
unavoidable along this line. Following similar arguments, we
find that there is an unavoidable crossing along the Z-A line.

In Fig. 7(a) we compare the DFT calculated bands between
the AAF3-x̂ and AAF3-ẑ phases. The differences between
the two are very small but most importantly there are some
crossings in the AAF3-ẑ patterns which are absent in the
x̂ pattern. For example, along the �-M and Z-A directions,
ẑ pattern shows crossings, whereas there is a small gap of
∼10 meV in the x̂ pattern. A similar feature is seen along the
X -� and R-Z lines. On the contrary, at the Z point, x̂ phase
shows fourfold degeneracy, whereas ẑ phase has a gap of few
meVs. Figure 7(b) shows the plot of inverse of the eigenvalue
difference between the valence and conduction band for the
AAF3-ẑ pattern on the kx-ky plane at kz = 0 plane. Similar to
the AAF pattern, we see a gapped nodal line feature with a
small difference that point nodes survive along �-M and �-X
direction for the AAF3-ẑ phase only.

We calculated the topological properties of nonmagnetic
and selected magnetic phases of EuZnSb2 using the topolog-
ical classification scheme of Vergniory et al. [45]. We find
that the nonmagnetic phase without SOC lies in the enforced
semimetal (ES) class which is characterized by the band cross-
ings along different lines at the Fermi level. This is consistent
with our band structure results presented in Sec. III B. Such
enforced semimetal, in the framework of topological quantum
chemistry, can become a topological insulator upon symmetry
breakings. In the presence of SOC, all the band crossings
are gapped out for the nonmagnetic phase. In this case, the
system becomes trivial as the set of bands below the Fermi
level can be expressed as a linear combination of elementary
band representations (LCEBR). As for the magnetic phases,
we performed a similar calculation and found that the AAF-z
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FIG. 9. Comparison of the k-resolved spin Berry curvature �sz
xy between (a) AAF-ẑ and (b) AAF-x̂ patterns. Top panels: Band structure

along high symmetry directions colored by the spin Berry curvature of individual bands �sz
n,xy(k). Bottom panels: Sum of the �z

n,xy(k) up to
the Fermi level along the high symmetry directions.

magnetic phase in the presence of SOC is also topologically
trivial (LCEBR) as the band crossings do not survive. On the
contrary, for the AAF3-z AFM phase, we find that Dirac band
crossings are present in the vicinity of the Fermi level even in
the presence of SOC. Such crossings are protected by crystal
symmetries, which makes the system topologically nontrivial.

D. Calculation of the spin Hall conductivity and
spin current manipulation

In the previous section we saw that the orientation of
the Néel vector gives very small changes in the electronic
structure. In this section we show that even though the elec-
tronic dispersion appears similar, the difference in the spin
dependent transport property is appreciable. To highlight this
difference, we will study spin Hall conductivity (SHC).

The phenomenon of spin Hall effect corresponds to gen-
eration of a purely transverse spin current by the applied
electric field [46]. Out of the three mechanisms (intrinsic,
skew scattering, and side jump) contributing to the SHC, the
intrinsic component of the SHC is a direct consequence of
the band topology similar to the phenomenon of anomalous
Hall conductivity when the applied electric field generates a
transverse charge current. SHC is a third rank tensor and is
defined as [41]

σ c
ab(μ) = −e2

h̄

∫
BZ

d3k
(2π )3

∑
n

fnk(μ)�c
n,ab(k), (6)

where fnk (μ) is the k-dependent equilibrium occupation fac-
tor of the nth band at the chemical potential of μ. �c

n,ab is
the band resolved spin Berry curvature which is, in general, a
function of k and frequency ω and is given by

�c
n,ab(ω, k)

= −2h̄2
∑
m �=n

Im
〈nk|{σ̂c, v̂a}|mk〉〈mk|v̂b|nk〉


2
nm(k) − (h̄ω + iη)2

, (7)

where v̂i = ∂
∂kb

is the velocity operator, σ̂ is the Pauli spin
matrix, and 
nm(k) = Enk − Emk . Here we ignore the ω

dependence of the spin Berry curvature. Equation (7) is de-
ceivingly similar to the formula for the normal (charge) Berry
curvature; the only difference is that here one has to eval-
uate the matrix element of the anticommutator between the
velocity operator and Pauli matrix instead of just the velocity
operator in the normal Berry curvature.

SHC, being a third rank tensor, has 27 components; the
magnetic symmetry determines which of them are nonzero.
From the symmetry analysis, we find that there are only
three (six) independent components for the ẑ(x̂) phase. The
exact form of the SHC tensor for each of these phases is
presented explicitly in Table IV. The reason x̂ phase has twice
the number of independent components compared to the ẑ
phase is a consequence of the broken tetragonal symmetry due
to the broken R4 symmetry as mentioned before. Note that
due to the PT symmetry, the anomalous Hall conductivity is
identically zero in the AFM phase.

In Fig. 8 we compare the σ z
xy component for the x̂ and ẑ

Néel vector patterns for both AAF and AAF3 magnetic phases
as a function of the chemical potential (μ). Other nonzero
components of SHC σ x

yz and σ
y
zx are shown in Appendix B,

Fig. 17. σ z
xy measures the ẑ component of the spin current

along the x̂ direction in the presence of the external field in
the ŷ direction. We find that the differences in the SHC value
between the x̂ and ẑ patterns are appreciable. Interestingly, the
magnitude of SHC increases by more than twofold for the
AAF3 pattern compared to the AAF pattern in the vicinity
of the Fermi level. This is likely due to the presence of band
crossings or small band gaps in the AAF3 pattern.

Figure 9 shows momentum resolved spin Berry curvature
along the high symmetry directions for the ẑ and x̂ phases of
the AAF magnetic pattern. The intensity on the top panels
shows the magnitude of the band resolved spin Berry curva-
ture for each k value, whereas the bottom panels show the
band summation of the k-dependent spin Berry curvature up
to the occupied states (EF ). These figures highlight the fact
that despite the bulk band structure features being similar, the
distribution and magnitude of the spin Berry curvature can be
different due to the small differences in the band eigenvalues
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and spin texture of the bands. Our analysis from the effec-
tive Kondo exchange Hamiltonian presented in Appendix B
indeed finds that the band dispersion and their spin texture will
be different depending on the orientation of the Néel vector.

Recent experiments [13,14] demonstrate that the direction
of the Néel vector can be manipulated by external means like
spin-current injection. Quantifying the changes in the spin
Hall conductivity and electronic dispersion experimentally by
varying the magnetization direction is important to determine
the validity of our calculation methods. In addition, many
novel phenomena for spin-current generation and control has
been recently predicted in a wide variety of AFM materials
[47–49]. It will be interesting to explore such effects in future
theoretical as well as experimental studies in related systems.

IV. CONCLUSIONS AND OUTLOOK

In summary, we have studied the electronic structure and
magnetic properties of an antiferromagnetic square-net topo-
logical semimetal EuZnSb2 by employing the first-principles
and effective Hamiltonian methods. We have found that the ef-
fect of magnetism on the bulk low energy spectrum, especially
that introduced by the orientation of the Néel vector, is weak.
Despite such weak effects in the bulk dispersion, we find
that there are consequences for the transport properties and
surface electronic dispersion. For example, our calculations
predict that the broken symmetry introduced by the direction
of the Néel vector is amplified in the surface electronic disper-
sion. Similarly, the differences in the spin Hall conductivity
response between different magnetic phases is appreciable.
We derived an effective Kondo exchange Hamiltonian to un-
derstand our main findings. It will be interesting to confirm
some of the predictions made in this study by experiments like
ARPES in conjunction with the spin-orbit torque experiments
that can control the orientation of the Néel vector [15]. Be-
cause of the presence of the competing magnetic states which
depend on the strength of the interaction term in our calcu-
lations, it will also be intriguing to study the possibilities of
controlling the magnetic ground state and the band topology
by means of small external perturbations like pressure, dop-
ing, intercalation, chemical substitution, etc. Similarly, study
of the surface magnetism, surface transport properties, etc.
could be other directions in these investigations.

To conclude, our work provides compelling evidence that
study of the f -electron AFM can be a promising field for band
engineering and spintronics applications. Similar investiga-
tions are necessary for other predicted f -electron square-net
systems in order to make systematic comparisons and predic-
tions. We believe that our study will motivate future works
in this direction, especially towards prediction and search of
Dirac materials showing large electronic response to the mag-
netic texture, using more sophisticated numerical techniques.
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TABLE IV. The form of the spin Hall conductivity tensor for the
x̂ and ẑ magnetic phases for both AAF and AAF3 magnetic patterns.

σ x σ y σ z

ẑ phase

⎛
⎝0 0 0

0 0 −σ y
xz

0 −σ y
zx 0

⎞
⎠

⎛
⎝ 0 0 σ y

xz

0 0 0
σ y

zx 0 0

⎞
⎠

⎛
⎝ 0 −σ z

yx 0
σ z

yx 0 0
0 0 0

⎞
⎠

x̂ phase

⎛
⎝0 0 0

0 0 σ x
yz

0 σ x
zy 0

⎞
⎠

⎛
⎝ 0 0 σ y

xz

0 0 0
σ y

zx 0 0

⎞
⎠

⎛
⎝ 0 σ z

xy 0
σ z

yx 0 0
0 0 0

⎞
⎠

APPENDIX A: NONMAGNETIC PHASE
AND WANNIER TIGHT BINDING

1. Band characters

In Fig. 10 we show the orbital composition of the bands
(or band characters) in the vicinity of the Fermi level for the
nonmagnetic phase.

-4

-2

 0

 2

 4

Γ M X

(a)

(b)

Γ Z A

E
 (

eV
) Sb2 px-py

Sb2 pz

-4

-2

 0

 2

 4

Γ M X Γ Z A

E
 (

eV
) Sb1 px-py

Sb1 pz

FIG. 10. Character of the bands in the vicinity of the Fermi level
for nonmagnetic phase in the absence of SOC: (a) Sb2 px-py and pz

character and (b) Sb1 px-py and pz character .The size of the dots is
proportional to the orbital composition of the particular state.
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FIG. 11. Wannier bands (red dots) from a 4 × 4 Hamiltonian
formed by the px-py orbitals of the Sb2 square lattice by considering
up to the (a) nn and (b) nnn hopping terms given in Table I.

2. Wannier bands

In Figs. 11 and 12 we compare the eigenvalues obtained
from different tight-binding Wannier Hamiltonian forms with
DFT calculated bands for the nonmagnetic phase.

3. Analytical expression of the eigenvalues
for the 4 × 4 TB Hamiltonian

In this subsection we derive the 4 × 4 TB Hamiltonian for
noninteracting band electrons whose parameters are given in
the main text. For concreteness we define a

√
2 × √

2 square
lattice containing two atoms in the unit cell with lattice vectors
�a = a0(x̂,−ŷ), �b = a0(x̂, ŷ), where a0 is the distance between
the nearest neighbor atoms of the primitive square lattice unit
cell. The tight-binding Hamiltonian in k space for such two-
atom and two-orbital systems without spin-orbit coupling is

Ĥ0 =
∑

k

c†
kH0(k)ck, (A1)

where c†
k = (c1†

kpx
, c1†

kpy
, c2†

kpx
, c2†

kpy
) such that c1†

kpx
creates an elec-

tron at the px Wannier orbital located at site 1 and so on.
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FIG. 12. (a) 6 × 6 and (b) 12 × 12 Wannier bands (red dots)
superimposed onto the DFT bands (black lines). Long range hooping
terms are included in the Wannier Hamiltonian to reproduce the
bands exactly.

Similarly, the Hamiltonian matrix in this basis is given by

H0(k) =

⎛
⎜⎝

t ′′
k t ′

k tkσπ
0

t ′
k t ′′

k 0 tkπσ

tkσπ
0 t ′′

k t ′
k

0 tkπσ
t ′′
k t ′′

k

⎞
⎟⎠, (A2)

where we have defined the hopping matrix elements
as follows: tkσπ

= −2[tσ cos(kxa0) + tπ cos(kya0)],
tkπσ

= −2[tπ cos(kxa0) + tσ cos(kya0)] and t ′
k =

4t ′ sin(kxa0) sin(kya0), t ′′
k = 2t ′′[cos(2kxa0) + cos(2kya0)]

and tσ = −1.9 eV, tπ = 0.5 eV, t ′ = 0.1 eV, and t ′′ ∼ 0.04 eV.
tσ and tπ are the nearest neighbor σ and π hoppings,
respectively, and t ′, t ′′ are the next-nearest and the third
neighbor hopping matrix elements. Note that the t ′′

k term,
which introduces k-dependent shift of the bands, is included
here for better comparison with the DFT results and does not
change the main conclusions. The eigenvalues of H (k) are

E0(k) = t ′′
k ± 1

2

{
tkσπ

+ tkπσ
± [

(tkσπ
− tkπσ

)2 + 4(t ′
k )2

]1/2}
.

(A3)
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FIG. 13. (a) Fermi surface (FS) of the 4 × 4 tight-binding Hamiltonian in the extended zone scheme for different values of t ′ with t ′′ = 0
at half-filling and without SOC. SOC opens the gap in the spectrum for t ′′ = 0 case. (b) and (c) FS and density of states, respectively, with
SOC for t ′′ = 0.04 eV. The chemical potential is tuned to make the system compensated which corresponds to E ∼ 0.014 eV in (c). The red
and blue colored FS pieces denote hole and electron pockets in (b). The dashed lines in (a) and (b) show the reduced Brillouin zone.

First we discuss the condition when t ′′ = 0 where particle-
hole symmetry is preserved. The situation of half-filling
corresponds to zero chemical potential. Then the Fermi sur-
face is determined by the zero energy solution of Eq. (A3):

(tkσπ
tkπσ

− t ′2
k ) = 0. (A4)

This condition gives a diamond-shaped Fermi surface as
shown in Fig. 13(a). When the nnn hopping strength is in-
creased, the Fermi surface becomes more circular and shifts
away from the zone boundary (X point).

For t ′ = 0, the eigenvalues have a trivial form given by

E0(k) = ±tkσπ
and tkπσ

. (A5)

When |kx| = |ky| = k0, the eigenvalues are ±2(tσ +
tπ ) cos(k0a0). This gives degenerate bands along this line
as seen along the �-X and M-X line in Fig. 11(a).

We see that in the absence of further interactions we have
a metal with a half-filled conduction band. Such a situation
is unstable with respect to unit cell doubling which can gap
out (at least partially) the Fermi surface. Such unit cell dou-
bling can occur already on the single particle level or be a

consequence of the interactions. Below we consider the for-
mer mechanism first.

The spin-orbit coupling (SOC) is of the form

HSOC = σ z(λτy ⊗ I + δτz ⊗ γz ), (A6)

where λ and δ are constants and γ , σ , τ are the Pauli matrices
acting on the site, spin, and orbital indices, respectively. Such
form of SOC does not couple the | ↑〉 and | ↓〉 spin sectors;
hence we can still diagonalize the Hamiltonian analytically.
The eigenvalue for each spin sector in the presence of SOC is
given by

ESOC(k) = ±
√

X (k)2 + δ2 + t ′′(k),

X 2(k) = 1
4 {tkσπ

+ tkπσ
± [(tkσπ

− tkπσ
)2 + 4(λ2 + t ′2

k )]1/2}2.

(A7)

The estimate is δ ≈ 0.1 eV. For t ′′ = 0, the FS is fully gapped
at half-filling as discussed in the main text. However, for the
t ′′ �= 0 case, the FS is partially gapped. In Fig. 13(b) we show
the FS in the presence of SOC for nonzero t ′′ at the value
of chemical potential when the system is fully compensated.
As seen in the figure, there are electron and hole pockets at

TABLE V. Hybridization matrix element (in eV) between the occupied |Eu f σ 〉 and the |pσ 〉 states from the Sb2 square nets in the
antiferromagnetic configuration without SOC obtained from the Wannier function analysis. For Eu1 atoms, the | ↑〉 states are occupied,
whereas for Eu2 atoms, | ↓〉 states are occupied. The matrix elements between the |p2σ 〉 and |Euσ 〉 states are similar with px ↔ py. The sign
of the matrix elements are fixed by the symmetry of the corresponding hopping integral. Note that the p orbitals in this table are aligned along
Eu atoms and vice versa.

〈W Fs|H |W Fs〉 Eu1- fxz2 ↑ Eu1- fyz2 ↑ Eu1- fz3 ↑ Eu1- fx(x2−3y2 ) ↑ Eu1- fy(3x2−y2 ) ↑ Eu1- fz(x2−y2 ) ↑ Eu1- fxyz ↑
p1

x ↑ −0.13 0 −0.05 −0.03 0 −0.11 0.0
p1

y ↑ 0 0.01 0 0 0.07 0 0.07
p1

z ↑ −0.11 0 0.06 −0.06 0 −0.13 0
〈W Fs|H |W Fs〉 Eu2- fxz2 ↓ Eu2- fyz2 ↓ Eu2- fz3 ↓ Eu2- fx(x2−3y2 ) ↓ Eu2- fy(3x2−y2 ) ↓ Eu2- fz(x2−y2 ) ↓ Eu2- fxyz ↓
p1

x ↓ 0.01 0 0 −0.07 0 0 0.07
p1

y ↓ 0 −0.13 −0.05 0 0.03 0.11 0
p1

z ↓ 0 −0.11 0.06 0 0.06 0.13 0
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(a) (b)

FIG. 14. A band structure of the nnn 4 × 4 tight-binding Hamiltonian in the presence of the effective Kondo exchange Hamiltonian for the
AFM arrangement of the Eu- f spins. (a) A comparison with the eigenvalues without the exchange Hamiltonian (black dots) at zero spin-orbit
coupling (SOC). Notice that the Kondo exchange splits the band degeneracies by ∼JK 〈S〉 at the M, X , and along X -� direction. The crossing
along �-M is preserved by Kondo exchange in the absence of SOC. The dispersion is identical for any orientation of the Néel magnetization.
(b) Band dispersion in the presence of Kondo exchange with SOC when the spin quantization axis is along the x̂ direction. The color palette
shows the magnitude of the 〈σ̂z〉.

the X point and along �-M direction, respectively, similar to
the FS of the real system with small DOS at the Fermi level
[Fig. 13(c)].

APPENDIX B: DERIVATION OF THE EXCHANGE
HAMILTONIAN

In order to understand how the Eu-4 f states may affect the
band structure and the Fermi surface properties, we have also

FIG. 15. DFT bands and projected density of states (PDOS) for AAF-ẑ magnetic pattern. Positive (negative) PDOS values indicate up
(down) states. The minority spin states for AFM aligned Eu-4 f electrons are ∼10 eV above EF , hence not shown here. The small DOS at EF

comes from Sb2 px-py orbitals.
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FIG. 16. Slab Fermi surface from semi-infinite layer derived from Wannier Hamiltonian for (a) AAF-ẑ and (b) AAF-x̂ magnetic patterns.
The intensity shows the contribution of the surface states. The system is terminated on the Zn layer.

derived an effective Kondo exchange Hamiltonian within the
second order perturbation theory in V . The 4 f shell of Eu
ions is half-filled. The Hund’s rule dictates that at the ground
state the Eu ion has zero angular momentum and the total
spin is S = 7/2. Then, according to Ref. [50], the effective
Kondo Hamiltonian for an Eu ion located at the origin is the
multichannel Kondo model. For a spherically symmetric case
it would have the following form:

H ex
αβ = JK

∑
m

c†
mα (|k|)(�σ �S)αβcmβ (|k|), (B1)

where m are the electron orbital quantum numbers and α, β

are spin indices. In the limit when the Hund’s coupling ex-
ceeds the Kondo temperature [50], the Kondo coupling is
given by

JK = V 2

2S
[−1/ε f + 1/(ε f + U )], (B2)

with V being the overall scale of the hybridization strength
between the Eu- f and conduction electrons (p electrons here)
and ε f being the energy levels of the f states. We estimate
JK ∼ 16 K.

The exchange Hamiltonian is derived under the assumption
that the hybridization matrix elements are equal for all orbitals
involved in the screening of the spin. For the model on a lattice
the latter assumption no longer holds. One has to recalculate
the spherical orbitals into the Wannier functions basis as the
mth orbital will have its own exchange ∼|Vm|2 which will lead
to exchange anisotropy.

By using the hybridization matrix elements between the
localized Eu-4 f and the itinerant px-py orbitals from the ab
initio calculations as shown in Table V, we obtain the follow-
ing effective Kondo exchange Hamiltonian in the basis of the
p orbitals c†

kσ = (c1†

kpxσ
, c1†

kpyσ
, c2†

kpxσ
, c2†

kpyσ
):

H ex
σσ ′ = JK

∑
k,k′,R1

c†
kσ ĝ+(k, k′)(�σ �SR1 )σ,σ ′e−i(k−k′ )R1 ck′σ ′

+ JK

∑
k,k′,R2

c+
kσ ĝ−(k, k′)(�σ �SR2 )σσ ′e−i(k−k′ )R2 ck′σ ′,

where �SR1 and �SR2 are the spins localized on the R1 and R2
sites. g+ and g− are the effective exchange matrices given by

g+(k, k′) =

⎛
⎜⎝

g1 −g2 g3 − g4 −g3 − g4

−g2 g1 g3 + g4 −g3 + g4

H.c. H.c. g1 g2

H.c. H.c. g2 g1

⎞
⎟⎠,

g−(k, k′) =

⎛
⎜⎝

g1 g2 g3 − g∗
4 g3 + g∗

4
g2 g1 −g3 − g∗

4 −g3 + g∗
4

H.c. H.c. g1 −g2

H.c. H.c. −g2 g1

⎞
⎟⎠,

(B3)

and g1 = 1, g2 = 1/2, g3 = As∗
x (k)s∗

y(k′), g4 =
Bs∗

x (k)sy(k′), sa = 1 − e−ika , A = 1/16, B = 3/16.
The role of the Eu magnetic moments: The interaction

between conduction electrons and magnetic moments may
lead to many different effects. Depending on how strong the
coupling is between these two subsystems, the net result many
be very different. Below we will consider two scenarios.

In both cases we will treat the Eu spins in the mean-field
approximation, that is as classical vectors �S = ±〈S〉�n, where
�n is a unit vector and 〈S〉 < 7/2 is the average magnetization
which has to be determined self-consistently.

First, we consider the case with zero SOC. Then we will
discuss the case with strong SOC δ (we will formulate the
precise criterion later). In the latter case, the band electrons are
partially gapped with small density of states at the Fermi level
and the influence of the spin order on their spectrum is small.
The nature of the spin order is determined by the interaction
between the spins through the conduction electrons.

Consider spins with opposite directions on R1 and R2

sites. Then the Kondo exchange (B3) becomes an effective
modification of the spin-orbit coupling:

H ex
MF = 2JK 〈S〉

∑
k

c†
k(�σ �n)[g2τ

x ⊗ γ z + Im mg4τ
z ⊗ γ y

+ Im mg3τ
y ⊗ γx − (Re eg3 + Re eg4)τ y ⊗ γ y]ck.

(B4)

235116-13



ARYAL, LI, TSVELIK, AND YIN PHYSICAL REVIEW B 106, 235116 (2022)

)b()a(

FIG. 17. Comparison of the (a) σ x
yz and (b) σ y

zx component of the SHC tensor as a function of the chemical potential between the AAF-x̂
and ẑ patterns.

In Fig. 14(a) we show the band dispersion of the p electrons in
the presence of the Kondo exchange term for zero SOC. The
antiferromagnetic order splits the band dispersion at several
places by magnitude of ∼JK 〈S〉 which are highlighted in the
figure insets.

In order to study the differences in the spectrum due to the
spin orientation of the Néel vector, we will need to combine
(A6) and (B4). Close to the X point (π/2, π/2), tσπ ∼ tπσ ∼
0, i.e., there is no coupling between the two sublattices and
one can derive the effective Hamiltonian for just one of the
sublattice:

H1 = H2 = O(J2
K 〈S〉2) + t ′′

k

× τ x(t ′
k − 2JK〈S〉g2σ

z ) + (�σ �n)(δτ z + λτ y). (B5)

If the Néel magnetization is along the z axis, the spectrum
is

E = O(J2
K 〈S〉2) + t ′′

k

± [δ2 + λ2 + (t ′
k − 2JK 〈S〉g2σ

z )2]1/2. (B6)

If it is perpendicular to z axis, then

E = O(J2
K〈S〉2) + t ′′

k

± (√
t ′2
k + λ2 + δ2 ± 2JK 〈S〉g2

)
. (B7)

With our estimates of JK and δ, we conclude that the first
term can be neglected. Thus, we find that there is a small effect
in the spectrum due to the rotation of the Eu spins which
nevertheless remain partially gapped due to the SOC. More
importantly, if �n is directed along the ẑ axis, the z projection
of electron spin is a good quantum number. For all other
directions it is not. This can be seen from the spin texture of
the bands for the x̂ phase along the high symmetry directions

in Fig. 14(b). Such differences in the spin texture between the
ẑ and x̂ phases can introduce differences in the spin transport
properties like spin Hall conductivity which is proportional to
the matrix element of the spin operator.

APPENDIX C: ELECTRONIC DISPERSION AND SPIN
HALL CONDUCTIVITY RESULTS FOR MAGNETIC

PHASES FROM DFT CALCULATIONS

1. Bulk bands and DOS

Figure 15 shows the DFT calculated bulk electronic bands
and DOS for AAF-ẑ magnetic phase in the presence of SOC
and U of 6 eV.

2. Slab dispersion

In the main text we showed the differences in Fermi surface
dispersion between the AAF-x̂ and AAF-ẑ phases from a 3L
slab calculation. In order to confirm that the differences are
real, we have also calculated the surface Fermi dispersion
from a semi-infinite layer model derived from the Wannier
Hamiltonian using the Green’s function method as imple-
mented in the WANNIERTools software [51] (Fig. 16). Similar
to our conclusions in the main text, we find that despite the
bulk states being similar, the surface states and their connec-
tivities are different for different directions of the Néel vector.

3. Comparison with other components of
the spin Hall conductivity

In the main text we showed the comparison between the
spin Hall conductivity (SHC) response as a function of the
chemical potential between the x̂ and ẑ phase for just one com-
ponent of the SHC tensor. Here we also show the comparison
with other components of the SHC tensor.
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