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Full-potential KKR within the removed-sphere method:
A practical and accurate solution to the Poisson equation
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An efficient and accurate generalization of the removed-sphere method (RSM) to solve the Poisson equa-
tion for total charge density in a solid with space-filling convex Voronoi polyhedra (VPs) and any symmetry
is presented. The generalized RSM avoids the use of multipoles and VP shape functions for cellular integrals,
which have associated ill-convergent large, double-internal L sums in spherical-harmonic expansions, so that fast
convergence in single-L sums is reached. Our RSM adopts full Ewald formulation to work for all configurations
or when symmetry breaking occurs, such as for atomic displacements or elastic constant calculations. The
structure-dependent coefficients AL that define RSM can be calculated once for a fixed structure and speed up the
whole self-consistent-field procedure. The accuracy and rapid convergence properties are confirmed using two
analytic models, including the Coulomb potential and energy. We then implement the full-potential RSM using
the Green’s function Korringa-Kohn-Rostoker (KKR) method for real applications and compare the results with
other first-principle methods and experimental data, showing that they are equally as accurate.
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I. INTRODUCTION

All-electron Korringa [1] and Kohn and Rostoker [2]
(KKR) electronic structure methods based on multiple-
scattering theory are powerful and computationally efficient
methods, especially when reformulated as a Green’s func-
tion [3,4] (GF-KKR), for treating periodic solids or complex
condensed-matter systems with point defects [5] and chem-
ical and magnetic disorder in alloys [6–10] and associated
transport [11,12] and, recently, for simulating a supercon-
ducting state via the Kohn–Sham–Bogoliubov–de Gennes
equation [13–16]. Many implementations of (site-centered,
all-electron) full-potential (FP) KKR [17–27] employ mul-
tipole expansions for solving Poisson equation and shape
functions for cellular integrals (both use large, double-internal
angular momentum L sums) that can be demanding com-
putationally and exhibit slow convergence, where multipoles
are conditionally convergent [18,28] and shape functions [19]
exhibit Gibbs phenomena [29–31].

To overcome such issues, the removed-sphere method
(RSM) [32] is employed, which requires single-L sums to
solve Poisson equation (no multipoles), and we reformulate
the RSM with full Ewald expressions to calculate reliably any
structural configuration or symmetry-breaking cases, such as
atomic displacements off ideal positions needed for elastic
constant calculations. Alam et al. [33] extended the RSM to
avoid multipoles and replaced shape functions with isopara-
metric integration [28]. However, this version lacked the
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Ewald formulation and so suffered from inaccurate real-space
summations, save for symmetric bulk cases.

This full-potential RSM with Ewald expressions for solv-
ing Poisson equation should benefit many applications. In
particular, GF-KKR is a powerful method for addressing sys-
tems with chemical or magnetic disorder and point defects
(e.g., vacancies and antisites). This is achieved by combining
GF-KKR with the coherent-potential approximation [6,7,34–
36] or dynamical cluster approximation [37] for real systems
[38,39] that treats the effects of disorder on equal footing
with electronic structure, which cannot be treated directly
using traditional band theory. GF-KKR succeeds mainly be-
cause it separates the single-site scattering matrix tL(ε) in a
site-dependent spherical-harmonic YL(r̂) basis set from the
underlying structure constants G0(ε; k), depending on com-
plex energy ε and the reciprocal-space vector k. Notably,
when formulated properly, including GF-based FP-KKR-
RSM, scattering properties can be evaluated in parallel over
basis sites, energies, and k points for computational efficiency
and near-linear scaling in basis sites [40,41].

Here, we derive the generalized RSM via a full Ewald
formulation that accurately solves the Poisson equation. Two
analytic bulk electronic models are tested for convergence
properties using a single-L sum, showing an error of 10−6 for
Lmax = 8. We then implement the RSM in a GF-KKR code
and compare FP-KKR-RSM results with those from standard
FP methods and experiments. While KKR was originally
formulated exactly for close-packed-crystalline metals using
potentials from muffin-tin (MT) approximations [1,2,42] or
atomic sphere approximations (ASAs) [43], FP-KKR-RSM
works for convex Voronoi polyhedra (VPs) in systems with
reduced symmetry, like open structures, where nonspherical
contributions are non-negligible.
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With a one-to-one mapping between charge density and the
potential [44], the density ρ(r) is given by the Green’s func-
tion G(ε; r), and the KKR-RSM Coulomb potential V (r) is
given by Poisson equation [here, in atomic units (Ry) e2 = 2],
where ρ total(r) = ρ(r) − ∑

R ZRδ(r − R) with atomic num-
ber Z ,

4πe2ρ total(r) = −∇2V (r). (1)

With distinct neighbors at R, the solution at the central site
(R = 0), denoted by a superscript 0, is

V (r) = 2
∑

R

[∫
�R

ρR(r′)dr′

|r − (r′ + R)| − ZR

|r − R|
]

= V intra (r) + V inter (r), (2a)

V intra (r) =
[∫

�0

dr′ 2ρ0(r′)
|r − r′| − 2Z0

r

]
, (2b)

V inter (r) =
∑
R �=0

[∫
�R

dr′2ρR(r′)
|r − (r′ + R)| − 2ZR

|r − R|
]
. (2c)

Equation (2) is easily solved for MT/ASA potentials and
charge densities [42]. However, a full-potential/density solu-
tion is demanding and complicated owing to the dependence
on VP shape and its neighbors. For a VP, V intra (r) is easily
obtained by expanding the propagator |r − r′|−1 in terms of YL

(Sec. II). However, methods differ on how to handle intercell
V inter (r) terms. van W Morgan [45] expanded the propagator
|r − r′ − R|−1 in a VP circumscribing sphere and used shape
functions to get the contributions by multipoles; Weinert [46]
used multipole potentials based on a Dirichlet problem for a
sphere within the full-potential linearized augmented plane
wave method (FLAPW) using local YL and plane waves.
In cellular methods, expansion of the propagator involving
nearest neighbors causes ill convergence, requiring larger in-
ternal double-L sums [19,33]. Gonis et al. [47] and Vitos
and Kollár [48] shifted the propagator by a constant vector
b (and then shifted it back) to partially address this problem,
but convergence requires large double-L sums, and conver-
gence is slower with increasing L. Schadler [18] expanded
the propagator into four different geometrical (r<, r>) cases to
remove restrictions on the VP shape, requiring multipoles and
corrections for space-filling charge densities. Using Green’s
theorem, Zhang et al. [49] changed the volume integral
to surface integrals, requiring facet-dependent wave-function
calculations for each VP, which are slower depending on how
many VP shapes and inequivalent sites are needed. All the
above methods have convergence issues due to multipoles in
YL expansions. As already noted, Alam et al. [33] eliminated
multipoles in the RSM [32] and replaced shape functions
with isoparametric integration [28], but their formulation used
limited real-space neighbor sums and so is not generally
applicable.

Here, we generalize the FP-KKR-RSM to solve the Pois-
son equation in a charge-neutral system using a full Ewald
formulation for accuracy and to eliminate convergence prob-
lems caused by symmetry breaking. In Sec. II, we present a
generalized RSM formulation and properties, and in Sec. III,
we address numerical accuracies. The Appendixes provide de-
tailed derivations of equations and properties. Then, in Sec. IV

the RSM efficiency and accuracy are verified and compared to
two analytic models, i.e., a “jellium” model [50] with an array
of nuclear charges Z compensated by a homogeneous electron
gas and a charge-density model [45] with Z = 0. Section V
provides an implementation of the GF-KKR-RSM applied to
elemental metals and compounds, with comparison to results
from standard FP methods. Section VI summarizes our work.

II. THEORETICAL METHODS

For a given periodic charge density (CD) defined for con-
vex, space-filling VPs, charge balanced by a lattice of positive
nuclear charges Z , the Coulomb potential, following Alam
et al. [33] and Nicholson and Shelton [32], can be accurately
determined by coefficients found within the VP where the cir-
cumscribing spheres of the nearest neighbors do not overlap,
giving a simple result:

V (r) =
∑

L

[
V intra

L (r) + αLrl
]
YL(r), (3)

with

V intra
L (r) =

∫ rCS

0
dr′ 8πρex(r′)

2l + 1

rl
<

rl+1
>

Y ∗
L (r′) − 2Z

r
, (4)

where r< = min{r, r′}, r> = max{r, r′}, and L = (l, m) la-
bels the expansion of a spherical-harmonic basis {YL}. The
extended charge density (ECD) ρex(r) is defined up to the cir-
cumscribing sphere (with a radius rCS) of the central VP. The
expansion coefficients αL of the Hartree potential is composed
of two contributions: one is aL due to all neighbors, defined by

aL = 8π

2l + 1

∑
R �=0

(∫
�R

dr′ρR(r′)
Y ∗

L ( ̂r′ + R)

|r′ + R|l+1
− ZR Y ∗

L (R̂)

|R|l+1

)
,

(5)

where ρR(r) is the truncated charge density (TCD) defined in
the VP, denoted by �R, located at R; the other is the near-
field correction (NFC) in the “moon” region between the VP
surface S(�) and the CS, defined by

αNFC
L = − 8π

2l + 1

∫ rCS

S(�)
dr′ρex(r′)

Y ∗
L (r̂′)

|r′|l+1
. (6)

Alam et al. [33] calculated aL using the charge density over
the integral inside a VP utilizing isoparametric integration and
then summed the integrals at different R up to the eighth shell.
Accurate results for αL were obtained, except for α0 (which
depends on 1/|R| summed over the lattice, so the direct sum
is slowly and nonuniformly convergent; see their Table I);
hence, it requires an Ewald method. Their method works well
for, e.g., ideal-bulk materials but not for materials with lower
symmetry, like cubic systems with atom displacements, such
as those needed for elastic constant calculations. These errors
arise when symmetry breaking happens as some R shells are
broken into two (or more) subshells that have similar but
opposing contributions and should have cancellations. Thus,
sums may have different and nonconvergent results with the
choice of different shell cutoffs.
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FIG. 1. Convergence of the RSM potential vs Lmax for the jellium model along high-symmetry paths in fcc (left) and bcc (right) Wigner-
Seitz cells. At Lmax = 8, the RSM potential and analytic result agree as in Table I. In fractional coordinates, � = (0, 0, 0), H = (0.5, 0.5, −0.5),
P = (0.25, 0.25, 0.25), N = (0, 0.5, 0), X = (0.5, 0, 0.5), K = (0.375, 0.375, 0.75), and L = (0.5, 0.5, 0.5).

As such, we employed Ewald methods to give practical and
accurate expressions to calculate aL, namely,

aL = 8π

2l + 1

[∫
�

dr′ρ(r′)AL(r′) − ZAL(0)

]
, (7)

where

AL(r′) = A(S)
L (r′) + A(L)

L (r′) + A(0)
L (r′). (8)

In real space, the contributions are short-range A(S)
L , long-

range A(L)
L (so short range in reciprocal space), and self-

interaction A(0)
L , which can be written as

A(S)
L (r′) =

∑
R �=0

Y ∗
L ( ̂r′ + R)

|r′ + R|l+1
Q

(
l + 1

2
, σ 2T 2

)
, (9)

A(L)
L (r′) = 4π

�

∑
K �=0

e( −K2

4σ2 )

K2−l

ilY ∗
L (K̂)

(2l − 1)!!
− δL,00

√
π

2�σ 2
, (10)

A(0)
L (r′) = −Y ∗

L (r̂′)
|r′|l+1

P

(
l + 1

2
, σ 2|r′|2

)
for R = 0, (11)

where σ is the Ewald parameter, � is the unit cell volume, and
K is the reciprocal lattice vectors. Q(s, x) is the incomplete
gamma function [51], defined as a ratio, as provided by the
algorithm in, e.g., Numerical Recipes in C [52]

Q(s, x) ≡ �(s, x)

�(s)
≡ 1

�(s)

∫ ∞

x
dt e−t t s−1, (12)

which can be used to obtain numerically accurately the RSM
short-range A(S)

L and P(s, x) = 1 − Q(s, x). See Appendix A
for a detailed derivation.

In summary, the solution to the Poisson equation (3) is
coefficients αL = aL + αNFC

L with αNFC
L from Eq. (6). The

coefficients aL are obtained from Eqs. (7)–(11). One no longer
needs to worry about internal L-convergence issues from mul-
tipoles and VP shapes found in other methods. AL(r′) is a
structure-dependent quantity that can be calculated once and
saved for the whole self-consistent-field iteration if ab initio

molecular dynamics is not being carried out. The Ewald pa-
rameter is chosen by an optimization method [53].

III. IMPLEMENTATION

Here, we would like to denote two charge densities: a TCD
ρ(r), ending at the VP surface, and the ECD ρex(r), continued
to the CS beyond the VP. For solids with space-filling VPs,
the CD is defined inside the VP in terms of wave functions
or Green’s functions. The CD in this region is identical to the
TCD. The relationship between TCD and ECD is (see Fig. 1
in Ref. [33])

ρ(r) = ρex(r)θ (r), (13)

where θ (r) is the shape function of the VP, given by

θ (r) =
{

1 for r ∈ VP,

0 for r �∈ VP.
(14)

One can see that ECD is just the regular definition of CD in an
adjusted domain and TCD is the same as ECD for every point
in the space of a VP.

The symmetry properties of a periodic symmetric charge
distribution ρR(r) require that ρR(r′) = ρ0(r′) if R is a prim-
itive translation vector. Then, due to the symmetry of complex
spherical harmonics, αL satisfies

αl,−m = (−1)mα∗
l,m. (15)

TABLE I. Accuracy check of Coulomb energy U for the jellium
model in both bcc and fcc structures. U RSM are results calculated
using Eq. (19) with lmax = 8. U exact are exact results calculated using
Eq. (18). Both are multiplied by a factor of rASA/Z2 to get familiar
literature values.

Structure U RSM U exact U RSM − U exact

fcc 1.791745042 1.791747222 −2.180 × 10−6

bcc 1.791859712 1.791858445 1.267 × 10−6
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In addition, if the crystal has an inversion point, aL with odd
l must vanish, and these symmetry relations hold also for
the NFC terms. Thus, by the symmetry property (15), only
the upper half needs to be calculate, while the remainder is
obtained by symmetry (see Appendix B for a proof).

We note that the range of integration in Eq. (8) from
Ref. [33] should include only the moon region between the
VP and the CS (not just over the VP). This is reflected in our
updated Eq. (6), which can be derived from Eq. (7) in that
paper [33] (this equation is missing a spherical harmonic),
leading to

∑
L

8π

2l + 1

[
ωL(r) + rl

∫ rCS

r
dr′ ρ(r′)Y ∗

L (r̂′)
(r′)l+1

]
. (16)

IV. REMOVED-SPHERE METHOD SOLUTION FOR
EXACT MODELS

The RSM with an Ewald sum is tested for two analytic
models to address accuracy and its convergence in L.

A. Madelung’s jellium model

The jellium model is very close to the situation in a simple
alkali metal; that is, it has a lattice of positive nuclear charges
Z surrounded by a constant negative electronic charge den-
sity that ensures charge neutrality. Slater derived an analytic
solution to its potential [50], i.e.,

V (r) = 2Z

[ ∑
R

1

|r − R|erfc(σ |r − R|)

+ 4π

�

∑
K �=0

exp
(−K2

4σ 2

)
K2

eiK·r − π

�σ 2

]
+ V0. (17)

Here, σ is the optimized Ewald parameter. Note that Eq. (17)
does not depend on σ because its first derivative with respect
to σ is zero. � is the volume of the unit cell, and V0 is an
arbitrary constant. Note that V (r) has a singularity at r = 0
for R = 0. The Coulomb energy for one unit cell with a lattice
constant a has an analytic form:

U =
(

Z2

rASA

)
rASA

a

[ ∑
R �=0

erfc(σ |R|)
|R|

+ 4π

�

∑
K �=0

exp
(−K2

4σ 2

)
K2

− π

�σ 2
− 2σ√

π

]
. (18)

We now show that the RSM results found numerically
are very accurate compared to the analytic results for the
jellium model given in Eqs. (17) and (18). For simplicity, we
choose Z = 1 and a = 1. The potential denoted by V RSM(r)
is obtained from Eqs. (3), (4), and (7)–(11). According to the
definition of the total Coulomb energy in a solid, one can
derive a simple form of the Coulomb energy in a unit cell
given by

U RSM = 1

2

[∫
�

drρ(r)V RSM(r) − ZV M (0)

]
, (19)

FIG. 2. For jellium in both fcc and bcc structures, we plot the
RSM Coulomb energy error (relative to exact values given in Table I)
vs Lmax used in the potentials to show the general expected conver-
gence. For only L = 0 the atomic-sphere approximation value is 1.8
for fcc and bcc, with an error of about 0.008 in the given units.

where V M is the generalized Madelung potential that is the
Coulomb potential without the term 2Z/r. As no direct eval-
uation of V M at r = 0 is forthcoming, an indirect result from
the Dirichlet boundary-value problem for a sphere with radius
S is given by [46]

V M (0) = V RSM
00 (S)Y00(Ŝ) + 2(Z − Q)

S

+ 2
√

4π

∫ S

0
dr rρ00(r), (20)

where Q is the charge in the sphere. Equation (20) is indepen-
dent of the radius S. For a charge-neutral system, Eq. (19) is
invariant for any constant shift of the Coulomb potential as a
shift exists in both V RSM(r) and V M (0).

In Fig. 1, we compare the analytic potential and numerical
RSM potential for lmax = 0, 4, 6, 8. V RSM(r) has good con-
vergence in lmax, which is also true for the accuracy. Table I
lists the Coulomb energies that have an accuracy of six dec-
imal places when V RSM(r) is calculated up to lmax = 8. So
even if V RSM for lmax = 8 has low accuracy in areas at some
high-symmetry (real-space) points, variational accuracy of the
energy is still reached.

To show the L convergence of the RSM Coulomb energy
(19), we plot in Fig. 2 the values of U RSM − U exact versus
Lmax truncation of the potentials. Clearly, the Coulomb energy
error is 10−6 when Lmax = 8 (see Table I) and lower when
Lmax = 10. A similar behavior was shown in KKR-RSM self-
consistent calculations (without Ewald sums [33]) in ideal bcc
and fcc lattices.

B. van W Morgan electronic density model

The van W Morgan density is a pure and virtual electronic
system; that is, the conventional nuclear charge Z = 0 [45].
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TABLE II. For a van W Morgan density in the fcc structure, an
accuracy check of the RSM coefficients αL . αRSM

L are calculated from
Eq. (7). αexact

L are exact results from Eq. (23).

l m αRSM
L αexact

L αRSM
L − αexact

L

0 0 2.004394847 2.004395351 −5.04 × 10−7

4 0 −6.750338053 −6.750337763 −2.90 × 10−7

4 4 −4.034098760 −4.034098340 −4.20 × 10−7

6 0 −8.529402076 −8.529486772 8.4696 × 10−5

6 4 15.957208937 15.957208475 4.62 × 10−7

8 0 4.330420886 4.330470875 −4.9989 × 10−5

8 4 1.628407854 1.628476693 −6.8839 × 10−5

8 8 2.481167049 2.481185360 −1.8311 × 10−5

Its charge density is constructed by plane waves given by

ρ(r) = B
∑

n

eiTn·r, (21)

where {Tn} is a set of the shortest translation vectors in the
reciprocal space and B is an arbitrary amplitude, chosen to
be 0.5 here. If a fcc structure is considered, the vector set
{Tn} has a total of eight vectors along the [1,1,1] direction. A
bcc structure has a total of 12 Tn along the [1,1,0] direction.
Obviously, ρ(r) is real with a variable sign because of the
symmetric {Tn} and plane waves. One can easily verify that
charge neutrality is guaranteed by the fact that the charge
in the inscribed sphere (IS) is equal to the interstitial region
between the IS and VP boundary but opposite in sign. This
model gives the analytic Coulomb potential, with T = |Tn|,

V (r) = 8πρ(r)T −2 + V0. (22)

By expanding plane waves in charge density and rewriting
V (r) in the form of Eq. (3), one obtains analytic RSM co-
efficients that include NFCs from near neighbors,

αL = 8πB

T (2l + 1)rl−1
BS

jl−1(TrBS )CL + V0
√

πδl,0, (23)

where CL = 4π il
∑

n YL(T̂n), which is real for fcc and bcc
structures, and jl (r) are spherical Bessel functions. The αRSM

L
values obtained from Eq. (7) and the analytic αexact

L from
Eq. (23) are listed in Tables II (fcc) and III (bcc). Here, we
set the arbitrary constant V0 = 0.

All αRSM
L are calculated with a common optimized Ewald

parameter σ and the same VP integral mesh of 14 × 14 × 14
points. Up to l = 4, an accuracy of seven decimal places is

TABLE III. Same as Table II, except for the bcc structure.

l m αRSM
L αexact

L αRSM
L − αexact

L

0 0 1.707148777 1.707149398 −6.21 × 10−7

4 0 −3.873255476 −3.873253011 −2.465 × 10−6

4 4 −2.314713448 −2.314711405 −2.043 × 10−6

6 0 6.511561618 6.511542304 1.9314 × 10−5

6 4 −12.182027075 −12.181980180 −4.6895 × 10−5

8 0 4.286146333 4.286127909 1.8424 × 10−5

8 4 1.611887235 1.611801471 8.5764 × 10−5

8 8 2.455671485 2.455778600 −1.07115 × 10−4

obtained. Although accuracy is decreased with increasing l ,
five-decimal-place accuracy is reached for the rest. One can
obtain better accuracy by adjusting the VP integral mesh for
l > 4. However, the bigger l is, the smaller the role VL(r)
plays in the total potential V (r) is. By balancing accuracy
and efficiency, one common optimized σ and one common
integral mesh are good enough. One can see this in the com-
parison of V (r) below.

To check convergence in the expansion in Eq. (3), we
calculated V (r) for different cutoff lmax for the coefficients
αRSM

L and compared the values to analytic ones (see Fig. 3).
One can see that both fcc and bcc structures show the same
convergence behavior in L. V RSM(r) evaluated up to lmax = 0
or 4 deviates significantly from the analytic values. When
lmax = 6, much better accuracy is reached, except for the small
area around some special high-symmetry (real-space) points,
like the H point in fcc structures and X and K points in bcc
structures. Alam et al. [33] found that the slow convergence
in these areas was mainly due to larger NFCs to the poten-
tial. Perfect agreement with analytic results was arrived at
for lmax = 8 and accuracies of 10−8 Ry around the � point
and 10−6 Ry for other areas, except for the slow convergent
areas, where it is 10−4 Ry. This supports the statements about
the Ewald parameter and integral meshes in the previous
paragraph.

Using the van W Morgan model, we see that accurate coef-
ficients αL are obtained using the RSM with good convergence
for practical calculations up to lmax = 8, like in FLAPW, and
there are no additional internal L sums required. The jellium
model shows that the RSM solves Coulomb energy and po-
tential accurately for a real electronic system.

C. Near-field corrections

The “near-field” terms arise from the fact that the condi-
tion r � |r′ + R| for expanding 1/|r − (r′ + R)| cannot be
satisfied in the whole VP (see Fig. 1 in Ref. [33]). Thus,
the potential from the summation of the intracell V intra (r)
and far-multipole corrections V FMC(r) = ∑

L aLrlYL(r) can-
not correctly express the solution to the Poisson equation.
Near-field corrections V NFC(r) from Eq. (6) solve the problem
and have perfect agreement with analytic results in Secs. IV A
and IV B.

We compare the analytic solution to the numerical RSM
solution [Eq. (3)], plotting in Fig. 4 all three contributions
and their various sums [intracell potential V intra (r); intercell
potential V FMC(r), including far-field Madelung contribu-
tions (FMCs); and near-field corrections V NFC(r) arising
from the region between the central cell and neighbors that
have overlapping circumscribing spheres]. Both V intra (r) and
V intra (r) + V FMC(r) deviate from V analytic(r) significantly. The
NFC term has remarkable values in the whole VP and can-
cels the summation V intra (r) + V FMC(r), so that V RSM(r)
agrees fantastically with V analytic(r). In addition, NFC is site
dependent and thus can be easily implemented in parallel
computation. For VPs with elongated or prismlike shapes,
one can add empty sites to avoid an abnormality in the
NFC. Therefore, our NFC is the key to solving the Poisson
equation successfully and avoiding bottlenecks in fast Fourier
transform in other electronic structure packages.
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FIG. 3. For the van W Morgan model, convergence V RSM(r) of lmax on high-symmetry lines of fcc (left) and bcc (right) cells. Fractional
coordinates are the same as in Fig. 1.

V. FP-KKR IN THE REMOVED-SPHERE METHOD

What remains is to verify for use in first-principles calcula-
tions that a generic RSM numerical solution of the Coulomb
potential and energy is possible. An all-electron, Green’s
function FP-KKR has been implemented within the RSM.
With the analytical models tested in the same RSM frame-
work, we apply the methods and compare their accuracy to
other electronic structure results, such as FLAPW and a GF-
KKR-ASA code using variational energy zeros that compares
well with FLAPW for close-packed systems [10,54].

A. Ground-state properties of elemental metals

For FP-KKR-RSM, we find the ground state for elemental
metals with a cubic structure, as found by least-squares fit
to total energy vs unit cell volume via Murnaghan’s equa-
tion of state (EOS) [55]. We calculate a total of seven volumes
around the ground-state volume for each system. Both the
Hedin-Lundqvist parametrization [56] of the local density

approximation [57] (LDA) to density functional theory and a
gradient-corrected exchange correlation [58] [Perdew-Burke-
Ernzerhof (PBE)] are used. For Brillouin zone integration,
we used Monkhorst and Pack k meshes [59]. Results for bcc
niobium are shown in Fig. 5 along with EOS data (fit error is
1 × 10−8 Ry).

Table IV lists the lattice constants (a, in angstroms) and
bulk moduli (B, in gigapascals) for all materials studied
in comparison with those obtained from FLAPW [62,64]
and VASP [63], as well as with those measured [60,61].
a and B from FP-KKR-RSM for elemental metals agree
well with those from other theory results. Notably, LDA is
known to overbind relative to PBE, leading to smaller a and
thus larger B, whereas PBE [58] adopts a density gradient
correction to exchange-correlation potential that leads to in-
creased a and smaller B, in better agreement with experiment.
The all-electron FP-KKR-RSM (core levels included) agrees
well with room-temperature experimental data, especially B
values.

FIG. 4. For jellium, V RSM(r) (lmax = 8) and its components on high-symmetry lines in fcc (left) and bcc (right) cells. Fractional coordinates
are the same as in Fig. 1.
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TABLE IV. FP-KKR-RSM nonmagnetic results (at 0 K with Lmax = 4 for potential/density) for equilibrium lattice parameters and bulk
moduli with a comparison to room temperature measured data [60,61] and to FLAPW [62] in LDA and VASP [63] in PBE.

a (Å) B0 (GPa)
Element Structure LAPW FP-KKR VASP Expt. LAPW FP-KKR VASP Expt.

LDA LDA PBE PBE LDA LDA PBE PBE

Mo bcc 3.12 3.11 3.14 3.17 3.15 291 271 262 263 272
Nb bcc 3.25 3.22 3.29 3.32 3.30 193 172 160 172 170
Ta bcc 3.24 3.26 3.33 3.32 3.30 224 184 179 193 200
V bcc 2.93 2.92 2.98 3.00 3.03 196 193 159 181 162
W bcc 3.14 3.12 3.17 3.19 3.16 333 330 298 298 323
Cu fcc 3.52 3.52 3.61 3.63 3.61 190 180 149 137 137
Ag fcc 4.01 3.96 4.10 4.16 4.09 142 151 105 89 101
Au fcc 4.06 4.01 4.11 4.16 4.08 205 206 148 141 173
Ir fcc 3.82 3.80 3.85 3.88 3.84 401 406 353 337 355
Ni fcc 3.42 3.40 3.49 3.52 3.52 261 260 210 194 186
Pd fcc 3.85 3.82 3.92 3.95 3.89 220 243 178 168 181
Pt fcc 3.90 3.88 3.95 3.98 3.92 305 327 265 241 278
Rh fcc 3.76 3.74 3.81 3.84 3.80 309 332 263 254 270

As an accuracy test against one-atom bcc results, we in-
vestigate the FP-KKR-RSM total energy as a function of unit
cell volume and lattice constant for Nb and Mo with a two-
atom bcc cube (denoted B2). The calculated EOS data and
Murnaghan’s fits are shown in Fig. 5, with both bcc and
B2 values listed in Table V. The last column is the devia-
tion of BCC data from B2 data, which show differences of
1–5 × 10−5 Ry, showing that the FP-KKR-RSM works in a
systematic way.

In short, the GF-based FP-KKR with the RSM potential
predicts accurate ground-state structural properties for all ma-
terials studied, similar to other methods.

B. Unit cell with atomic displacements

We now address the case where the central atom in a bcc
two-atom unit cube (B2-like with a lattice constant of 3.30
Å) is displaced. For Nb, we shift the atom at [0.5,0.5,0.5]

FIG. 5. For one-atom bcc and two-atom bcc (B2) structures,
FP-KKR-RSM energy per atom (Lmax = 4 for potential and density)
for Nb as a function of the primitive-cell volume (lattice constant),
relative to the lowest energy E0 in Table V.

(fractional coordinates) along [1,0,0] by δ = 0.02; that is, the
new location is at [0.5 + δ, 0.5, 0.5]. We compare in Table VI
the coefficients aL calculated using the real-space sums equa-
tion (5) and the Ewald sums equation (7).

The first column lists the number neighbors in the shells
of an ideal two-atom unit cube for bcc Nb. The second
through fifth columns list neighbors and fractional coordinates
of shifted shells. The sixth column lists a11 summed up to
each shell in the shifted system. The last column lists the
difference in a11 obtained from Eq. (5) and from the exact
Ewald expression in Eq. (7). With displacement, we see that R
shells are broken into subshells. In fact, the result from Eq. (5)
is unstable. For example, the first shell [0.5,0.5,0.5] for an
ideal two-atom bcc structure with a total of eight neighbors
is broken into two subshells located at [−0.48, 0.5, 0.5] and
[0.52,0.5,0.5] separately. Similarly, due to symmetry break-
ing, the fourth and seventh ideal shells are broken into four
subshells, where the subshells have close contributions but op-
posite signs. For instance, the a11 contributions of the first two
subshells are 1.11800 and −1.11881 Ry/Bohr, which should
nearly cancel to give a small value (−0.00081 Ry/Bohr).
Clearly, a11 from Eq. (5) is wrong and so is inappropriate
for cases with symmetry breaking. However, the Ewald-based
Eq. (7) is correct, quite stable, and invariant for any Ewald
parameter σ . Thus, the RSM provided in this work is more
general and necessary for electronic structure calculations.

As a last example, we compute energy versus cell dis-
tortion along [100] of a two-atom cube. For Nb with a0 =

TABLE V. Ground-state energies and lattice constants for Nb
and Mo calculated with a one-atom bcc or two-atom B2 structure,
showing similar errors for both metals.

Element Parameter bcc B2 Difference

Nb a (Å) 3.21644 3.21613 3.1 × 10−4

E0 (Ry) −7632.93092 −7632.93097 −5.0 × 10−5

Mo a (Å) 3.11289 3.11276 1.3 × 10−4

E0 (Ry) −8090.91824 −8090.91827 −3.0 × 10−5

235114-7



NING, SMIRNOV, SHELTON JR., AND JOHNSON PHYSICAL REVIEW B 106, 235114 (2022)

TABLE VI. Real-space and Ewald results for coefficient a11

(Ry/Bohr) for a two-atom bcc Nb with the atom at [0.5,0.5,0.5] (frac-
tional coordinates) shifted along [1,0,0] by 0.02. The exact aEwald

11

from Eq. (7) is 0.00142 Ry/Bohr. By direct sum, a11 from Eq. (5) up
to 15 neighbor shells (sixth column) and its error (seventh column),
defined as areal

11 /aEwald
11 − 1, are also shown.

Ideal Shifted shells areal
11 Error

N N l m n

8 4 −0.48 0.5 0.5 1.11800 786.32177
8 4 0.52 0.5 0.5 −0.00081 −1.57259
6 6 1.0 0.0 0.0 −0.00119 −1.84020
12 12 1.0 1.0 0.0 −0.00116 −1.81907
24 4 −1.48 0.5 0.5 0.48703 341.97670
24 8 1.5 −0.48 0.5 0.79717 560.38515
24 8 1.5 0.52 0.5 0.46889 329.20206
24 4 1.52 0.5 0.5 −0.00113 −1.79795
8 8 1.0 1.0 1.0 −0.00111 −1.78386
6 6 2.0 0.0 0.0 −0.00112 −1.79090
24 4 −1.48 1.5 0.5 0.42315 296.99079
24 4 1.5 1.5 -0.48 0.49115 344.87811
24 8 1.5 1.5 0.52 0.41853 293.73727
24 8 1.52 1.5 0.5 −0.00114 −1.80499
24 24 2.0 1.0 1.0 −0.00114 −1.80499

3.30 Å and atoms in the (1,0,0) plane at the origin held
fixed, we uniformly stretch a cell along a[1, 0, 0] and monitor
the energy of the distorted cell relative to E0 in Table V.
Figure 6 shows two cases (with a2 = a3), distortion of a1 with
a volume that (1) varies or (2) is fixed at the equilibrium value
(which fixes electron density and should be lower in energy as
metals in solids like fixed density). Results show the relative
accuracy and cost of constraints with distortions. Moreover,
fitting the constant-volume data in Fig. 6 via a quadratic
form yields an estimate for Young’s modulus (i.e., 0.0072

FIG. 6. For B2 Nb in Fig. 5, relative to E0 in Table V, FP-
KKR-RSM energy (Ry) vs the a1 distortion (a.u.) along [100]. Cube
volume V = a1a2a3, where ai = a at E0. Two distortions with a2 =
a3 were considered, with V variable or fixed (giving fixed electronic
density). The accuracy is evident.

Ry/Bohr3, or 106 GPa), which is close to the experimental
value of 105 GPa.

VI. CONCLUSION

We presented a practical and accurate numerical solution
to the Poisson equation based on the removed-sphere method
that avoids various multipole and integration convergence
issues for local spherical harmonic basis sets and improves
cellular integral convergence (often done with shape func-
tions) with isoparametric integration. To work for general
symmetries, a complete Ewald formulation of the RSM was
provided and tested using analytic models. The accuracy of
the generalized RSM depends on the convergence of coeffi-
cients αL={l,m} that give the solution to Poisson equation. We
find that they exhibit good convergence for practical calcula-
tion at Lmax � 8, as also confirmed using analytic models that
show the RSM is accurate for both the Coulomb potential and
energy.

We also implemented the RSM within a Green’s func-
tion based FP-KKR, which used charge density expanded in
terms of a localized, site-centered basis formed from spherical
harmonics, and showed agreement with results from other
full-potential/density methods. With symmetry breaking and
RSM working, we plan to refine the FP-KKR-RSM symmetry
features to improve the speed and convergence for general
structures and to extend the method to address forces, such
as those needed for atomic relaxations and elastic constant
calculations, requiring only convergence in a single-L sum
that avoids multipoles.
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APPENDIX A

Here, a detailed derivation of Eqs. (7)–(11) is presented.
Following Alam et al. [33], we know that the coefficient aL is
derived by expanding 1/|r − (r′ + R)| based on the condition
r � |r′ + R|. From the Ewald sum,∑

R �=0

1

|r − (r′ + R)| = φ(S)(r) + φ(L)(r) + φ(0)(r), (A1)

where, with T ≡ r′ + R,

φ(S)(r) =
∑
R �=0

1

|r − T|erfc(σ |r − T|), (A2)

φ(L)(r) = 4π

�

∑
K �=0

exp
(−K2

4σ 2

)
K2

eiK·r − π

�σ 2
, (A3)

φ(0)(r) = − 1

|r|erf(σ |r|). (A4)
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The error function erf(x) = (2/
√

π )
∫ x

0 dxe−x2
, and the com-

plimentary error function erfc(x) = 1 − erf(x). If one picks
r → 0, it satisfies the condition as well, and then the terms of
the Ewald sum, φ(S)(r), φ(L)(r), and φ(0)(r), should be able to
be expanded in terms of spherical harmonics as

φ(r) =
∑
R �=0

rlYL (̂r)AL, (A5)

where AL are expansion coefficients that do not depend on r
and can be defined by

AL = lim
r→0

Cl

rl

∫
d r̂φ(r)Y ∗

L (̂r), (A6)

where Cl = 4π/(2l + 1). Let us first derive A(S)
L for φ(S)(r).

We do a variable change x ≡ |r − T|x′, and then

erfc(σ |r − T|)
|r − T| =

∫ ∞

σ

dx e−(r2+T 2 )x2
e−i(2ix2r)·T. (A7)

We expand the plane wave in the integrand by Bauer’s expan-
sion and obtain

A(S)
L = lim

r→0

Cl

rl

∫
d r̂ Y ∗

L (̂r)
∑
R �=0

erfc(σ |r − T|)
|r − T|

=
∑
R �=0

Y ∗
L (T̂)

|T|l+1

�
(
l + 1

2 , σ 2|T|2)
�(l + 1/2)

, (A8)

where

�(s, β2) = 2
∫ ∞

β

t2s−1e−t2
dt (A9)

is the incomplete gamma function with the recursion relation

�(s + 1, β2) = s�(s, β2) + β2se−β2
. (A10)

The incomplete gamma function [51], as provided by the
algorithm in Numerical Recipes in C [52], is defined as a ratio,
i.e.,

Q(s, x) ≡ �(s, x)

�(s)
≡ 1

�(s)

∫ ∞

x
dt e−t t s−1, (A11)

which is a numerically safe means to determine the short-
range contribution A(S)

L in the removed-sphere method, and
P(s, x) = 1 − Q(s, x).

Similarly, we expand the plane wave in φ(L)(r) using
Bauer’s expansion and obtain

A(L)
L = lim

r→0

Cl

rl

4π

�

∫
d r̂ Y ∗

L (̂r)
∑
K �=0

exp
(−K2

4σ 2

)
K2

eiK·r−δL,00

√
π

2�σ 2

= 4π

�

∑
K �=0

e( −K2

4σ2 )

K2

(iK )lY ∗
L (K̂)

(2l − 1)!!
− δL,00

√
π

2�σ 2
. (A12)

The expansion coefficient for φ(0)(r) is quite simple:

A(0)
L = −Y ∗

L (̂r′)
|r′|l+1

P

(
l + 1

2
, σ 2|r′|2

)
. (A13)

Finally,

AL = A(S)
L + A(L)

L + A(0)
L . (A14)

APPENDIX B

This Appendix proves the symmetry properties of coeffi-
cients αL. Say we are looking at one point (r′) in a neighbor
located at R; there must be a point r = −r′ in the neighbor
located at −R. Therefore, the summation in Eq. (5) will have
only terms like

aL = 4π

2l + 1

[∫
�R

dr′ρR(r′)
Y ∗

L ( ̂r′ + R)

|r′ + R|l+1
+

∫
�−R

dr′ρ−R(r′)
Y ∗

L ( ̂r′ − R)

|r′ − R|l+1
+ · · ·

]

= 4π

2l + 1

[∫
�R

dr′ρR(r′)
Y ∗

L ( ̂r′ + R)

|r′ + R|l+1
+ (−1)l

∫
�R

dr′ρR(r′)
Y ∗

L ( ̂r′ + R)

|r′ + R|l+1
+ · · ·

]
= 0, (B1)

so if the crystal has inversion symmetry and l is odd, aL vanishes. The symmetry property of the NFC part can be shown in the
same way. The complex spherical harmonics has the symmetry properties,

Yl,−m = (−1)mY ∗
l,m. (B2)

Thus, the coefficients αL must satisfy

αl,−m = (−1)mα∗
l,m. (B3)
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