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Magnetotransport in overdoped La2−xSrxCuO4: Effect of anisotropic scattering
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We revisit the Hall effect and magnetoresistivity by incorporating the anisotropic scattering caused by apical
oxygen vacancies in overdoped La-based cuprates. The theoretical calculations within the Fermi liquid picture
agree well with a handful of anomalous magnetotransport data, better than the results using an isotropic scattering
rate alone. In particular, we obtain the upturn of Hall coefficient RH with decreasing temperature T , the initial
drop of RH in magnetic field B in all overdoped regimes, the linear resistivity ρ versus B near the van Hove
doping level, the temperature dependence of the magnetoresistivity ratio, and the violation of Kohler’s law. These
results suggest that many of the anomalous transport behaviors in overdoped La2−xSrxCuO4 could actually be
understood within the Fermi liquid picture.
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I. INTRODUCTION

As the first family of high temperature superconductors
discovered so far, cuprates continue to challenge our under-
standing of many body physics, in particular the properties
of a doped Mott insulator [1]. However, it is hoped that at
least in the overdoped regime, the correlation effect might be
weakened relatively, such that a Fermi liquid picture could
be applied. On this basis, the superconducting state could
also be described properly by the Bardeen-Cooper-Schrieffer
(BCS) theory. If this were the case, we would have a good
starting point to descriminate what falls within/beyond the
Fermi liquid theory at lower doping levels [2]. The crossover
doping level above which the Fermi liquid picture applies
is not yet clear, and in fact, many anomalous phenomena
reported in recent expeiments seem to push the “boundary” of
the Fermi liquid phase to very high doping levels, even beyond
the superconducting domes [3]. To gain further insights, it
is important to investigate the anomalies more closely to see
whether and how they could actually be described within the
Fermi liquid picture.

The upturn of the Hall coefficient RH with decreasing
temperature T in overdoped La2−xSrxCuO4 (LSCO) [4] is an
early signature of the breakdown of the Fermi liquid theory,
since within the latter picture RH should be T independent
unless the system has both electronlike and holelike Fermi
pockets. The upturn of RH was later confirmed to persist for
all doping levels up to x = 0.36 [5]. In particular, at x = 0.32,
RH grows continuously from negative to positive values with
decreasing temperature. Another signature of the Fermi liq-
uid breakdown comes from the linear resistivity under strong
magnetic fields that recovers the normal states from the super-
conducting state. The T -linear resistivity at low temperatures
persists up to x ≈ 0.3 in LSCO [6], which is surprising since
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the doping level is readily far from the hypothetic quantum
critical point at xc ≈ 0.2. Subsequent careful analysis of the
magnetoresistivity data at x = 0.23 reveals a special quadratic
scaling [7] consistent with the phenomenological “quadrature
Planckian” dissipation τ−1 =

√
T 2 + γ 2B2 [8]. This includes

an unusual resistivity linear in B at low temperatures [9].
In LSCO, the Fermi surface changes from being holelike to
electron-like as the doping level increases through the van
Hove singularity (VHS) at xvhs = 0.2. One expects a corre-
sponding change in the Hall coefficient. Indeed, in the strong
field limit, RH = 1/(1 + x)e for x < xvhs, and −1/(1 − x)e
for x > xvhs, respectively [10]. However, in the weak field
limit, RH is found to smoothly decrease with doping, from
positive to negative values, and changes sign at x0 ≈ 0.3 [5].
Recently, these behaviors are qualitatively reproduced within
the Fermi liquid picture under an isotropic scattering rate [11].

On the other hand, in the superconducting state of over-
doped LSCO films, the low temperature superfluid density
ρs is found to decrease linearly with T [12], which is the
expected behavior of a clean d-wave superconductor [13].
However, the zero temperature superfluid density ρs(0) is
found to scale linearly with the transition temperature Tc,
which is instead a typical behavior of a dirty BCS super-
conductor [14]. This dilemma is reconciled only recently
by the recognition of the unique property of apical oxygen
vacancies [15]. Such impurities are known to be more popu-
lated with overdoping [16]. In the Born limit, they cause an
anisotropic scattering rate �d cos2(2θ ) (with θ the azimuthal
angle relative to the anti-nodal direction) through second-
order hopping processes connecting the nearest neighboring
sites [15]. The global scale of the scattering rate affects
the transition temperature, hence can produce the behavior
ρs(0) ∝ Tc in the dirty limit. The depletion of the superfluid
density at low temperatures are contributed by nodal quasi-
particle excitations, but since the above form of scattering rate
vanishes in the nodal direction, the behavior is similar to what
would be found in the clean limit, even if the global scale sets
the system in the dirty limit. This solves the puzzle regarding
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FIG. 1. (a) Fermi surface for three doping levels near the VHS
doping xvhs. (b) RH as a function of x and B. The color encodes the
value of RH for α = 1, and the black curve is the contour across
which RH changes sign. The same contour for α = 0.5 (dashed blue
line) and 0 (dashed-dotted green line) are also shown for comparison.

the two linear scaling behaviors of the superfluid density [15].
Furthermore, such an anisotropic scattering suggests that the
optical conductivity (versus the frequency) is an integration
of Lorentzians over a distribution of scattering rates, hence
becomes increasingly sharp as the frequency approaches zero.
Therefore a single-mode Lorentzian fit of the optical conduc-
tivity data at finite frequency would underestimate the Drude
weight [15]. This resolves the so-called “missing” of Drude
weight upon overdoping [17].

In view of the important effect of the anisotropic scattering
rate, we are motivated to reexamine the magnetotransport in
overdoped LSCO, so far only considered theoretically in the
isotropic scattering limit [11]. We find that incorporating the
anisotropic scattering rate further provides better agreement
with a handful of experiments, such as the the upturn of RH

with decreasing T [4,5], the initial drop of RH in B for all
overdopings [18,19], the linear resistivity ρ versus B [6,9],
the temperature dependence of the magnetoresistivity ratio
[ρ(B) − ρ(0)]/ρ(0) [6,9,20,21], and the violation of Kohler’s
law [20,21]. These results suggest that many of the anomalous
transport behaviors in overdoped LSCO could actually be
understood within the Fermi liquid picture.

II. MODEL AND METHODS

The band structure of overdoped LSCO as obtained from
angle-resolved photoemission spectroscopty (ARPES) can
be described quite well by a one-band tight-binding model
defined on the square lattice with hoppings t , t ′ = −0.12t
and t ′′ = 0.06t between the first, second, and third nearest
neighboring sites [22,23]. For simplicity, we assume a purely
two-dimensional rigid band structure, i.e., only the chemical
potential μ is to be tuned to match the doping level. In this
model, there is a VHS at xvhs ≈ 0.197, across which the Fermi
surface (FS) topology changes from hole to electronlike, as
shown in Fig. 1(a).

Throughout this work, the magnetic field B is assumed
to be perpendicular to the basal plane, which is the same
as in most experiments. According to the Luttinger theo-
rem [24], the enclosed area of the FS is (1 + x)SBZ/2 (SBZ

the Brillouin zone area) for x < xvhs and (1 − x)SBZ/2 for
x > xvhs, which gives rise to the Hall coefficient RH = 1/(1 +

x)e and −1/(1 − x)e, respectively, in the strong field limit
B → ∞ [10]. However, in the weak field limit, the Hall
coefficient loses the above topological meaning (unless in
the continuum limit or a band with quadratic dispersion)
and instead should be determined by the Fermi surface
curvature as clarified geometrically by Ong [25], or equiv-
alently captured by the Kubo formula for the longitudinal
conductivity

σxx = 2e2

Nk

∑
k

τ (k)v2
x (k)

(
− ∂ f

∂εk

)
, (1)

where 2 comes from spin, and the Hall conductivity

σxy = −2e3B

Nk

∑
k

τ 2(k)vx

(
vx

∂vy

∂ky
− vy

∂vy

∂kx

)(
− ∂ f

∂εk

)
, (2)

where vx,y = ∂εk/∂kx,y and f is the Fermi distribution func-
tion. The collision time τ (k) is the inverse of the total
scattering rate given by

τ−1(k) = �s + 1
4�d (cos kx − cos ky)2, (3)

where �s and �d are isotropic and anisotropic scattering
amplitudes. We assume the �d -term arises from the apical
oxygen vacancies in overdoped LSCO [15]. (Below the op-
timal doping level, the anisotropic scattering is also proposed
in the phenomenological “cold spot” model [26]. But here we
will limit ourselves to over doping only, as it might be hope-
less to apply the Fermi liquid theory below optimal doping,
where the strong correlation effects beyond the Fermi liquid
picture are known to be essential.) In the following, we intro-
duce a dimensionless parameter α to quantify the anisotropy
fraction such that �d = α�0 and �s = (1 − α)�0, with �0 =
�s + �d . We note that in Eq. (2) the Hall conductivity σxy is
proportional to e3B. This should be compared to the quantized
Hall conductivity in unit of e2/h in two-dimensional quantum
Hall systems or Chen insulators.

The Kubo formula is applicable in the limit of B → 0. In
order to go beyond the B-linear Hall conductivity, we adopt
the Chambers’ formula [27]

σαβ = 2e3B

(2π )2

∫
dε

(
−∂ f

∂ε

) ∫ T

0
dtvα[k(t )]

×
∫ t

−∞
dt ′vβ[k(t ′)] exp

{
−

∫ t

t ′

ds

τ [k(s)]

}
, (4)

which can be derived from the Boltzmann transport equa-
tion [28,29]. Within the semiclassical picture, the electrons
are driven by the Lorentz force k̇ = −evk × B and move on
cyclotron orbits in the momentum space. This semiclassical
picture can be justified by the observation of cyclotron res-
onance in LSCO [30]. At low temperatures, the cyclotron
orbit is limited on the Fermi surface (because of the derivative
of the Fermi function in the above formula). We obtain the
time-dependent momentum k(t ), velocity v(t ), and lifetime
τ (t ). Since both v(t ) and τ (t ) are periodic functions with
the cyclotron period T , the integral over t ′ can be performed
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within each period, yielding

σαβ = 2e3B

(2π )2

[
1 − exp

(
−

∫ T

0

ds

τ (s)

)]−1

×
∫ T

0
dtvα (t )

∫ t

t−T
dt ′vβ (t ′) exp

[
−

∫ t

t ′

ds

τ (s)

]
, (5)

which is convenient for numerical calculations [31]. Using
Eq. (5) we calculate both σxx and σxy. The conductivity ten-
sor is then reversed to obtain the longitudinal resistivity ρxx

(denoted by ρ for simplicity) and Hall coefficient RH ,[
ρ −RH B

RH B ρ

]
=

[
σxx σxy

−σxy σxx

]−1

. (6)

To quantify the magnetic field, we define a characteristic
magnetic field B0 = m∗

c/eτ with τ = 1/�0 a time scale and
m∗

c = 1/ta2 a mass scale (a is the lattice constant). As a
rough estimation, we have B0 ∼ 100 T for LSCO [11]. In the
following, we use the Kubo formula for B/B0 → 0, while the
results for finite B/B0 > 0.002 are obtained by the Chambers
formula. The latter can be applied for any nonzero B, but
becomes numerically inefficient in the limit of B/B0 → 0.

III. RESULTS

A. Hall coefficient

We first consider the doping and magnetic field depen-
dence in RH (at low temperatures). The numerical result is
shown in Fig. 1(b). The color scale shows the value of RH

for a purely anisotropic scattering, α = 1. The solid black line
highlights where RH changes sign. In the strong field limit,
where T → 0, RH changes abruptly from 1/(1 + x) at x < xvhs

to −1/(1 − x) at x > xvhs. This behavior is independent of
the scattering anisotropy, as the system is effectively in the
ballistic regime, such that the Hall conductivity is purely
determined by the Luttinger volume enclosed by the Fermi
surface [10]. As the field decreases, the cyclotron motion
becomes slow and sensitive to the local scattering rate. As a
result, the conductivity tensor becomes sensitive to the local
curvature of the Fermi surface. The full cyclotron motion can
be decomposed into segments. Near the nodal point, the quasi-
particle moves on a holelike segment in our doping range,
while near the antinodal point, the quasiparticle moves on
electronlike segment for x > xvhs, see Fig. 1(a). The total con-
ductivity tensor is given by a weighted sum of the segments.
For the anisotropy fraction α = 1, the nodal quasiparticles
experience vanishing scattering, hence make leading contri-
bution to the conductivity. This explains why RH > 0 for all
x near and above xvhs. For even higher doping levels, the
electron-like segment increases and eventually RH becomes
negative. This explains the sign change of RH with increas-
ing doping at low fields. For comparison, we also present
the transition lines (where RH changes sign) for scattering
anisotropy α = 0.5 (dashed blue line) and 0 (dotted-dashed
green line) in Fig. 1(b). We see the transition doping level is
higher for larger scattering anisotropy. This is because a larger
anisotropy enhances more strongly the relative contribution of
the holelike nodal quasiparticles to the conductivity tensor.
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FIG. 2. Magnetic field dependence of RH in the case of α = 0.8
(solid lines) and α = 0 (dashed lines) at four different doping levels
x = 0.16, 0.2, 0.24, 0.28. (b) is a zooming of (a) at low fields.

For moderate fields, RH should interpolate between the
high and weak field limits. This is roughly the case in
Fig. 1(b). Interestingly, closer examination of our results re-
veal an interesting structure in the evolution of RH : it always
drops with B at small fields, and drops more quickly as the
scattering anisotropy α increases, see Figs. 2(a) and 2(b).
This initial drop of RH in B happens for all doping levels
on the two sides of the VHS, and is consistent with the
experiments [18,19] that appeared puzzling beforehand. To
gain qualitative insights, we consider an effective “two band”
model [32], in which the two bands should be understood as
two types of segments near the nodal and antinodal points.
In this simplified model, the total Hall coefficient can be
calculated up to the B2 term,

RH = ρ2
1 R2 + ρ2

2 R1 + R1R2(R1 + R2)B2

(ρ1 + ρ2)2 + (R1 + R2)2B2

≈ ρ2
1 R2 + ρ2R2

1

(ρ1 + ρ2)2
− (R1 + R2)(ρ1R2 + ρ2R1)2

(ρ1 + ρ2)4
B2, (7)

where R1,2 and ρ1,2 are Hall coefficient and resistivity for the
two bands, respectively. As long as R1 + R2 > 0, which is
clearly true for x < xvhs since both R1 and R2 are positive, RH

drops with B. While for x > xvhs, the holelike segment is much
larger than electronlike one in our range x < 0.4, so we still
have R1 + R2 > 0. This qualitative picture of the initial drop
of RH in B is consistent with our numerical results shown in
Fig. 2(a). The quadratic dependence at small B is dictated by
time-reversal symmetry, and is also correctly reproduced in
Fig. 2(b). Therefore, the initial drop of RH in B is a universal
feature in our doping range (0.16 < x < 0.4) on both sides of
the VHS. Furthermore, by comparing the results of α = 0 and
α = 0.8, see Fig. 2, the anisotropic scattering is found to make
a steeper initial drop (at finite but small B), in better agreement
with the experiments [18,19].

We now consider the temperature dependence of RH . The
experimental data of RH [5] in unit of a2c/e are shown as
dots in Fig. 3(a), where a = 3.8Å and c = 6.6Å are lattice
constants of LSCO [23] and e is the electron charge. For each
temperature and doping, we tune the anisotropy ratio α to fit
the experimental data of RH . The fitted results of α are shown
as dots in Fig. 3(b). At high temperature, we cannot fit the
experimental data within a reasonable range α ∈ [0, 1], which
are represented by open circles.
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FIG. 3. The experimental data [5] of RH (in unit of a2c/e) ver-
sus temperature T , shown as dots in (a), are fitted point-by-point
to extract the anisotropy ratio α shown in (b). The solid lines in
(a) and (b) are fits to the symbols by assuming �s = �s0 + gT 2. The
doping level is indicated on the colored line. The inset in (b) plots
�s/�d versus T at x = 0.32. The open circles in (b) indicate the
temperatures at which the fit to the data (not shown) fails to obtain
an α ∈ [0, 1].

To understand the temperature dependence in RH as well as
in α, we assume the isotropic part, �s, receives Fermi-liquid
correction from electron-electron interactions. It therefore de-
creases as the temperature is lowered. On the other hand,
the anisotropic part, �d , is caused by apical oxygen vacan-
cies, hence is independent of the temperature. Therefore, the
scattering anisotropy α = �d/(�d + �s) is expected to in-
crease as the temperature is lowered. As a result, the holelike
contribution to RH from nodal quasiparticles becomes larger
relatively. This provides a mechanism for the upturn of RH as
the temperature is lowered.

To see how this scenario works, we assume �s = �s0 +
gT 2 and �d = �d0, correspondingly α−1 = 1 + �s/�d , to fit
the symbols in both panels of Fig. 3. Note that the total
scattering rate �s + �d has no effect on RH , but only their
ratio �s�d determines RH at each doping. The fitted results
of RH are presented as solid lines. We observe fair agreement
between the dots and the solid lines at low temperatures. In
particular, the inset of Fig. 3(b) plots �s/�d versus T in the
case of x = 0.32. The T 2 dependence at low temperatures
is obvious. We notice that the T dependence of α has been
pointed out in Refs. [33,34]. On the other hand, the upturn of
RH becomes even more significant upon underdoping [4,5],
where the mechanism should go beyond the Fermi-liquid pic-
ture because of the emergence of the pseudogap.

B. Magnetoresistivity

We now discuss the field dependence of the resistivity, or
magnetoresistivity. Previously, we found that the proximity
to the VHS can lead to quasilinear dependence of the resis-
tivity ρ in a sizable window of intermediate magnetic field
B [11], in qualitative agreement with the experiment [9]. At
that stage the simplest isotropic scattering was assumed. Here
we examine further the effect of the anisotropic scattering
�d . In Fig. 4(a), the dimensionless magnetoresistivity ratio
δρ/ρ0 = [ρ(B) − ρ(0)]/ρ(0) is plotted versus the field for
several values of α. Fig. 4(b) is a replot of Fig. 4(a) in the
log-log scale. These results show that the magnetoresistivity
is quadratic in B at small fields, quasi-linear in intermediate
fields, and saturates at high fields. In comparison to the case
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FIG. 4. (a) The magnetoresistivity ratio δρ/ρ0 are plotted ver-
sus B at x = 0.24 for α = 0, 0.2, . . . , 0.8. The dashed lines show
B-linear fits for the intermediate fields. (b) is the same as (a) but
presented in log-log scale to reveal the B2 behavior at low fields
(highlighted by dashed lines).

of α = 0 (isotropic scattering), we see that a larger anisotropy
reduces the B2 regime on one hand, and enhances the satura-
tion value in the large field limit on the other hand. Therefore,
the intermediate crossover (quasi B-linear) regime is enlarged
by a larger α. If we assume that α becomes effectively larger
as the temperature is lowered, as we discussed in the previ-
ous subsection, the above result implies the B-linear regime
extends as the temperature is lowered, consistent with the
experimental results [6,9]. This adds salt to the conventional
mechanism based on the cyclotron motion [11,34,35], which
should be compared to the more exotic picture of “quadrature
Planckian dissipation” [7,8,36].

The above result can also be related to the so-called
Kohler’s law, which says that the magnetoresistivity ratio
δρ/ρ0 is a universal function of B/ρ0. This is true only if
α does not change with temperature such that the data at
different temperatures fall on the same line. But in LSCO,
since α grows as the temperature is lowered (see the previous
subsection), the Kohler’s law is expected to be violated more
quickly at lower temperatures. On the other hand, a larger
value of α also leads to a larger slope in δρ/ρ0 as a function
of B in the intermediate linear regime (which actually extends
to very small fields), see Fig. 4(a). These features are con-
sistent with the experiments [20,21]. Therefore, variation of
the scattering anisotropy in temperature provides a plausible
explanation of the violation of Kohler’s law.

Finally, we examine the doping dependence of the magne-
toresistivity. In Fig. 5, we plot the saturated magnetoresistivity
ratio δρ∞/ρ0 versus x for some specific values of α. We
see that it increases as the VHS doping is approached. This
behavior is caused by the doping dependence of the cyclotron
mass, which diverges at the VHS, as shown in our previous
work [11]. Here, we see that the magnetoresistivity ratio is
further enhanced by the scattering anisotropy. The magnetore-
sistivity ratio peaks at the VHS, and the global scale clearly
grows for larger α (at lower temperature in our picture). These
predictions are to be checked in experiments. Our results
may also shed light on the experiments [6,9,20,21], where the
magnetoresistivity ratio was found to increase at lower tem-
peratures, although the peak at the VHS has not been observed
(possibly because the VHS is smeared by the dispersion in kz,
or because the magnetic field is not strong enough).
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FIG. 5. Doping dependence of the saturated magnetoresistivity
ratio δρ∞/ρ0 by fixing α = 0, 0.3, 0.6, and 0.9, respectively.

IV. SUMMARY

In this work, we studied the effect of the anisotropic scat-
tering �d on the Hall coefficient and magnetoresistivity in
overdoped LSCO. Our study is based on well-defined quasi-
particles in cyclotron motions under the magnetic field. We
find that combining the anisotropic scattering, this picture
can explain a handful of experimental observations simulta-
neously: the upturn of RH at low temperatures [4,5], initial
drop of RH in magnetic field [18,19], linear magnetoresistivity
in a window of intermediate field [9], violation of Kohler’s
law [20,21], and the temperature (and doping) dependence of

the magnetoresistivity ratio [6,9,20,21]. These consistencies
indicate the Fermi liquid picture is applicable in a substantial
range of overdoped LSCO.

A key ingredient in our discussion is the anisotropic
scattering, which we assume to follow from apical oxygen
vacancies in overdoped LSCO [16] and more details can be
found in Ref. [15]. We should also point out that the functional
form of the anisotropic scattering has been invoked in earlier
literatures, but the origin is quite different. Ioffe and Millis
suggested the so-called “cold spot” model with the scatter-
ing rate ∼ cos2(2θ ) caused by dynamic pair fluctuations to
explain the optical conductivity in optimally and underdoped
regions [26]. Abrahams and Varma also proposed a scatter-
ing rate ∼v−1

F (θ ) [37] from the forward scattering caused by
interlayer impurities. Signature of anisotropic scattering ap-
pears in ARPES [38–43] and magnetotransport [34,35,44] for
both overdoped and underdoped samples. Recently, different
out-of-plane dopant impurities, such as Sr atoms or farther O
vacancies, are also proposed to support anisotropic scatterings
via ab initio calculations [45]. Our results call for careful
analysis of the effect of different anisotropic scatterings not
yet covered in this work.
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