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We theoretically study photocurrents in metals that break both inversion P and time reversal T symmetries
within the transparent region. We find that the system under the ac electric fields is well described with an
effective Hamiltonian and the photocurrent is of the order of O(ωJ/γ ) if the frequency of the induced current
ωJ and the scattering rate γ satisfy ωJ/γ � 1, and vanishes in the limit of ωJ/γ → 0. On the other hand, the
effective Hamiltonian description indicates that nonvanishing photocurrent can appear even in the transparent
region if the system is thin enough compared to the mean-free path in the direction of the induced current (where
γ can be effectively regarded as 0). Candidate materials for the such photovoltaic effect within the transparent
region include conducting multiferroics breaking both P and T symmetries.
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I. INTRODUCTION

The photovoltaic effect has attracted recent intensive in-
terest from the viewpoints of both fundamental physics and
applications [1–14]. It is now realized that the bulk photo-
voltaic effects are closely related to the geometric aspects
of electronic states in solids (such as Berry phase [15]) that
arise from the breaking of the inversion symmetry P in non-
centrosymmetric materials. Shift current and injection current
are the two major mechanisms for the photovoltaic effect in
the second order in the electric field of light. Time-reversal
symmetry T is another important symmetry; the injection cur-
rent requires the broken T either by the circularly polarized
light or the magnetic field/order of the material, whereas the
shift current does not require the breaking of T . When both
P and T are broken, the energy dispersion of the electrons
becomes asymmetric between k and −k and many nonrecip-
rocal phenomena are expected, including the magnetochiral
anisotropy in dc transport [16]. Also, insulators with broken
P and T are called multiferroics, which shows the strong
coupling between the electric and magnetic degrees of free-
dom such as the magnetoelectric effect [17–19]. It has been
predicted that the excitation of the electromagnon by light in
multiferroics can induce the dc current; the low-energy light
below the band gap can show the photovoltaic effect without
the electronic particle-hole excitation [20,21]. Furthermore, it
has been shown that the soft phonon excitation in ferroelectric
BaTiO3 without T -breaking produces the dc shift current [22].
A common feature of all these photovoltaic effects is that the
absorption of light occurs in some form even if the electronic
excitation is virtual. Then, the crucial question here is if the
photovoltaic effect is possible even without the absorption of
light or not.

According to the standard perturbation theory [23–27], it
seems possible that if both T and P symmetries are broken,

finite photocurrent is induced even in the transparent region
where the incident photon cannot create real excitations of
electrons. Histrically, however, Belinicher et al. pointed out
that there should be no dc photocurrent for the transparent
region in the steady state if we properly take into account
the effect of the relaxation [28]. The effect of relaxation on
the photocurrent was discussed based on an effective Hamil-
tonian decades ago and they concluded that there should be
no photocurrent in the steady state [28,29]. However, since
their discussion is based on the semiclassical theory, it is
not clear how the photocurrent in the presence of relaxation
is affected by the interband matrix elements of the current
operator, which can be crucial in the photocurrent, such as
the shift current.

In Ref. [24], it was also pointed out that relax-
ation affects the photocurrent when the relaxation rate
is larger than the frequency of the output current, al-
though they studied only the region where the relaxation
rate is much smaller than the frequency of the output
current.

On the other hand, recent studies suggest that there is a
possibility of finite photocurrent even in the transparent region
[30,31]. In Ref. [30], a system coupled with particle reservoirs
is discussed and it is concluded that the photocurrent within
the transparent region exists in such systems—their relation
to the thermodynamics is also discussed. In Ref. [31], Golub
and Glazov discussed a Raman-like process utilizing impurity
scattering. In this case, the frequency of the incident photon
and that of the scattered photon are different, resulting in
finite energy absorption to drive the finite current. Since these
studies discussed different situations or processes from the
ones in Refs. [28,29], it is important to extend the previous
discussions in Refs. [28,29] and investigate the behavior of
the photocurrent in the transparent region by incorporating
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relaxation effects and the interband matrix elements of the
current operator.

In this paper, we perform analyses with a fully quantum
mechanical theory on the photocurrent within the transparent
region in the presence of relaxation effects. As discussed
previously in Ref. [24], there are two important frequencies
(or, equivalently, timescales) that determine the photocurrent
responses: the relaxation rate γ and the difference of injected
and emitted lights frequencies which is equal to the frequency
of current ωJ . We usually consider the limits γ → 0 and
ωJ → 0, and their order is crucial to understand the pho-
tocurrent behavior. According to our theory, the photocurrent
will vanish in the limit of ωJ/γ → 0, which is consistent
with the previous discussions [28,29], while if one can realize
the condition ωJ � γ effectively, nonvanishing photocurrent
can appear. In this paper, we often call the former case the
slow limit, while the latter case is denoted the fast limit. Our
theory also enables us to calculate the crossover at γ ∼ ωJ .
We briefly discuss the interpretation of the photocurrent in
the fast limit as a Raman process. While phonon excitation
and structural phase transition induced through the virtual
excitation of electrons were discussed previously [32,33],
we show that a similar Raman process without phonons can
leave an electronic excitation with a finite current in the fast
limit. A similar Raman-like mechanism of photocurrent has
been proposed by Golub and Glazov recently [31], but our
interpretation does not involve impurity scattering in contrast
to Ref. [31]. In terms of applications of the bulk photo-
voltaic effect to solar cells, if the frequency of the output
current is finite but sufficiently small, it is possible to rectify
the current to extract power. Therefore, our results show a
possibility of energy harvesting light within the transparent
region.

In general, it is a complicated task to compute nonlin-
ear responses taking into account the effect of scattering.
Although one previous study [34] investigated the effect of
scattering on nonlinear optical responses including vertex
correction, we employ another approach to this problem.
Specifically, we consider an effective Hamiltonian for the
system in the presence of an ac electric field with frequencies
smaller than the band gap. We find that the second-order
current response arises from the term that appears in the
effective Hamiltonian and is second order in the external
field. In particular, this effective Hamiltonian description al-
lows us to use the standard linear response theory to study
the second-order responses to the external field and facili-
tates to include the effects of scattering in the calculation.
A similar approach of an effective Hamiltonian but with the
Boltzmann equation was used in Ref. [28]. However, it is not
clear in their approach how the interband matrix elements
of the current operator affected their results. We show that
the effective current operator is given by the k-derivative
of the effective Hamiltonian and extend the discussion in
Ref. [28].

This paper is organized as follows. In Sec. II, we briefly re-
view the known results from the standard perturbation theory
in the clean limit [23–27]. In Sec. III, we show the results
for the photocurrent response within the transparent region
and explain the relation with previous studies. Section IV is
devoted to discussion and conclusion.

II. BRIEF REVIEW OF THE STANDARD
PERTURBATION THEORY

In this section, we briefly review the standard perturbation
theory in the clean limit described in the literature [23–27].
Let us consider general noninteracting electronic systems with
a periodic potential described by a Hamiltonian of the follow-
ing form:

Ĥ0 =
∫

dd k

(2π )d
ψ̂

†
k H0(k)ψ̂k, (1)

where ψ̂k, ψ̂
†
k are the annihilation and creation operators of an

electron with wave vector k, H0(k) is the Bloch Hamiltonian,
and d is the spatial dimension. The matrix H0(k) is Hermitian
and can be diagonalized with a unitary matrix Uk as

Ek = U †
k H0(k)Uk, (2)

where (Ek)ab = δabεka is a diagonal matrix and εka is the
energy dispersion for the band a.

The second-order current responses to ac electric fields are
described by the third-rank tensor σμαβ defined as

Jμ(ω1 + ω2) = σμαβ (ω1 + ω2; ω1, ω2)Eα (ω1)Eβ (ω2), (3)

with the Fourier component of the electric current and the
electric field, J(ω) and E(ω). In particular, the second-order
dc current response to ac electric fields is expressed as
σμαβ (0; ω,−ω). We can calculate the tensor σμαβ (0; ω,−ω)
with the standard perturbation theory [23–27]. In most litera-
ture, the current response for ω which is equal to or larger than
the band gap was studied; for example, the shift current and
the injection current with photon energy above the band gap
are well understood with the perturbation theory. However,
here we focus on responses to external fields in the transparent
region (see Fig. 1), namely, we assume the frequency of the
external fields ω satisfies

1

τ
� ω < Eg, (4)

where τ is the scattering time and Eg is the band gap of the
system. We set h̄ = 1 here and hereafter. For ω satisfying
Eq. (4), the external field cannot induce real electronic ex-
citation, and also we can neglect the effects of Drude-like
absorption. In this case, there appears no delta-function term
expressing the energy conservation and the absorption of light
in the expression of the tensor, but there are still nonzero terms
in the clean limit in general, which can be written as

σμαβ (0; ω,−ω) (clean limit)

= e3

2h̄3ω2

∫
dd k

(2π )d

∑
a

(−∂μ fa)

×
[

hαβ
aa +

∑
b( �=a)

(
hα

abhβ

ba

εab − ω
+ hβ

abhα
ba

εab + ω

)]
, (5)

with εab = εka − εkb and the Fermi distribution function fa =
(e(εka−μ)/kBT + 1)−1 [23–27]. Here, kB is the Boltzmann con-
stant, e(< 0) is the charge of an electron, T is the temperature,
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FIG. 1. Schematic illustration of the photovoltaic effect within the transparent region. In this paper, we consider cases where (a) T -broken
systems under irradiation of light or (b) T -symmetric systems under illumination of a circularly polarized light. According to the standard
perturbation theory in the clean limit, even in these cases finite photocurrent can be induced, but the effects of relaxation can suppress the
photocurrent. In these cases, we clarify the condition for the photocurrent to be finite. (c) Illustration of ω dependence of linear conductivity
σ (ω). At low frequencies ω < τ−1 with the relaxation time τ , the Drude response should be observed. At high frequencies comparable to or
higher than Eg/h̄ with the band gap Eg, photon absorption occurs and again Re[σμ(ω)] becomes finite.

and μ is the chemical potential. ∂α is the derivative with
respect to kα , and hα, hαβ are defined as

hα = U †
k (∂αH0(k))Uk = ∂αEk − i[α, Ek], (6)

hαβ = U †
k (∂α∂βH0(k))Uk = ∂αhβ − i[α, hβ ], (7)

where α is the interband Berry connection defined by

α = U †
k ∂αUk. (8)

hα corresponds to the velocity operator in the band basis. We
note that εab, fa, hα , and hαβ are all k dependent although we
suppress the indices k from them for shorthand notation.

Here we emphasize that the result in Eq. (5) is valid only
in the clean limit, i.e., without any scattering or relaxation. If
one properly takes into account the effects of relaxation, the
photocurrent vanishes with an additional contribution from
the relaxation [28,29]. In the following, we will clarify when
the photocurrent in the transparent region is possible.

III. PHOTOCURRENT RESPONSE

In this section, we study the photocurrent response when
the chemical potential crosses only one band and that band
is well separated from the other bands energetically. Let us
consider the case where the system described by Eq. (1) is
subjected to the ac electric field E(t ). The Bloch Hamiltonian
in the band basis is no longer diagonal due to the external field
and is given by

H (t ) = E − eAα (t )hα + e2

2
Aα (t )Aβ (t )hαβ + O(A3), (9)

where we omit the dependence of wave vector k in H (t ) and
Ek. Here, A(t ) is the vector potential and related to the electric
field E(t ) as E(t ) = − dA

dt . We also assume that A(t ) is of the
form

A(t ) = a(t )e−iωt + (a(t ))∗eiωt , (10)

where a(t ) is slowly varying compared to frequency ω.
Assuming ω is within the transparent region [Eq. (4)], the

effective Hamiltonian Heff and the effective current operator

Jeff for the band near the chemical potential are given by

Heff (t ) = εa − eAα (t )hα
aa + Fαβbαβ (t ), (11)

Fαβ = e2hαβ
aa + e2

∑
b�=a

[
hα

abhβ

ba

εab − ω
+ hβ

abhα
ba

εab + ω

]
, (12)

Jμ
eff (t ) = ∂μHeff (t ) + ∂Pμ

tr

∂t
, (13)

Aα (t ) = aα (t )e−iωt + (aα (t ))∗eiωt , (14)

bαβ (t ) = aα (t )(aβ (t ))∗, (15)

where a is the band index for the band we are focusing on.
In the rest of this paper, we often omit the band index a. The
Einstein convention for spatial indices such as α, β is always
used in this paper.

The second term in Eq. (11) does not contribute to the
second-order dc current response in the standard perturbation
theory within the clean limit. As shown in Appendix B, the
numerical calculation of the simple one-dimensional model
also indicates that the contribution vanishes. Hence we ignore
the second term hereafter. If the second term is neglected,
Eq. (11) corresponds to the effective Hamiltonian in Ref. [28].

The last term in the effective current operator, Eq. (13), is a
total derivative with respect to time and hence it gives a tran-
sient current when the external field is applied. This term is
closely related to the Berry connection and may be interpreted
as the polarization current [35,36]. Please see Appendix A for
more details. In the rest of the present paper, we will ignore
this transient contribution unless otherwise noted. The rest of
the effective current operator is given by the k derivative of
the Heff and hence the application of bαβ (t ) also induces the
modification of the current operator as

Jμ
eff (t ) = ∂μεa + bαβ (t )∂μFαβ. (16)

We emphasize that our derivation of Jμ
eff (t ) takes into account

the interband matrix element in the original current operator.
These matrix elements appear in Jμ

eff (t ) only through the k
derivative of Fαβ . For the derivation of the effective Hamil-
tonian and the detailed expression for Ptr , see Appendix A.
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Several properties of Fαβ should be noted. First, in terms
of the time-reversal symmetry T , Fαβ satisfies the following
relationship if the system preserves T :

Fαβ (k) = Fβα (−k), (17)

where we explicitly show the k dependence of Fαβ . We also
note that Fαβ can be rewritten as

Fαβ = e2(∂α∂βεa) − ie2ωεαβγFγ

+ e2ω2
∑
b�=a

(
α

ab
β

ba

εab − ω
+ 

β

ab
α
ba

εab + ω

)
. (18)

Here α is the interband Berry connection and Fα =
iεαβγ

∑
b( �=a) 

β

ab
γ

ba is the Berry curvature of the band a,
while b is a label for the other bands separated by the band
gap. εαβγ is the Levi-Civita symbol. This form also appears
in the expression for dynamical Stark shift [37] as discussed
later in Sec. IV.

Now let us consider the linear response of the elec-
tric current to bαβ (t ) to calculate the photocurrent response
σμαβ (0; ω,−ω). Please note that bαβ (t ) is roughly related to
the slow component of Eα (t )Eβ (t ) as

bαβ (t ) + bβα (t ) ∼ 1

ω2
[slow component of Eα (t )Eβ (t )].

(19)

To be more precise, the frequency of the bαβ (t ) corresponds to
the frequency difference of the incident and scattered photons,
which is equal to that of the output current, and hence we
denote the frequency of bαβ (t ) as ωJ . Then we can denote the

current response to bαβ as

Jμ(ωJ ) = �μαβ (ωJ )bαβ (ωJ ), (20)

where Jμ(ωJ ) is the Fourier transformation of the current
in the μ direction and similar for bαβ (ωJ ). In the limit of
ωJ → 0, �μαβ corresponds to the dc photocurrent response
σμαβ (0; ω,−ω). We can compute �μαβ (ωJ ) with the standard
linear response theory and the result in the imaginary time
domain is written as

�μαβ (iωJ ) = χμαβ (iωJ ) +
∫

[dk]〈e∂μFαβ〉0, (21)

χμαβ (iωJ )

=
∑

n

∫
[dk]�μ(iεn + iωJ , iεn)G(iεn + iωJ )FαβG(iεn),

(22)

where iωJ , iεn are Matsubara frequency, �μ is the vertex for
the current operator, and G(iε) is given by

G(iε) = 1

iε − ξk − �(iε, k)
. (23)

ξk is the energy dispersion of electron with respect to the
chemical potential and � is the self-energy. [dk] is shorthand
for dd k/(2π )d with the spatial dimension d . 〈. . . 〉0 denotes
the expectation value in the equilibrium, and the last term in
Eq. (21) corresponds to the diamagnetic current like contribu-
tion arising from the modification of the current operator due
to the external field bαβ , as we already mentioned. In the above
expressions, we omit the k-dependence of G and �. Since we
are assuming that the chemical potential crosses only one band
and the effective Hamiltonian describes that one band, �,G
and F in Eqs. (21),(22) are scalars (not matrices).

We can perform the summation over the Matsubara fre-
quencies εn in Eq. (22) with the standard technique and obtain

χμαβ (iωJ ) =
∫

dz

2π i

∫
[dk]( − f (z))�μ(z + iωJ , z)G(z + iωJ )FαβG(z)

=
∫

dε

2π i

∫
[dk]( − f (ε)){Pμαβ (ε + iη, ε + iωJ ) − Pμαβ (ε − iη, ε + iωJ )

+ Pμαβ (ε − iωJ , ε + iη) − Pμαβ (ε − iωJ , ε − iη)}, (24)

where f (ε) = (eβε + 1)−1 is the Fermi distribution function with the inverse temperature β and η is an infinitesimally small
positive number. Pμαβ (z1, z2) is defined as

Pμαβ (z1, z2) = �μ(z2, z1)G(z2)FαβG(z1). (25)

By analytically continuing the expression as iωJ → ωJ + iδ, we obtain

χμαβ (ωJ + iδ) =
∫

dε

2π i

∫
[dk]( − f (ε)){Pμαβ (ε + iη, ε + ωJ + iδ) − Pμαβ (ε − iη, ε + ωJ + iδ)

+ Pμαβ (ε − ωJ − iδ, ε + iη) − Pμαβ (ε − ωJ − iδ, ε − iη)} (26)

=
∫

dε

2π i

∫
[dk]{( f (ε) − f (ε + ωJ ))Pμαβ (ε − iη, ε + ωJ + iδ)

− f (ε)[Pμαβ (ε + iη, ε + ωJ + iδ) − Pμαβ (ε − ωJ − iδ, ε − iη)]}. (27)
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In particular, if we ignore the vertex correction, then �μ becomes hμ and the response function �μαβ becomes

�μαβ (ωJ ) =
∫

dε

2π i

∫
[dk]hμFαβ[( f (ε) − f (ε + ωJ ))GR(ε + ωJ )GA(ε) − f (ε)(GR(ε + ωJ )GR(ε)

− GA(ε)GA(ε − ωJ ))] +
∫

[dk]〈∂μFαβ〉0, (28)

where GR(ε)(GA(ε)) is the retarded (advanced) Green’s
function.

It should be noted that, without T breaking, �μαβ (ωJ )
satisfies �μαβ (ωJ ) = −�μβα (ωJ ), and hence nonzero pho-
tocurrent responses require some form of T breaking such as a
magnetic field, a magnetic order of the material, or application
of the circularly polarized light (see also Figs. 1(a) and 1(b)).

A. Slow limit (ωJ → 0 limit with finite scattering)

The case we are interested in is the dc response limit of
ωJ → 0. The first term in Eq. (27) will vanish in this limit
as long as Pμαβ (ε − iη, ε + ωJ + iη) does not diverge. For
example, if we approximate the self-energy as

�(iε) 
 iγ sgn(ε), (29)

with a constant scattering rate γ and ignore the vertex cor-
rection [see Eq. (28)], Pμαβ (ε − iη, ε + ωJ + iη) in ωJ → 0
limit becomes a Lorenztian as a function of ε, where the
peak is located at ε = ξk with the width γ and its peak value
is ∝ 1/γ 2, while the factor f (ε) − f (ε + ωJ ) effectively be-
haves as a window function with the width kBT and the height
∝ ωJ . Therefore, the first term in Eq. (28) behaves as ∝
(ωJ/γ )(min{kBT/γ , 1}). Consequently, as long as ωJ � γ ,
the first term vanishes in the ωJ → 0 limit.

Then, Eq. (27) reduces to the following form:

lim
ωJ→0

χμαβ (ωJ + iδ)

=
∫

dε

2π i

∫
[dk]( − f (ε))[Pμαβ (ε + iη, ε + iδ)

− Pμαβ (ε − iδ, ε − iη)]

=
∫

dε

2π i

∫
[dk]( − f (ε))[�μ(ε+iη, ε+iδ)GR(ε)FαβGR(ε)

− �μ(ε − iδ, ε − iη)GA(ε)FαβGA(ε)]. (30)

It is useful to use the Ward-Takahashi identity to evaluate
this quantity. The Ward-Takahashi identity states the vertex
function �μ(ε ± iη, ε ± iδ) is related to the Green’s function
as

�μ(ε + iη, ε + iδ) = e∂μ

(
ξk + �R(ε)

)
, (31)

�μ(ε − iδ, ε − iη) = e∂μ

(
ξk + �A(ε)

)
, (32)

where �R/A is the retarded/advanced self-energy. Therefore,
we can prove the following relations between the vertex func-
tion and the Green’s functions:

GR(ε)�μ(ε + iη, ε + iδ)GR(ε) = e∂μ(GR), (33)

GA(ε)�μ(ε − iδ, ε − iη)GA(ε) = e∂μ(GA). (34)
Note that GR/A is a number as we focus on a single band.
Inserting these relations into Eq. (30) and integrating by parts,
we obtain

lim
ωJ→0

χμαβ (ωJ + iδ)

=
∫

dε

2π i

∫
[dk]e f (ε)∂μFαβ[GR(ε) − GA(ε)]. (35)

We note that under the approximation ImGR(ε) 
 −πδ(ε −
ξ̃k ), we can rewrite

lim
ωJ→0

χμαβ (ωJ + iδ)



∫

dε

2π i

∫
[dk]( − 2π iδ(ε − ξ̃k))e f (ε)∂μFαβ

=
∫

[dk]e( − f (ξ̃k))∂μFαβ, (36)

with the renormalized energy dispersion ξ̃k, which implies its
connection to the diamagnetic contribution ∝ ∂μFαβ .

We can evaluate the diamagnetic term in Eq. (21) as well.
The result is∫

[dk]〈∂μFαβ〉0

=
∫

dε

2π i

∫
[dk]( − f (ε))∂μFαβ[GR(ε) − GA(ε)]. (37)

This exactly cancels the contribution from χμαβ and we find

lim
ωJ→0

�μαβ (ωJ + iδ) = 0. (38)

This result means that the photocurrent vanishes if we prop-
erly take into account the effect of the scattering, which is
consistent with Refs. [28,29].

B. Fast limit and correspondence with the perturbation theory
in the clean limit

The results in the previous section do not coincide with
the result from the perturbation theory in the clean limit.
This is because the perturbation theory employed in, e.g.,
Ref. [23], assumes a different limit. To see this, we employ
the approximation in Eq. (29) and take the limit where ωJ

and γ approach zero under the condition ωJ � γ , which we
call the fast limit. In other words, we first take the γ → 0
limit and then the ωJ → 0 limit. In this case, the discussion
at the beginning of Sec. III A breaks down and the first term
in Eq. (27) does not vanish even in the ωJ → 0 limit. If we
neglect the vertex correction, the response function in this
limit is

235110-5
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�μαβ (ωJ + iδ) =
∫

dε

2π i

∫
[dk]( f (ε) − f (ε + ωJ ))ehμFαβGR(ε + ωJ )GA(ε)

=
∫

dε

2π i

∫
[dk]( f (ε) − f (ε + ωJ ))ehμFαβ 1

−ωJ − 2iγ

(
1

ε + ωJ − ξk + iγ
− 1

ε − ξk − iγ

)

→γ→0

∫
dε

2π i

∫
[dk]

f (ε + ωJ ) − f (ε)

ωJ
ehμFαβ

(
1

ε + ωJ − ξk + iη
− 1

ε − ξk − iη

)

→ωJ→0

∫
dε

2π i

∫
[dk] f ′(ε)ehμFαβ

(
1

ε − ξk + iη
− 1

ε − ξk − iη

)

=
∫

[dk]( − f ′(ξk))ehμFαβ =
∫

[dk]e( − ∂μ f (ξk))Fαβ

=
∫

[dk]e3( − ∂μ f (ξk))

[
hαβ

aa +
∑

b∈HB

(
hα

abhβ

ba

ωab − ω
+ hβ

abhα
ba

ωab + ω

)]
, (39)

where we replaced γ with an infinitesimal positive quantity η

when taking the γ → 0 limit. We note that ω corresponds to
the frequency of the incident photons and is assumed to be in
the transparent region [Eq. (4)].

Noting the relation Eq. (19), the result of the fast limit,
Eq. (39), coincides with the result from the perturbation theory
in the clean limit [Eq. (5)].

C. Crossover from the fast limit to the slow lmiit

We can also discuss the crossover region from the fast
limit (ωJ � γ ) to the slow limit (ωJ � γ ), i.e., ωJ ∼ γ , with
Eq. (27). As an example, we consider a generalized Rice-Mele
model. The Hamiltonian of the Rice-Mele model is defined as

Ĥ =
∑

n

(tABĉ†
n,Bĉn,A + tBAĉ†

n+1,Aĉn,B + H.c.)

+
∑

n

(tAAĉ†
n+1,Aĉn,A + tBBĉ†

n+1,Bĉn,B + H.c.)

+
∑

n

�

2
(ĉ†

n,Aĉn,A − ĉ†
n,Bĉn,B). (40)

Here i is the index for unit cells, A and B are labels for the
two sites in a unit cell, and their positions in the unit cell are
denoted by rA, rB. Then the Fourier transformation of ĉn,i for
i = A, B is defined as

ĉk,i =
∑

n

e−ik(na+ri )ĉn,i, (41)

and the Hamiltonian Ĥ can be rewritten as

Ĥ =
∑

k

[
ĉ†

k,A ĉ†
k,B

]
H0(k)

[
ĉk,A

ĉk,B

]
, (42)

H0(k) =
[

�
2 + tAA cos ka t (k)

t (k)∗ −�
2 + tBB cos ka

]
, (43)

t (k) = t∗
ABe−ik(rA−rB ) + tBAe−ik(a+rA−rB ), (44)

with the size of unit cell a.

One can introduce the inversion symmetry breaking into
the model by setting, for example, � �= 0 and |tAB| �= |tBA|. We
further break the time-reversal symmetry T by introducing
a complex hopping. The second-nearest-neighbor hopping is
necessary to break T symmetry; otherwise, the effect of the
complex hopping can be eliminated by a gauge transforma-
tion. We show a schematic picture of the Rice-Mele model in
Fig. 2(a). We calculated the band structure [Fig. 2(b)] and the
real part of the nonlinear response function �μαβ (ωJ ) (Fig. 2)
for the parameters given in the caption of Fig. 2. �μαβ (ωJ ) is
calculated as a function of ωJ and γ without vertex correction
by calculating Eq. (28) numerically.

Figure 2(c) shows the nonlinear response function as a
function of γ and ωJ and a crossover between the fast limit
and slow limit. One can see that for the slow limit ωJ � γ ,
Re�μαβ is almost zero and hence the photocurrent response
vanishes, as we showed in Sec. III A. On the other hand, in the
region ωJ � γ , i.e., the fast limit, the photocurrent response is
nonzero and approaching to the value in the fast limit, which
is consistent with the results in Sec. III B.

IV. DISCUSSION AND CONCLUSION

First, we note that �μαβ is finite only when the time-
reversal symmetry T is broken either by magnetic field/order
of the system or circularly polarized light. Since the pho-
tocurrent response is allowed only when the spatial inversion
symmetry P is broken, both breaking T and P is important
for the photocurrent discussed in the present paper.

Our discussion clarifies the effects of scattering on the pho-
tocurrent. If the scattering rate γ is sufficiently large compared
to the frequency of the output photocurrent ωJ , the system
supports the photocurrent proportional to ωJ at the steady
state and the photocurrent vanishes in the limit ωJ/γ → 0.
This can be understood as a realization of an equilibrium state
with renomalized energy spectrum [28,29]. Indeed, since the
system is described by the effective Hamiltonian Eq. (11), the
perturbation is effectively static for the slow limit ωJ � γ ,
and an equilibrium state with the effective Hamiltonian is
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FIG. 2. Photocurrent in Rice-Mele model with time-reversal symmetry broken. (a) The schematic illustration of the Rice-Mele model [see
also Eq. (40)]. (b) The band structure of the Rice-Mele model. The used parameters are tAB = 1 + 0.5i, tBA = 1 − 0.5i, tAA = 0.5, tBB = 0.3,
rA = 0, rB = 0.5, � = 2.0, μ = −1.5, T = 0.05. The size of unit cell a is set to be 1. (c) The photocurrent response of the Rice-Mele model
for the incident photon frequency ω = 0.5, which is smaller than the direct optical gap Eg ∼ 1. Equation (28) is calculated numerically for
0 � ωJ � 0.03, 0.001 � γ � 0.03. The vertex correction is ignored in the calculation. The calculated value is normalized by the value in the
fast limit, i.e., Eq. (39).

realized, hence no current occurs. This discussion generalizes
a semiclassical result by Belinicher et al. [28] to a quantum
theoretical treatment.

The effective Hamiltonian derived in this paper is closely
related to an effect called the dynamical Stark effect or optical
Stark effect [37–42], where a shift of energy levels is induced
by an external ac field. Indeed, the dc component of Eq. (11)
coincides with the expression for the optical Stark shift [37].
In Ref. [37], the dc current induced by the applied ac electric
fields with a frequency smaller than the band gap is also dis-
cussed, and it is concluded that only a transient current before
the system relaxes into an “equilibrium” state is possible.

We also note that, as a transient current, there would be
another contribution, described by ∂Pμ

tr
∂t in Eq. (13). This con-

tribution may be interpreted as a polarization current (see
Appendix A for details) and may be related to the optical
rectification effect, where the electric polarization is induced
by ac electric fields [43,44].

In the presence of finite scattering γ , the second term in
Eq. (11) may also contribute to the photocurrent. Nonetheless,
these contributions will vanish in the limit of γ → 0. One
can show this analytically in the fast limit (limωJ→0 limγ→0),
while we also confirm it numerically in the slow limit
(limγ→0 limωJ→0) for a simple one-dimensional model (see
Appendix B for details).

On the other hand, the perturbation theory in the clean
limit gives a finite photocurrent, as we reviewed in Sec. II.
This limit is recovered in the fast limit (γ � ωJ ), as we have
seen in Sec. III B. This results show that in the timescale
shorter than the relaxation time γ −1, we can obtain finite
photocurrent. In this sense, the photocurrent in the fast limit
is a transient current, as discussed in Ref. [28]. However, if
the rate of extracting electrons from the system to outside
(e.g., to the electrodes), ωJ , is sufficiently faster than the
relaxation rate γ (such as in small/thin enough samples),
the current in the fast limit may be realized. For example, if
the system is thin in the current direction compared to the
scattering length, the electron carrying the current quickly
flows out of the system before scattering happens, where
the effective scattering rate becomes almost zero. In this

case, the ωJ � γ limit is effectively realized and nonzero
photocurrent within transparent region may be possible. A
similar situation is experimentally realized in BaTiO3 thin
films [45,46], although T is preserved in BaTiO3. In a similar
setup with T breaking materials or circularly polarized light,
one may observe finite photocurrent within the transparent
region.

The finite current in the fast limit can be interpreted as a
Raman process as well, namely, the photon with frequency
ω1 is scattered by the sample and the scattered photon has a
frequency ω2 = ω1 − ωJ , leaving an excitation of energy h̄ωJ

with a finite current in the sample (Fig. 3). Here ω1, ω2 

ω and ωJ � ω. Since the energy of the incident photon is
smaller than the band gap, an electron is only virtually excited
to the conduction band from the valence band during this pro-
cess. However, in the presence of finite scattering or relaxation
(i.e., the slow limit), the induced current will be canceled.

The ωJ � γ limit may be related to the recent study by
Shi et al. [30]. They discussed systems coupled with particle

FIG. 3. Interpretation of the photocurrent within the transparent
region as a Raman-like process. The photocurrent for the fast limit
[Eq. (39)] can be understood as a Raman-like process, where the
photon with frequency ω1 is scattered by the sample but with a
different frequency ω2 = ω1 − ωJ , leaving an excitation of energy
h̄ωJ . Here, ω1, ω2 
 ω and ωJ � ω. The excitation with energy h̄ωJ

results in a finite current. However, this current will be canceled if ωJ

is sufficiently slow compared with the relaxation rate γ , i.e., in the
slow limit.
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reservoirs. The coupling to the reservoirs results in the relax-
ation rate �, and it is shown that finite photocurrent is induced
when � is finite. Here, we note that the relaxation rate � in
Ref. [30] has essentially a different meaning from what we
denote as γ in the present paper. � in Ref. [30] represents, in
a sense, the particle exchange rate with the particle reservoir,
while γ in the present paper is the scattering rate within
the system. Therefore, they can have different effects on the
photocurrent behavior, and the results in Ref. [30] do not
contradict our results.

Our discussion does not take into account these scattering
effects during a virtual excitation since we start from the
effective Hamiltonian Eq. (11). Therefore, those scattering
effects may enable finite photocurrent within the transparent
region. Indeed, Golub and Glazov recently proposed that fi-
nite photocurrent can be induced even within the transparent
region if one considers the impurity scattering during a virtual
excitation [31]. Their proposal might look similar to our inter-
pretation of the current in the fast limit as a Raman process,
but it is essentially different because they are considering the
scattering effect during a virtual excitation of electrons and
they also discussed the finite momentum of the light.

In conclusion, we have derived the effective Hamiltonian
under illumination of light with frequency smaller than the
band gap, and clarify the effects of relaxation on photovoltaic
effect. We show that if the frequency of the output current
ωJ is much smaller than the scattering rate γ , the photocur-
rent will be proportional to ωJ/γ and vanishes in the limit
of ωJ/γ → 0. In contrast, if the condition ωJ � γ is met
in some situations, nonzero photocurrent can appear in the
transparent region.
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APPENDIX A: CONSTRUCTION OF THE EFFECTIVE
HAMILTONIAN

In this Appendix, we construct the effective Hamiltonian
for noninteracting electronic systems under ac electric fields,
the frequency of which is smaller than the band gap. To this
end, we utilize the Schrieffer-Wolff transformation for the
time-dependent Hamiltonian.

1. Model

Let us consider the system under the ac electric field E(t ).
The Bloch Hamiltonian in the band basis is given by

H (t ) = E − eAα (t )hα + e2

2
Aα (t )Aβ (t )hαβ + O(A3), (A1)

where A(t ) is the vector potential and e(< 0) is the charge
of the electron. α, β are spatial indices and the Einstein con-
vention is always used in this paper. Here and hereafter, the
Planck’s constant h̄ is set to be 1.

The vector potential A(t ) is related to the electric field E(t )
as E(t ) = − dA

dt . We further assume that the vector potential is
given by

A(t ) = a(t )e−iωt + (a(t ))∗eiωt , (A2)

where a(t ) varies slowly compared to the frequency ω.

2. Time-dependent Schrieffer-Wolff transformation

Here we would like to find an effective Hamiltonian for
low-energy bands. We denote the set of the low-energy bands
as LB and the other bands as HB.

To construct an effective Hamiltonian, let us consider a
time-dependent unitary transformation U (t ). U (t ) transforms
the Hamiltonian H (t ) into H ′(t ) as

H ′(t ) = U (t )H (t )U †(t ) − iU (t )∂tU
†(t ). (A3)

We determine U (t ) so H ′(t ) is block-diagonal up to O(A), i.e.,

H ′(t )ab = O(A2) for a/b ∈ LB and b/a ∈ HB. (A4)

We further assume that U (t ) is of the form U (t ) =
exp(S(t )) with S(t ) = O(A). Then the new Hamiltonian H ′(t )
becomes

H ′(t ) = E − eAα (t )hα + [S(t ), E] + i∂t S(t )

+ e2

2
Aα (t )Aβ (t )hαβ+[S(t ),−eAα (t )hα]+1

2

{
S(t )2, E

}
− S(t )ES(t ) + i

2
[S(t ), ∂t S(t )] + O(A3). (A5)

Thus the condition Eq. (A4) becomes

( − eAα (t )hα + [S(t ), E] + i∂t S(t ))ab = 0 (A6)

for a/b ∈ LB, b/a ∈ HB. This can be rewritten as

(εba + i∂t )Sab = eAα (t )hα
ab, (A7)

where εab = εa − εb. By using the Fourier transformation, this
equation can be easily solved and we obtain

Sab(t ) =
∫

d�

2π
e−i�t eAα (�)hα

ab

� − εab


 ehα
ab

(
aα (t )e−iωt

ω − εab
+ (aα (t ))∗eiωt

−ω − εab

)
(A8)

for a/b ∈ LB, b/a ∈ HB. Here, Aα (�) is the Fourier transfor-
mation of Aα (t ). In the derivation of Eq. (A8), we ignore the
time dependence of a(t ). The other components of S are 0.
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Then H ′
aa′ for a, a′ ∈ LB becomes

H ′
aa′ (t ) 
 δaa′εa − eAα (t )hα

aa′ + bαβ (t )Fαβ

aa′

+ (terms with e−2iωt , e2iωt ) + O(A3) (A9)

Fαβ

aa′ = e2hαβ

aa′ + e2

2

∑
b∈HB

[(
1

εab − ω
+ 1

εa′b − ω

)
hα

abhβ

ba′

+
(

1

εab + ω
+ 1

εa′b + ω

)
hβ

abhα
ba′

]
, (A10)

bαβ (t ) = aα (t )(aβ (t ))∗, (A11)

and for a/b ∈ LB, b/a ∈ HB,

H ′
ab(t ) = e2

2
Aα (t )Aβ (t )hαβ

ab

− eAα (t )
∑

c

[(
aβ (t )e−iωt

ω − εac
+ (aβ (t ))∗eiωt

−ω − εac

)
ehβ

achα
cb

−ehα
ac

(
aβ (t )e−iωt

ω − εcb
+ (aβ (t ))∗eiωt

−ω − εcb

)
hβ

cb

]
. (A12)

To eliminate the O(A2) terms in off-diagonal matrix
elements in H ′, we further apply another unitary transforma-
tion V (t ) = exp(T (t )) with T (t ) = O(A2) to H ′(t ) to obtain
H ′′(t ). H ′′(t ) is given by

H ′′(t ) = H ′(t ) + [T (t ), H ′(t )] + i∂t T (t ) + O(A3), (A13)

and the condition to determine T (t ) is

0 = H ′′(t )ab

= H ′
ab + Tab(H ′

bb − H ′
aa) + i∂t Tab. (A14)

Note that T = O(A2) and Taa′ = 0 for a, a′ ∈ LB. Using the
solution for Eq. (A14), the new Hamiltonian H ′′

aa′ (t ) for a, a′ ∈
LB becomes

H ′′
aa′ (t ) = H ′

aa′ (t ) +
∑

b∈HB
(TabH ′

ba′ − H ′
abTba′ )

+
∑

a′′∈LB
(Taa′′H ′

a′′a′ − H ′
aa′′Ta′′a′ ) + i∂t Taa′+O(A3)

= H ′
aa′ (t ) + O(A3). (A15)

Therefore, H ′′
aa′ (t ) coincides with H ′

aa′ (t ).

3. Transformed current operator

Since we are interested in the current response, we will
need the current operator after the Schrieffer-Wolff trans-
formation. The current operator before the transformation is
given by

Jμ(t ) = ∂μH (t ) − i[μ, H (t )], (A16)

where μ is the interband Berry connection.
The new current operator J ′′μ(t ) is given by

J ′′μ(t ) = Ũ (t )Jμ(t )Ũ †(t )

= Ũ (t )(∂μH (t ) − i[μ, H (t )])Ũ †(t )

= ∂μH ′′(t ) − i[′′μ(t ) + ζ ′′μ(t ), H ′′(t )]

+ ∂μζ ′′
t (t ) − i[′′μ(t ) + ζ ′′μ(t ), ζ ′′

t (t )], (A17)

where Ũ (t ) = V (t )U (t ),′′μ(t ) = Ũ (t )μŨ †(t ) and

ζ ′′μ(t ) = iŨ (t )∂μŨ †(t ), (A18)

ζ ′′
t (t ) = iŨ (t )∂tŨ

†(t ). (A19)

The third and fourth terms in Eq. (A17) can be rewritten as a
total derivative with respect to time,

∂μζ ′′
t (t ) − i[′′μ(t ) + ζ ′′μ(t ), ζ ′′

t (t )] = ∂Pμ
tr

∂t
, (A20)

Pμ
tr = ′′μ(t ) + ζ ′′μ(t ), (A21)

and hence this is a transient current. Ptr may be interpreted as
a polarization current [35,36]. Indeed, ′′μ is the Berry con-
nection after the unitary transformation Ũ (t ), and ζ ′′μ is also a
Berry connectionlike quantity defined with Ũ (t ) instead of the
unitary transformation diagonalizing the Bloch Hamiltonian
without external fields.

In particular, J ′′μ
aa′ (t ) for a, a′ ∈ LB is given by

J ′′μ
aa′ (t ) = ∂μH ′′

aa′ (t ) − i
∑

a′′∈LB

[(


′′μ
aa′′ (t ) + ζ

′′μ
aa′′ (t )

)
H ′′

a′′a′ (t )

−H ′′
aa′′ (t )

(


′′μ
a′′a′ (t ) + ζ

′′μ
a′′a′ (t )

)] + ∂Pμ

tr,aa′

∂t
+ O(A3).

(A22)

Here we used H ′′
ab(t ) = O(A3) for a ∈ LB and b ∈ HB. Fur-

thermore, since H ′′
aa′ (t ) = O(A) if a �= a′ for a, a′ ∈ LB and

ζ
′′μ
aa′ (t ) = O(A2) for a, a′ ∈ LB, J ′′μ

aa′ (t ) is simplified to

J ′′μ
aa′ (t ) = ∂μH ′′

aa′ (t )−i
∑

a′′∈LB

(


′′μ
aa′′ (t )H ′′

a′′a′ (t )−H ′′
aa′′ (t )′′μ

a′′a′ (t )
)

− iζ ′′μ
aa′ (t )εa′a + ∂Pμ

tr,aa′

∂t
+ O(A3). (A23)

If we denote the projection operator onto LB as �, Eq. (A23)
can be rewritten as

�J ′′μ(t )� = ∂μ�H ′′(t )� − i[�′′μ�,�H ′′(t )�]

− i[�ζ ′′μ�,�E�] + �
∂Pμ

tr

∂t
� + O(A3).

(A24)

In particular, if LB includes only one band, the second and
the third terms in Eq. (A24) vanish and we obtain

�J ′′μ(t )� = ∂μ�H ′′(t )� + �
∂Pμ

tr

∂t
�, (A25)

which corresponds to Eq. (11) in the main text. As in the main
text, if we neglect the transient current ∂Pμ

∂t and the term linear
in Aα (t ), the effective current operator is given by

�J ′′μ(t )� = ∂μεa + bαβ∂μFαβ
aa , (A26)

where a is the index for the band in LB.
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In summary, we have obtained an effective Hamiltonian
and the corresponding current operator as

�H ′′(t )� = �E� − eAα (t )�hα� + bαβ (t )Fαβ (A27)

Fαβ

aa′ = e2hαβ

aa′ + e2

2

∑
b∈HB

[(
1

εab − ω
+ 1

εa′b − ω

)
hα

abhβ

ba′

+
(

1

εab + ω
+ 1

εa′b + ω

)
hβ

abhα
ba′

]
, (A28)

�J ′′μ(t )� = ∂μ�H ′′(t )� − i[�′′μ�,�H ′′(t )�]

− i[�ζ ′′μ�,�E�] + �
∂Pμ

tr

∂t
� + O(A3).

(A29)

In the case that LB consists of only one band with index a,
these results are simplified to the following:

Heff (t ) = εa − eAα (t )hα
aa + Fαβbαβ (t ), (A30)

Fαβ = e2hαβ
aa + e2

∑
b�=a

[
hα

abhβ

ba

εab − ω
+ hβ

abhα
ba

εab + ω

]
, (A31)

Jμ
eff (t ) = ∂μHeff (t ) + ∂Pμ

tr

∂t
, (A32)

Aα (t ) = aα (t )e−iωt + (aα (t ))∗eiωt , (A33)

bαβ (t ) = aα (t )(aβ (t ))∗, (A34)

APPENDIX B: NUMERICAL CALCULATION OF
NONLINEAR RESPONSES FROM INTRABAND TERMS

In this Appendix, we demonstrate that the nonlinear re-
sponses arising from the second term in Eq. (11) vanishes
for finite γ and ωJ for a simple 1D model with numerical
calculation. With the standard techniques of the Feynmann
diagrams, we can calculate the second-order contribution
from the second term in Eq. (11) to dc electric current
as follows:

σ
μαβ

intra (ωJ ; ω1, ω2) = σ1 + σ2, (B1)

σ1 = −e2

h̄2ω1ω2

∫
[dk]

∫
dε

2π i
(− f (ε))

× [(∂μξk)(∂αξk)(∂βξk)(GR(ε)

− GA(ε))(GR(ε + ω1)GR(ε + ωJ )

+ GR(ε − ω1)GA(ε + ω2)

+ GA(ε − ωJ )GA(ε − ω2)] + (ω1, α ↔ ω2, β ), (B2)

σ2 = −e2

h̄2ω1ω2

∫
[dk]

∫
dε

2π i
( − f (ε))(∂μ∂αξk)(∂βξk)(GR(ε)

− GA(ε))(GR(ε + ω2) + GA(ε − ω2))

+ (ω1, α ↔ ω2, β ), (B3)

FIG. 4. γ and ωJ dependence of Reσ xxx
intra for model Eq. (B4).

ω1 and ω2 are set to be ω1 = ω + ωJ/2, ω2 = −ω + ωJ/2, and the
dependence of Reσ xxx

intra (ωJ ; ω1, ω2) on the frequency of the output
current ωJ and the scattering rate γ is calculated numerically for
0 � ωJ � 0.03, 0.01 � γ � 0.031. Since the absolute tolerance is
set to be 1 × 10−9 in this calculation (see the text for the calculation
method), the results indicate that Reσ xxx

intra = 0 within this region.

where GR(ε) = (ε − ξk + iγ )−1, GA(ε) = (GR(ε))∗, and ξk is
the electron dispersion measured from the chemical potential
μ. ωJ (= ω1 + ω2) is the frequency of the output current.
f (ε) = (eβε + 1)−1 is the Fermi distribution function with
the inverse temperature β, and γ is the scattering rate. Here
we neglected the vertex correction. σ

μαβ

intra (ωJ ; ω1, ω2) can be
calculated by specifying the band dispersion ξk measured
from the chemical potential. As an example, we consider the
following one-dimensional dispersion:

ξk = cos k + sin 2k, (B4)

and calculate the k integration and ε integration in Eqs. (B2)
and (B3) numerically. For the numerical integration, we used
the hcubature function in the HCubature package of program-
ming language Julia, and the k integration over [−π, π ] and
the ε integration are performed. We performed ε integration
over [−∞,∞] by changing the integral variable from ε to θ =
arctan ε and integrating with respect to θ over [−π/2, π/2].
In the numerical integration, the absolute tolerance (atol pa-
rameter in hcubature function) is set to be 1 × 10−9. The
results for ω = 2.0 and temperature T = 1.0 are shown in
Fig. 4. The result shows that Reσ xxx

intra = O(1 × 10−12) and
thus indicates that Reσ xxx

intra = 0 for 0 � ωJ � 0.03, 0.01 �
γ � 0.031. In particular, this result suggests that there is
no contribution such as one proportional to ωJ/γ or γ /ωJ .
The standard perturbation calculation within the clean limit,
which yields no contribution from the second term in Eq. (11),
also indicates the absence of the contribution proportional
to ωJ/γ . Therefore, we ignore the second-order contribution
to electric current from the second term in Eq. (11) in the
main text.

235110-10



EFFECTS OF RELAXATION ON THE PHOTOVOLTAIC … PHYSICAL REVIEW B 106, 235110 (2022)

[1] R. von Baltz and W. Kraut, Theory of the bulk photovoltaic
effect in pure crystals, Phys. Rev. B 23, 5590 (1981).

[2] B. I. Sturman and V. M. Fridkin, The Photovoltaic and Photore-
fractive Effects in Noncentrosymmetric Materials (Routledge,
London, 1992).

[3] J. E. Sipe and A. I. Shkrebtii, Second-order optical response in
semiconductors, Phys. Rev. B 61, 5337 (2000).

[4] S. M. Young and A. M. Rappe, First Principles Calcula-
tion of the Shift Current Photovoltaic Effect in Ferroelectrics,
Phys. Rev. Lett. 109, 116601 (2012).

[5] S. M. Young, F. Zheng, and A. M. Rappe, First-Principles
Calculation of the Bulk Photovoltaic Effect in Bismuth Ferrite,
Phys. Rev. Lett. 109, 236601 (2012).

[6] M. Sotome, M. Nakamura, J. Fujioka, M. Ogino, Y. Kaneko, T.
Morimoto, Y. Zhang, M. Kawasaki, N. Nagaosa, Y. Tokura, and
N. Ogawa, Spectral dynamics of shift current in ferroelectric
semiconductor SbSI, Proc. Natl. Acad. Sci. 116, 1929 (2019).

[7] M. Sotome, M. Nakamura, J. Fujioka, M. Ogino, Y. Kaneko,
T. Morimoto, Y. Zhang, M. Kawasaki, N. Nagaosa, Y. Tokura,
and N. Ogawa, Ultrafast spectroscopy of shift-current in
ferroelectric semiconductor Sn2P2S6, Appl. Phys. Lett. 114,
151101 (2019).

[8] M. Sotome, M. Nakamura, T. Morimoto, Y. Zhang, G.-Y. Guo,
M. Kawasaki, N. Nagaosa, Y. Tokura, and N. Ogawa, Terahertz
emission spectroscopy of ultrafast exciton shift current in the
noncentrosymmetric semiconductor CdS, Phys. Rev. B 103,
L241111 (2021).

[9] A. M. Cook, B. M. Fregoso, F. de Juan, S. Coh, and J. E. Moore,
Design principles for shift current photovoltaics, Nat. Commun.
8, 14176 (2017).

[10] T. Rangel, B. M. Fregoso, B. S. Mendoza, T. Morimoto, J. E.
Moore, and J. B. Neaton, Large Bulk Photovoltaic Effect and
Spontaneous Polarization of Single-Layer Monochalcogenides,
Phys. Rev. Lett. 119, 067402 (2017).

[11] Y. Zhang, H. Ishizuka, J. van den Brink, C. Felser, B. Yan, and
N. Nagaosa, Photogalvanic effect in Weyl semimetals from first
principles, Phys. Rev. B 97, 241118(R) (2018).

[12] T. Morimoto and N. Nagaosa, Topological aspects of nonlinear
excitonic processes in noncentrosymmetric crystals, Phys. Rev.
B 94, 035117 (2016).

[13] N. Nagaosa and T. Morimoto, Concept of quantum geometry
in optoelectronic processes in solids: Application to solar cells,
Adv. Mater. 29, 1603345 (2017).

[14] O. Matsyshyn, F. Piazza, R. Moessner, and I. Sodemann, Rabi
Regime of Current Rectification in Solids, Phys. Rev. Lett. 127,
126604 (2021).

[15] M. V. Berry, Quantal phase factors accompanying adiabatic
changes, Proc. R. Soc. London A 392, 45 (1984).

[16] Y. Tokura and N. Nagaosa, Nonreciprocal responses from non-
centrosymmetric quantum materials, Nat. Commun. 9, 3740
(2018).

[17] M. Mostovoy, Ferroelectricity in Spiral Magnets, Phys. Rev.
Lett. 96, 067601 (2006).

[18] M. Fiebig, Revival of the magnetoelectric effect, J. Phys. D 38,
R123 (2005).

[19] Y. Tokura, S. Seki, and N. Nagaosa, Multiferroics of spin origin,
Rep. Prog. Phys. 77, 076501 (2014).

[20] T. Morimoto and N. Nagaosa, Shift current from electromagnon
excitations in multiferroics, Phys. Rev. B 100, 235138 (2019).

[21] T. Morimoto, S. Kitamura, and S. Okumura, Electric polar-
ization and nonlinear optical effects in noncentrosymmetric
magnets, Phys. Rev. B 104, 075139 (2021).

[22] Y. Okamura, T. Morimoto, N. Ogawa, Y. Kaneko, G.-Y. Guo,
M. Nakamura, M. Kawasaki, N. Nagaosa, Y. Tokura, and
Y. Takahashi, Photovoltaic effect by soft phonon excitation,
Proc. Natl. Acad. Sci. 119, e2122313119 (2022).

[23] D. E. Parker, T. Morimoto, J. Orenstein, and J. E. Moore,
Diagrammatic approach to nonlinear optical response with
application to Weyl semimetals, Phys. Rev. B 99, 045121
(2019).

[24] F. de Juan, Y. Zhang, T. Morimoto, Y. Sun, J. E. Moore, and
A. G. Grushin, Difference frequency generation in topological
semimetals, Phys. Rev. Res. 2, 012017(R) (2020).

[25] H. Watanabe and Y. Yanase, Chiral Photocurrent in Parity-
Violating Magnet and Enhanced Response in Topological
Antiferromagnet, Phys. Rev. X 11, 011001 (2021).

[26] I. Sodemann and L. Fu, Quantum Nonlinear Hall Effect Induced
by Berry Curvature Dipole in Time-Reversal Invariant Materi-
als, Phys. Rev. Lett. 115, 216806 (2015).

[27] L. Gao, Z. Addison, E. J. Mele, and A. M. Rappe, Intrinsic
Fermi-surface contribution to the bulk photovoltaic effect, Phys.
Rev. Res. 3, L042032 (2021).

[28] V. I. Belinicher, E. L. Ivchenko, and G. E. Pikus, Transient
photocurrent in gyrotropic crystals, Fiz. Tekh. Poluprovodn. 20,
886 (1986) [Sov. Phys. Semicond. 20, 558 (1986)].

[29] E. L. Ivchenko, Y. B. Lyanda-Geller, and G. E. Pikus,
Magneto-photogalvanic effects in noncentrosymmetric crystals,
Ferroelectrics 83, 19 (1988).

[30] L.-k. Shi, O. Matsyshyn, J. C. W. Song, and I. Sodemann
Villadiego, The Berry dipole photovoltaic demon and the ther-
modynamics of photo-current generation within the optical gap
of metals, arXiv:2207.03496.

[31] L. E. Golub and M. M. Glazov, Raman photogalvanic effect:
Photocurrent at inelastic light scattering, arXiv:2207.08934.

[32] J. Zhou, S. Zhang, and J. Li, Normal-to-topological insulator
martensitic phase transition in group-IV monochalcogenides
driven by light, NPG Asia Mater. 12, 2 (2020).

[33] J. Zhou, H. Xu, Y. Shi, and J. Li, Terahertz driven reversible
topological phase transition of monolayer transition metal
dichalcogenides, Adv. Sci. 8, 2003832 (2021).

[34] H. Rostami and E. Cappelluti, Dominant role of two-photon
vertex in nonlinear response in two-dimensional Dirac systems,
npj 2D Mater. Appl. 5, 50 (2021).

[35] R. Resta, Macroscopic polarization in crystalline dielectrics:
the geometric phase approach, Rev. Mod. Phys. 66, 899
(1994).

[36] D. Vanderbilt and R. D. King-Smith, Electric polarization as a
bulk quantity and its relation to surface charge, Phys. Rev. B 48,
4442 (1993).

[37] S. S. Pershoguba and V. M. Yakovenko, Direct current in a
stirred optical lattice, arXiv:2205.15981.

[38] S. H. Autler and C. H. Townes, Stark effect in rapidly varying
fields, Phys. Rev. 100, 703 (1955).

[39] J. Bakos, AC stark effect and multiphoton processes in atoms,
Phys. Rep. 31, 209 (1977).

[40] E. J. Sie, J. W. McIver, Y.-H. Lee, L. Fu, J. Kong, and N.
Gedik, Valley-selective optical Stark effect in monolayer WS2,
Nat. Mater. 14, 290 (2015).

235110-11

https://doi.org/10.1103/PhysRevB.23.5590
https://doi.org/10.1103/PhysRevB.61.5337
https://doi.org/10.1103/PhysRevLett.109.116601
https://doi.org/10.1103/PhysRevLett.109.236601
https://doi.org/10.1073/pnas.1802427116
https://doi.org/10.1063/1.5087960
https://doi.org/10.1103/PhysRevB.103.L241111
https://doi.org/10.1038/ncomms14176
https://doi.org/10.1103/PhysRevLett.119.067402
https://doi.org/10.1103/PhysRevB.97.241118
https://doi.org/10.1103/PhysRevB.94.035117
https://doi.org/10.1002/adma.201603345
https://doi.org/10.1103/PhysRevLett.127.126604
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1038/s41467-018-05759-4
https://doi.org/10.1103/PhysRevLett.96.067601
https://doi.org/10.1088/0022-3727/38/8/R01
https://doi.org/10.1088/0034-4885/77/7/076501
https://doi.org/10.1103/PhysRevB.100.235138
https://doi.org/10.1103/PhysRevB.104.075139
https://doi.org/10.1073/pnas.2122313119
https://doi.org/10.1103/PhysRevB.99.045121
https://doi.org/10.1103/PhysRevResearch.2.012017
https://doi.org/10.1103/PhysRevX.11.011001
https://doi.org/10.1103/PhysRevLett.115.216806
https://doi.org/10.1103/PhysRevResearch.3.L042032
https://doi.org/10.1080/00150198808235445
http://arxiv.org/abs/arXiv:2207.03496
http://arxiv.org/abs/arXiv:2207.08934
https://doi.org/10.1038/s41427-019-0188-9
https://doi.org/10.1002/advs.202003832
https://doi.org/10.1038/s41699-021-00217-0
https://doi.org/10.1103/RevModPhys.66.899
https://doi.org/10.1103/PhysRevB.48.4442
http://arxiv.org/abs/arXiv:2205.15981
https://doi.org/10.1103/PhysRev.100.703
https://doi.org/10.1016/0370-1573(77)90016-3
https://doi.org/10.1038/nmat4156


ONISHI, WATANABE, MORIMOTO, AND NAGAOSA PHYSICAL REVIEW B 106, 235110 (2022)

[41] E. J. Sie, C. H. Lui, Y.-h. Lee, L. Fu, J. Kong, and N. Gedik,
Large, valley-exclusive Bloch-Siegert shift in monolayer WS2,
Science 355, 1066 (2017).

[42] S. S. Pershoguba and V. M. Yakovenko, Optical control of
topological memory based on orbital magnetization, Phys. Rev.
B 105, 064423 (2022).

[43] M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, Optical
Rectification, Phys. Rev. Lett. 9, 446 (1962).

[44] M. Bass, P. A. Franken, and J. F. Ward, Optical rectification,
Phys. Rev. 138, A534 (1965).

[45] J. E. Spanier, V. M. Fridkin, A. M. Rappe, A. R. Akbashev,
A. Polemi, Y. Qi, Z. Gu, S. M. Young, C. J. Hawley, D.
Imbrenda, G. Xiao, A. L. Bennett-Jackson, and C. L. Johnson,
Power conversion efficiency exceeding the Shockley-Queisser
limit in a ferroelectric insulator, Nat. Photonics 10, 611
(2016).

[46] A. Zenkevich, Y. Matveyev, K. Maksimova, R. Gaynutdinov,
A. Tolstikhina, and V. Fridkin, Giant bulk photovoltaic effect
in thin ferroelectric BaTiO3 films, Phys. Rev. B 90, 161409(R)
(2014).

235110-12

https://doi.org/10.1126/science.aal2241
https://doi.org/10.1103/PhysRevB.105.064423
https://doi.org/10.1103/PhysRevLett.9.446
https://doi.org/10.1103/PhysRev.138.A534
https://doi.org/10.1038/nphoton.2016.143
https://doi.org/10.1103/PhysRevB.90.161409

