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Simulations of extended quantum systems are typically performed by extrapolating results of a sequence
of finite-system-size simulations to the thermodynamic limit. In the quantum Monte Carlo community, twist-
averaging was pioneered as an efficient strategy to eliminate one-body finite size effects. In the dynamical mean
field community, cluster generalizations of the dynamical mean field theory were formulated to study systems
with nonlocal correlations. In this work, we put the twist-averaging and the dynamical cluster approximation
variant of the dynamical mean field theory onto equal footing, discuss commonalities and differences, and
compare results from both techniques to the standard periodic boundary technique. At the example of Hubbard-
type models with local, short-range and Yukawa-like longer range interactions we show that all methods
converge to the same limit, but that the convergence speed differs in practice. We show that embedding theories
are an effective tool for managing both one-body and two-body finite size effects, in particular if interactions are
averaged over twist angles.

DOI: 10.1103/PhysRevB.106.235106

I. INTRODUCTION

Understanding the physics of periodic solids and periodic
lattice model systems requires describing their properties in
the “thermodynamic” or macroscopic limit of infinite system
size. While there are some methods that work directly in
the continuum limit [1], most numerical methods approach
this limit with results for a sequence of successively larger
finite size systems, which are then extrapolated to the ther-
modynamic limit using a known scaling behavior. Since the
numerical effort grows either polynomially or exponentially
with system size, constructing reliable finite size extrapola-
tions from small systems is important.

Approximation errors may result from the truncation of the
Hamiltonian to the finite system and from the introduction
of an artificial boundary or surface. Periodic boundary condi-
tions (PBCs), which are the standard choice for the simulation
of periodic systems, eliminate boundary effects. Finite size ef-
fects, which result from the truncation of the Hamiltonian and
its solution to the finite system (or, equivalently, to a discrete
set of momentum points in the Brillouin zone), remain. Two
strategies to overcome such effects have been proposed.

First, one may introduce a twist to the boundary conditions,
resulting in a shift of the corresponding momentum points
[2–5]. In the calculation of local observables, simulations
for multiple “twisted” systems are then averaged over twist
angles. This “twist-averaged boundary condition” (TABC)
technique is predominantly used in Monte Carlo calculations,
since the average can be taken during the simulation at no
additional cost.

Second, one may construct a quantum embedding method.
This is the rationale behind cluster dynamical mean field
methods [6–9] such as the dynamical cluster approximation

(DCA) [6,9], which constructs a periodic embedding. DCA
can be viewed as a generalization of dynamical mean field
theory (DMFT) to “patches” in momentum space, where
propagators, interactions, and correlations are chosen to be
identical in a patch in momentum space [10] but correlations
retain their full frequency dependence. The numerical effort
of this technique is typically at least an order of magnitude
larger than the effort of the PBC solution, since the DCA equa-
tions have to be solved self-consistently. In self-consistent
diagrammatic calculations, the DCA and the diagrammatic
self-consistency can be performed concurrently at no addi-
tional cost.

Twist-averaging and DCA embedding are remarkably sim-
ilar. Both perform an average over shifted momentum points,
and both have the same asymptotic convergence scaling, since
for local observables and local interactions, all of these strate-
gies converge to the exact result with a quadratic convergence
in the linear system size but with different prefactors [6,11]
(faster convergence may be observed under special circum-
stances [12]). They differ in the place where the average is
taken, which has consequences for the numerical solution
methods and for the prefactor of the convergence speed.

In this paper, we examine the convergence of these three
strategies (PBC, DCA, and TABC). We show that, as ex-
pected, they converge to the same solution in practice, and we
examine convergence speed for different types of finite size
effects at the example of three different lattice models. In par-
ticular, we examine the case of longer-range interactions and
highlight the importance of averaging interactions in addition
to the one-body Hamiltonian in such systems. All the results
for interacting models in this work are obtained within the
fully self-consistent GW approximation [13,14].
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The remainder of this paper is as follows. In Sec. II we in-
troduce the models studied, the finite size correction methods,
and the solution methodology. In Sec. III we present results,
and Sec. IV contains conclusions.

II. MODEL AND METHODS

A. Hubbard models with local and nonlocal interactions

We illustrate finite size effects at the example of the
fermionic single-band Hubbard-like Hamiltonian [15,16] with
nonlocal density-density interactions,

H = −t
∑

〈i, j〉,σ
c†

i,σ c j,σ +1

2

∑

i, j,σσ ′
Ũi jni,σ n j,σ ′ . (1)

σ labels the spin index, i and j are site indices, and 〈i, j〉
denotes a sum over nearest neighbors. c†

i,σ (c j,σ ) are creation

(annihilation) operators and ni,σ = c†
i,σ ci,σ describe the parti-

cle number operators. t denotes the nearest-neighbor hopping
and Ũi j the density-density interaction strength. We write
H = H0 + V , where H0 denotes the quadratic hopping terms
and V denotes the interactions. We restrict ourselves to the
model on a three-dimensional simple cubic lattice.

We separate the interaction into two parts,

Ũi j = Uδi j + Vi j, (2)

where U is the on-site Hubbard interaction and Vi j the nonlo-
cal part, and discuss three different choices of Vi j .

For Vi j ≡ 0 we obtain the standard three-dimensional
Hubbard model. Due to its relevance to cold atomic gases [17]
and a second-order phase transition at high temperature, this
model has become a fruitful test bed for many-body methods
and numerically exact results are available from several re-
liable techniques [11,18–25], especially for interactions near
the maximal critical temperature.

For

Vi j = V12δ〈i j〉, (3)

with V12 the nearest-neighbor interaction strength and δ〈i j〉 =
1 if i and j are neighbors, and zero otherwise, we obtain the
extended Hubbard model. The nearest-neighbor interactions
in this model induce a charge-order phase transition which has
been extensively studied with DCA [26–29], extended DMFT
[30–33], DMFT+GW [34–37], and dual boson techniques
[38–42].

For

Vi j = V0
e−α|ri j |

|ri j | (4)

we obtain a Yukawa Hubbard model. V0 = V12
e−α denotes

the interaction strength, α the Yukawa decay constant, and
ri j = ri − r j the real-space distance between site i and j.
This model is chosen to mimic aspects of the long-range
interactions occurring in electronic structure problems with-
out introducing the complication of a divergent long-range
potential.

In momentum space, we write

Ũ (q) = U + V (q), (5)

V (q) =
∑

i, j

Vi je
−iqri j , (6)

with q the bosonic momentum transfer vector. Note that gen-
eral four-fermion interactions, which we do not study in this
work, depend on three momenta and four unit cell indices.

We discuss results in the finite-temperature Matsubara
formalism, where single-particle quantities can be expressed
in terms of Matsubara Green’s functions, self-energies,
and interaction vertices. Matsubara Green’s functions are
given as [43]

G(ωn, k) = [(iωn + μ)1 − Fk − �(ωn, k)]−1. (7)

Here ωn = (2n + 1)πT denotes Matsubara frequencies at
temperature T , μ the chemical potential, Fk = H0

k + �∞(k)
the Fock matrix, and � the self-energy, which is uniquely
defined if Fk is chosen such that �(iωn → i∞) → 0. The ex-
act self-energy � is a functional of the momentum-dependent
Green’s function and the momentum-dependent interaction
and, in diagrammatic theories, is obtained by adding all
so-called skeleton diagrams to infinite order [43,44]. Ap-
proximations, such as the GW approximation [13], can be
constructed by considering a subset of all diagrams.

B. Finite size effects

The approximation of an infinite periodic system by an
auxiliary finite size system introduces finite size approxima-
tions to the Hamiltonian H = H0 + V . The approximation
of the noninteracting Hamiltonian H0 on a discrete set of
momentum points results in so-called “independent-particle,”
“single-particle,” or “one-body” finite size effects [45–48].

The situation for the interaction V is more complex. The
Hubbard interaction is already constant in momentum space
(local in real space) and therefore remains exact when approx-
imated on a finite system. The extended Hubbard interaction
is short range and captured exactly on all but the smallest
systems. In contrast, the Yukawa interaction of Eq. (4) will
become approximate when truncated to the size of a finite sys-
tem; the approximation leads to a nondivergent but nonzero
correction. In more general systems with long-ranged inter-
actions, such as those generally considered in the electronic
structure problem, the truncation of the interaction to a finite
system may lead to a divergent contribution which needs to be
carefully compensated [45,49,50], and which may dominate
the finite size convergence [51].

In the following, we denote continuous momenta in the
infinite system by k, k′, and q and discrete momenta in the
finite auxiliary system by K, K′, and Q.

A finite size approximation G(ωn, k) → G(ωn, K) then
introduces “one-body” finite size errors via the discretization
of the H (0)

K contribution in the Fock matrix on a finite number
of K points, along with approximations to the interaction
term. These approximations result in finite size errors in the
self-energy contributions �∞(K) and �(ωn, K), which are
generated from the approximations of H0 and V in a highly
nonlinear manner.
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(a) (b)

FIG. 1. Left panel: Scattering lattice vertex, scattering an elec-
tron of momentum k to momentum k + q while absorbing mo-
mentum q. Right panel: Finite cluster “twisted” vertex with twist
ζ scattering an electron of cluster momentum K + ζ to momentum
K + Q + ζ . The bosonic cluster momentum Q remains on the finite
cluster.

C. Finite size corrections

1. Standard methodology

We start our discussion from local observables, such as the
energy, the double occupancy, or the density. These quantities
can be expressed as integrals over the Brillouin zone.

Most many-body methods are restricted to uniform mo-
mentum grids with regularly spaced momenta K, K′, and Q,
since all incoming and outgoing momenta of a scattering
vertex (see Fig. 1) have to lie on the momentum grid. Integrals
of smooth functions over such regularly spaced, periodic grids
with uniform weights converge quadratically in the number
of points in each dimension, leading to a quadratic conver-
gence of Brillouin zone integrals and thus to a quadratic
convergence of local quantities. The exceptions to this rule
are long-range interactions with a singularity at the 	 point;
see, e.g., Refs. [45,49–51].

In the standard methodology, simulations are performed
on regularly spaced Monkhorst-Pack grids [52] which, for Q,
include the 	 point with zero momentum transfer. The sum
K + Q of a fermionic momentum K and a bosonic momen-
tum Q then lies on the fermionic grid, such that momentum
conservation can be respected.

Local quantities are evaluated as a sum over the discrete
K points. Momentum-dependent quantities are only known at
the discrete K points. If a more precise momentum resolution
is desired, additional momentum points have to be obtained
via interpolation. In this work, momentum-dependent quan-
tities, such as the momentum-dependent Matsubara Green’s
function, are evaluated by performing a Wannier interpolation
[53] of the self-energy, from which the Green’s function is
recovered with an exactly evaluated noninteracting part of
the Hamiltonian. We note that interpolations of the so-called
cumulant [54] and of the Green’s function are also possible,
along with spline interpolations of the self-energy [55]. The
interpolation scheme can have a large effect on the results if
systems are small and self-energies are strongly momentum
dependent [56–58]. However, we find that, in the systems an-
alyzed here, results become independent of the interpolation
scheme as the system size is sufficiently increased.

One may also break some of the lattice symmetries, rather
than performing simulations on lattices that respect the full
space-group symmetry of the infinite system, and symmetrize
results. Breaking symmetries gives access to additional finite
systems, which can then be used to perform finite size ex-

trapolations from a dense set of points. The technique was
pioneered in the context of exact diagonalization [59,60] and
is standard in cluster dynamical mean field theory [9] (see
Ref. [25] for detailed results for the systems analyzed here).

2. Twisted boundary conditions and twist averaging

While the momenta K, K′, and Q have to be on momen-
tum grids with regularly spaced momenta, it is possible to
shift the “fermionic” momentum grids for K and K′ by an
arbitrary momentum twist ζ while leaving the “bosonic” one
for Q invariant. The difference of two fermionic momenta
K + ζ , K′ + ζ then still lies on the bosonic grid Q, and the
sum of fermionic and bosonic momenta lies on the fermionic
grid, such that momentum conservation can be respected. The
resulting shifted scattering vertex is illustrated in the right
panel of Fig. 1.

Momentum points can be shifted by introducing a phase
factor or “twist” into the wave function or the hopping, and
the technique of performing simulations for many twists and
averaging the results leads to the twist-averaged boundary
conditions [4,5]. Twist-averaging is commonly used in QMC
simulations [45,46,61], where twists are either chosen ran-
domly [5] or with uniformly spaced twist angles [4]. In this
work we use uniformly distributed twists defined on 5 × 5 × 5
and 7 × 7 × 7 lattices.

Each twist ζ samples a different part of the one-body
Hamiltonian H0

K+ζ , while the two-body interaction V (q)
remains approximated on the original Q grid, V (Q). Observ-
ables are evaluated for each twist angle, and the corresponding
local quantities are obtained by averaging over all twists. In
Monte Carlo methods, the average over twists is often ob-
tained by sampling over ζ , thereby incurring no additional
cost, apart from the potential need to rethermalize or reop-
timize trial wave functions. In deterministic methods, or if
momentum-dependent quantities are desired, the numerical
effort increases proportionally to the number of twists.

In terms of a diagrammatic skeleton series, the relation
between twisted propagators Gt , self-energies �t , and inter-
actions is

Gt (ωn, K + ζ ) = [(iωn + μ)1 − FK+ζ − �t (ωn, K + ζ )]−1,

(8)

where �t (ωn, K + ζ ) = �t [Gt (ωn, K + ζ ),U + V (Q)] is a
functional of the twisted interacting Green’s function for a
given twist ζ and the interactions evaluated at momentum Q.

3. Dynamical cluster approximation

The dynamical cluster approximation [6,9] was introduced
as a cluster generalization [6–8] of the single-site DMFT
[62–64]. The method simplifies to the single-site DMFT for
system size Nc = 1, becomes exact for system size Nc → ∞,
and respects causal and conserving properties [65]. We refer
the reader to the original literature [6] and a review [9] for a
detailed derivation but repeat some of the important aspects
here.

DCA approximates the continuous lattice problem by an
auxiliary discrete cluster problem with momenta K, K′, Q
and modified cluster propagators Gc(ωn, K), cluster self-
energies �c(ωn, K), and cluster interactions U + V c(Q). The
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FIG. 2. From left to right. First panel: DCA approximation scheme in the Brillouin zone of the 2D square lattice. An arbitrary lattice
momentum k is represented as the sum of a momentum ζ within a patch and a corresponding cluster momentum K to the center of the patch.
Second panel: Scattering vertex in DCA with interactions V c,a, scattering an electron of momentum K + ζ to momentum K + Q + ζ ′ while
absorbing a momentum Q + ζ ′′, violating momentum conservation on a scale comparable to the patch size. Third panel: Same, for interactions
V c,i with momentum Q. Fourth panel: Cluster scattering diagram, respecting cluster momentum conservation. Straight lines denote lattice
Green’s functions with momenta indicated, wiggly lines momentum transfer, and vertices the interaction vertex. Double lines denote cluster
quantities.

momentum points of the discrete cluster are embedded in the
continuous Brillouin zone of the lattice, such that for every
lattice momentum k we write k = K + ζ , with K a cluster
momentum point close to k (see left panel of Fig. 2). The
regions over which the average is taken, the so-called “mo-
mentum patches,” are centered around a cluster momentum K
and have equal size. The attribution of k points to K patches
not unique [66–68].

The DCA propagators are given by the “coarse-grained”
patch averages,

Gc(ωn, K) = 1

N

N∑

ζ

[(iωn + μ)1 − FK+ζ − �c(ωn, K)]−1;

(9)

the nonlocal DCA interactions are either left invariant,

V c,i(Q) = V (Q), (10)

or obtained by coarse-graining the interaction over patches,

V c,a(Q) = 1

N

N∑

ζ

V (Q + ζ ). (11)

Both V c,i(Q) and V c,a(Q) have been used in practice [27,69–
71]. The self-energies �c(ωn, K) are obtained by evaluating
a diagrammatic skeleton series with propagators Gc and inter-
actions U + V c,a/i to infinite order, which can be achieved via
the solution of a quantum impurity problem [64,72]. Because
Eq. (9) implicitly depends on �c, the quantum impurity prob-
lem needs to be solved self-consistently until convergence.

As the cluster size is increased, the area over which ζ is
averaged decreases and the method converges to the solution
of the infinite lattice system. As in the case of periodic bound-
ary conditions, local quantities, such as the energy, converge
quadratically in the linear extent of the system [9].

4. Commonalities and differences between DCA and
twist-averaging

Twist-averaging and the DCA technique appear remark-
ably similar when written in this form [Eqs. (8) and (9)]. Both
rely on a summation over shifted momenta ζ which accounts
for strong variations in the one-body part of the Hamiltonian,

and both exhibit the same quadratic convergence to the infinite
system size limit. The major difference is in the place of the
average. In twist-averaging, every diagram is obtained for a
definite twist angle ζ . In the DCA, the averaging takes place
inside the propagator (and, in the case of V c,a, inside the
interaction vertex). The system is then solved for all twist
angles at once, but the summation over twist angles leads to
an implicit dependence that requires the DCA to be solved
self-consistently.

The implicit averaging over momentum patches in the
Brillouin zone in Eq. (9) has a further consequence: mo-
mentum conservation is only guaranteed within momentum
patches located around K, rather than for each scattering ver-
tex individually. This is illustrated in the two middle panels
of Fig. 2, where DCA diagrams violate momentum conser-
vation at each vertex within ζ , ζ ′, and ζ ′′. On the level of
the averaged cluster quantities, the momentum conservation
is restored (right panel of Fig. 2). Since the momentum con-
servation violation occurs on the scale of the grid spacing, the
approximation will scale to zero at the same rate as the grid
discretization errors as the system size is increased.

D. Solution of the finite system

The Hubbard model can be studied with numerically exact
methods on moderate-to-large systems [73]. However, since
this work predominantly discusses finite size methodologies,
we limit this study to the fully self-consistent GW method
[13]. Results from GW are expected to show similar finite
size behavior as results from numerically exact methods but,
because of the low polynomial scaling [14], allow access to
the large system sizes needed to rigorously show finite size
convergence. Where numerically exact results are available
for finite size extrapolations [11,20,25,74], we have validated
our conclusions against these results.

The GW self-energy in the Matsubara frequency domain is

�σ (ωn, k) = �∞
σ (k)

− 1

βNk

∑

q,m,σ ′
Gσ ′ (ωn + �m, k + q)W (�m, q), (12)
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where β is the inverse temperature, ωn = (2n + 1)π
β

denotes
fermionic Matsubara frequencies, and �n = 2n π

β
bosonic

Matsubara frequencies. W (�m, q) is the dynamical screened
interaction, G(ωn, k) the Matsubara frequency Green’s func-
tion, and the static part of the self-energy is

�∞(k) = 1

Nk

∑

q,n

[U + V (q)]ρk+q, (13)

with ρk = 1
β

∑
n G(ωn, k) the single-particle density matrix.

Starting from the noninteracting Green’s function,

G0(ωn, k) = (
iωn + μ − H0

k

)−1
, (14)

we solve Eq. (12) self-consistently to obtain the GW approxi-
mation. This requires solving the Dyson equation,

G(ωn, k) = G0(ωn, k) + G0(ωn, k)�(ωn, k)G(ωn, k). (15)

For a detailed description of the GW formalism used in this
work see Ref. [14].

III. RESULTS

We consider three different models in this paper: the 3D
Hubbard model, the extended Hubbard model, and the ex-
tended Hubbard model with Yukawa interactions. Each model
is considered at a weak-to-intermediate interaction strength
where single-particle finite size effects and correlation lengths
are expected to be large (see Ref. [25] for the Hubbard case).

Since much of this work discusses momentum-dependent
quantities, we choose a standard way of plotting a represen-
tative part of the momentum dependence, rather than the full
path in the Brillouin zone. The top left panel of Fig. 3 shows
the Fermi surface of the half-filled 3D Hubbard model. The
top right panel illustrates the standard high-symmetry path in
the irreducible wedge, along with a segment of the Brillouin
zone, and the bottom panel shows the density and the lowest
frequency of the real part of the Green’s function along this
standard path. Interesting physics with large finite size correc-
tions occurs where the path intersects the Fermi surface, such
as in the segment from X to M. We therefore choose X to M as
a representative path for display in the remainder of the paper
(blue dashed section).

A. Noninteracting model

We first analyze single-particle finite size effects in
the half-filled noninteracting model in three dimensions at
the example of the density of states. TABC will converge
to the continuum limit with large enough numbers of twists
[4]. By the definition, in the absence of the interaction, DCA
reduces to TABC [see Eqs. (8) and (9)], and therefore is also
expected to show no sign of finite size errors in the limit of a
large number of twists.

To illustrate this, we compute the noninteracting density
of states for various PBC clusters, as well as noninteracting
TABC and DCA density of states for a 4 × 4 × 4 cluster
with 7 × 7 × 7 and 20 × 20 × 20 twists. In Fig. 4, we com-
pare 4 × 4 × 4, 6 × 6 × 6, and 8 × 8 × 8 PBC clusters, and
4 × 4 × 4 TABC/DCA averaged over 7 × 7 × 7 and 20 ×
20 × 20 twists. The left panel shows a comparison between

FIG. 3. Top left: Fermi surface of the noninteracting 3D Hubbard
model at half filling in the simple cubic Brillouin zone, with special
points X and M indicated. Top right: Special points and standard path
	XM	RX |RM. Bottom: Density distribution of the noninteracting
model (orange, left axis) and the real part of the Green’s function at
the lowest Matsubara frequency (blue, right axis) at β = 6.25 and
U = 4 along the full high-symmetry path. For clarity the remainder
of this paper shows momentum-dependent quantities only along the
path from X to M, indicated by a blue square.

PBC clusters and the infinite lattice; the middle panel shows
convergence of TABC/DCA with the number of twists. The
right panel shows convergence of the integral of the density of
states. We see that even for the 8 × 8 × 8 cluster, PBC results
show large finite size error. While finite size effects are still
well pronounced in the density of states for 7 × 7 × 7 twists,
the integral over the density of states shows almost no sign of
finite size effects. This indicates that for averaged quantities,
such as the energy, even 7 × 7 × 7 twists may be sufficient to
eliminate single-particle finite size errors.

B. Local interaction: Hubbard model

Due to the locality of the interactions, all finite size effects
originate from the one-body part of the Hamiltonian. Finite
size effects consist of one-body effects (or Brillouin zone
approximation errors) and of errors due to the truncation of
the nonlocal part of the frequency-dependent self-energy to
the finite system. The Hartree contribution is an analytically
known constant at particle-hole symmetry; the Fock contri-
bution is identically zero. We also note that in addition to
finite size errors there is a substantial (and often dominant)
method-specific GW approximation error in all the results we
present in this section. As noted in Sec. II D, we do not dis-
cuss this error here (see, e.g., Refs. [25,73]), focusing instead
exclusively on finite size effects.

As an example system, we choose a repulsive interaction
strength of U = 4.0 and set the overall hopping parameter to
t = 1.0. The temperature is T = 1/β = 1/6.25, which puts
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FIG. 4. Noninteracting density of states obtained with a broad-
ening η = 0.05. Top: PBC clusters versus infinite lattice (solid black
line). Middle: 4 × 4 × 4 DCA/TABC cluster averaged over a 7 ×
7 × 7 lattice (dashed blue lines) and 20 × 20 × 20 lattice (dashed
red line) versus infinite lattice (solid black line). Bottom: Integral
over density of states for PBC, DCA/TABC, and continuous lattice.

the system into the vicinity of the second-order phase transi-
tion for the GW method [25].

We briefly comment on the choice of interaction strength.
For small U , correlations are typically long-range but weak.
For large U , correlations are often short-range but much
stronger [15,20,75]. Thus, to analyze finite size corrections,
we choose an intermediate case of U = 4 where finite size
effects are long range but large enough in magnitude to have
a noticeable effect.

The main panel of Fig. 5 shows the momentum dependence
of the Green’s function at the lowest Matsubara frequency for
systems of size 4 × 4 × 4, 6 × 6 × 6, and 8 × 8 × 8. The bot-
tom panel additionally shows the difference to results obtained

with DCA on a 12 × 12 × 12 lattice. The top panels show the
real parts, the bottom ones the imaginary parts. Results for
periodic boundary conditions (PBCs) are shown in the left
panels, those obtained with DCA in the right panels. Data
points K are indicated with symbols; lines are generated from
interpolated points obtained via Wannier interpolation. PBC
results are mostly converged by size 8 × 8 × 8. As shown in
the right panels, DCA eliminates all system finite size effects
for all the system sizes considered.

Figure 6 shows the finite size convergence of the
frequency-dependence of the imaginary part of the self-
energy. We choose a point halfway between X and M, lying
on the noninteracting Fermi surface. As the high-frequency
limit for the self-energy converges to an analytically known
[76–78] constant, all finite size corrections occur at low fre-
quency. At the lowest Matsubara frequency, PBC self-energies
show deviations on systems of size 4 × 4 × 4 but converge as
the system size is increased toward 8 × 8 × 8. DCA results,
due to complete elimination of the Brillouin zone discretiza-
tion error, converge for much smaller system size.

The almost complete absence of finite size errors in DCA
can be understood as follows. In the regime studied here, cor-
relations are weak and almost all finite size effects in the GW
solution of the Hubbard model are due to the single-particle
finite size effects or discretization of H0. The DCA average
over single-particle propagators eliminates these finite size
effects with its summation over all momenta. Nonlocal self-
energy contributions have a shorter range than the smallest
system size and do not result in visible finite size effects. On
the other hand, PBC results visibly suffer from single-particle
finite size effects.

C. Nearest-neighbor interaction: Extended Hubbard model

We next consider the extended Hubbard model at interme-
diate local interaction strength U = 6.0 and nearest-neighbor
interaction V12 = 0.2 in Eq. (3). Figure 7 shows the mo-
mentum dependence of the Green’s function at the lowest
Matsubara frequency. Both PBC (left panel) and DCA (right
panel) show only small finite size effects at the fully occupied
(X point) and empty (M point) regions of the Brillouin zone.
However, close to the partially occupied momentum points,
where correlation effects are expected to be most pronounced,
PBC solutions exhibit a much slower finite size convergence
in comparison to DCA. From the analysis of the Matsubara
self-energy for a half-filled K point (Fig. 8) we see that finite
size errors are mostly restricted to the low-frequency behavior
of the dynamical self-energy.

Energetics and interaction coarse-graining

Finite size approximations to the Hamiltonian result in ap-
proximation errors in the self-energy and the Green’s function,
which propagate to finite size errors in the energy. We calcu-
late the correlation energy Tr�G, with � the dynamical part
of the self-energy, and show relative errors � in comparison
to the DCA result EL=12

DCA on a 12 × 12 × 12 lattice, which we
believe to be our most accurate result. Table I shows �PBC

for naive PBC, �TABC5 for twist-averaging with 5 × 5 × 5 =
125 and �TABC7 for 7 × 7 × 7 = 343 twists, and for the two
variants of DCA discussed in Sec. II C 3: non-coarse-grained
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FIG. 5. Momentum dependence of the real part of the Green’s function at the lowest Matsubara frequency for the Hubbard model at U = 4
and β = 6.25 for different system sizes. Left panels: Results for clusters with periodic boundary conditions. Right panels: DCA. Top row:
Real part of the Green’s function at lowest Matsubara frequency along a chosen region of the high-symmetry path. Bottom row: Imaginary
part of the Green’s function at lowest Matsubara frequency along a chosen region of the high-symmetry path. Bottom panels: Deviation from
DCA results on a 12 × 12 × 12 lattice. Symbols correspond to actual data points. Smooth momentum dependence is obtained by Wannier
interpolation.

interactions analogous to those used in the PBC and TABC

TABLE I. Relative correlation energy error, �E = |E −
EDCA

Nc=12|/EDCA
Nc=12, for the extended Hubbard model at U = 4, V = 0.2,

and β = 6.25 for different methods and system sizes.

Lc �PBC �TABC5 �TABC7 �DCAi �DCAa

2 0.1796 0.1897 0.0810 0.0120 0.0106
4 0.0614 0.0016 0.0067 0.0007 0.0007
6 0.0040 0.0027 0.0017 0.0002 0.0002
8 0.0100 0.0004 0.0011 0.0001 0.0001

methods, Eq. (10) (�DCAi ), and coarse-grained interactions
according to Eq. (11) (�DCAa ).

All finite size correction methods converge to the same
result as a function of system size. Twist-averaging is clearly
beneficial and leads to errors that are substantially smaller
than those obtained with PBC on all but the smallest system.
These results clearly illustrate the power of twist-averaging
for energy calculations.

Little difference is evident between the two DCA methods,
i.e., interaction coarse-graining and no interacting coarse-
graining. This is consistent with previous results for the
extended Hubbard model [27,70,71] and generally expected
for interactions that have little momentum dependence.

FIG. 6. Imaginary part of the GW self-energy for the Hubbard model at U = 4.0 and β = 6.25 between the X and M points, for system
sizes indicated. Left panels: Cluster with periodic boundary conditions. Right panels: DCA. Bottom insets show the deviation from DCA
results on a 12 × 12 × 12 lattice.
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FIG. 7. Momentum dependence of the real (top) and imaginary (bottom) part of the Green’s function at the lowest Matsubara frequency
for the extended Hubbard model at U = 4.0, V = 0.2, and β = 6.25 in the GW approximation. For system sizes indicated. Left panels:
Clusters with periodic boundary conditions. Right panels: DCA self-consistency. Bottom insets show the deviation from the DCA results on
12 × 12 × 12 lattice. Symbols correspond to actual data points. Smooth momentum dependence is obtained by Wannier interpolation.

In addition to twist-averaging over 5 × 5 × 5 twists, we
performed simulations for 3 × 3 × 3 (not shown) and 7 × 7 ×
7 twists. While differences between 3 × 3 × 3 and 5 × 5 × 5
twists are substantial, results only marginally change between
5 × 5 × 5 and 7 × 7 × 7 twists.

D. Longer-range interaction: Yukawa Hubbard model

The Yukawa-Hubbard model is chosen to mimic long-
range interactions without a divergent 1/r contribution.
Unlike in the extended Hubbard model, the interaction range
may be larger than the finite size system considered.

To construct a model with interactions beyond the system
size, we choose α = 0.25 in Eq. (4). In this case, the interac-
tions with the nearest neighbor outside a 4 × 4 × 4 cluster is
approximately 10% of the nearest-neighbor interaction. We
then normalize the strength V0 of the Yukawa potential to

obtain a nearest-neighbor interaction V0 = 0.2, comparable to
one chosen for extended Hubbard model.

As above, we consider the weak-to-intermediate interac-
tion strength U = 4.0 and β = 6.25. Figure 9 shows results
for the Green’s function at the lowest Matsubara frequency.
The overall behavior is similar to the one in Fig. 7 for the
extended Hubbard model. DCA results converge quickly at
low frequency.

Figure 10 shows the frequency dependence of the local
Matsubara self-energy. At the lowest Matsubara frequency,
finite size effects persist in PBC (top left panel), while DCA
with the original interactions (top right panel) achieves fast
system-size convergence. TABC results (bottom left panel)
similarly show fast convergence at low frequencies but devia-
tions are evident at higher frequencies. These high Matsubara
frequency deviations are also evident in the DCA results

FIG. 8. Imaginary part of the GW self-energy for the extended Hubbard model at U = 4.0, V = 0.2, and β = 6.25 at the halfway point
between X and M, for system sizes indicated. Left panels: Clusters with periodic boundary conditions. Right panels: DCA. Bottom insets show
the deviation from DCA results on a 12 × 12 × 12 lattice.
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FIG. 9. Momentum dependence of the real (top) and imaginary (bottom) part of the Green’s function at lowest Matsubara frequency for
the extended Hubbard model with Yukawa interaction at U = 4.0, V0 = 0.2, α = 0.25, and β = 6.25, for system sizes indicated. Left panels:
Clusters with periodic boundary conditions. Right panels: DCA self-consistency. Bottom insets show the deviation from DCA results on a
12 × 12 × 12 lattice. Symbols correspond to actual data points. Smooth momentum dependence is obtained by Wannier interpolation.

with original interactions. The high-frequency behavior of the
Yukawa Hubbard model with longer-range interactions there-

fore differs substantially from the extended Hubbard model
with short-range interactions.

FIG. 10. Frequency dependence of the imaginary part of the local self-energy for the extended Hubbard model with Yukawa interaction
at U = 4.0, V0 = 0.2, α = 0.25, and β = 6.25, for system sizes indicated. Top left: PBC. Top right: DCA with invariant interactions. Bottom
left: TABC (note that the 8 × 8 × 8 system with 125 twists is beyond our capabilities). Bottom right: DCA with interaction coarse-graining.
Bottom insets show the deviation from DCA results on a 12 × 12 × 12 lattice.
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TABLE II. First high-frequency moment of the GW self-energy
for the Yukawa-Hubbard model at U = 4, V0 = 0.2, α = 0.25, and
β = 6.25 for various system sizes.

� (1)

Lc PBC TABC DCA1 DCA2

4 10.55 10.18 11.71 7.78
6 8.37 8.37 8.59 7.70
8 7.91 7.91 8.00 7.68
10 7.78 7.80 7.67

In the bottom right panel of Fig. 10, we show DCA sim-
ulations with coarse-grained interactions [see Eq. (11)]. We
average the interaction on 27 uniformly spaced twist an-
gles ζ for each K patch (we cross-checked with 4 × 4 × 4
twist angles at U = 4 that 3 × 3 × 3 were sufficient). In-
teraction coarse-graining almost completely eliminates the
high-frequency finite size errors.

A high-frequency expansion of the self-energy [76–78]
shows that this high-frequency behavior is directly related
to the strength of an effective interaction [78]. The slow
convergence at high frequency may therefore be viewed as
a consequence of the approximation to the interaction. To
estimate the finite size convergence of these interaction finite
size effects, we examine the first moment of the self-energy
high-frequency expansion [76–78],

�
(1)
ii =

∑

kl

UikUki(〈nknl〉 − 〈nk〉〈nl〉), (16)

in Table II, as a function of system size. Without interaction
correction, PBC, TABC, and DCA converge slowly with sys-
tem size. Coarse-graining (or twist-averaging) the interaction
in the DCA coarse-graining procedure significantly improves
this behavior.

The static part of the self-energy [Eq. (13)] also directly
depends on interactions in the system. Figure 11 shows con-
vergence of the static part of GW self-energy at the 	 point.

FIG. 11. Static GW self-energy for the extended Hubbard model
with Yukawa interaction at U = 4.0, V0 = 0.2, α = 0.25, and β =
6.25 at the 	 point as a function of system size. Red open squares:
Clusters with periodic boundary conditions. Red filled squares: DCA
with original interactions. Orange filled squares: DCA with coarse-
grained interactions.

TABLE III. Relative correlation energy error for the Yukawa-
Hubbard model at U = 4, V0 = 0.2, α = 0.25, and β = 6.25 for
systems of size 4–10.

Lc �PBC �TABC5 �TABC7 �DCAi �DCAa

4 0.134 0.0167 0.0015 0.134 0.0112
6 0.0026 0.0021 0.0035 0.0194 0.0028
8 0.0082 0.0019 0.00012 0.0064 0.0019
10 0.0062 0.0015 0.000004

There is a fast convergence of the DCA with coarse-grained
interactions.

Table III shows the convergence of the correlation energy
for all four methods. For system sizes where interaction fi-
nite size effects are not important, DCA with invariant lattice
interactions achieves faster convergence than PBC. However,
on small systems, i.e., in the presence of the strong interaction
finite size effects, coarse-graining is essential.

The twist-averaged correlation energy converges very fast
(we also show data for 7 × 7 × 7 twists). This can be under-
stood from the fact that the correlation energy is dominated by
the low-frequency behavior of the self-energy (high-frequency
terms are suppressed by the multiplication with the Green’s
function, which scales ∝ 1/ωn). This low-energy self-energy
is captured well by the twisted simulation (Fig. 10).

As the system size is increased, truncation errors disappear
due to the exponential decay of the Yukawa interaction.

IV. DISCUSSION AND CONCLUSIONS

How should one approach the thermodynamic limit with
a sequence of finite size systems? This paper discussed two
established techniques which were developed in different
communities: the technique of twist-averaging boundary con-
ditions, and the dynamical cluster approximation variant of
cluster DMFT.

We find that TABC and DCA can be put on a simi-
lar theoretical footing, since both attempt to average over
areas of the Brillouin zone that would not be considered in
a naive Brillouin zone sampling. However, the precise way
of performing the average is different, as is the numerical
effort. Twist-averaging is particularly efficient in Monte Carlo
simulations, where the average can be taken at no additional
cost during the Monte Carlo sampling. DCA is particularly
efficient in semianalytic self-consistent methods such as GW,
since the DCA self-consistency can be converged during the
diagrammatic self-consistency at no additional cost.

We showed that TABC provides excellent energy estimates
for interactions that are contained within the finite size system.
We also showed that averaging the interactions, as is done
in certain flavors of DCA, is essential if their range extends
beyond the system size. Both techniques achieve far faster
system size convergence than standard PBC.

Cluster DMFT results are often interpreted in terms of the
historic connection to the infinite coordination number limit
taken in single-site DMFT. Given the parallels between cluster
DMFT and periodic lattice calculations, we find that it is more
convenient to discuss large-cluster DCA results in terms of
finite-size-corrected lattice calculations, rather than in terms
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of “mean field” methods. This point of view has also been
taken in numerous previous works, including the large-cluster
studies of two-dimensional superconductivity [79,80] and
three-dimensional Hubbard model physics [19,20,74], and is
the main reason for the success of the method in explaining
the physics of the pseudogap in the two-dimensional Hubbard
model [55,66,81,82], for which recent twist-averaged calcula-
tions on small clusters [83] show remarkably similar results.

Our results suggest that averaging longer-range interac-
tions is a promising route for controlling finite size effects,
and that this technique should be attempted for long-range
interactions, such as the Coulomb interactions occurring in
electronic structure theory.
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