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Globally optimal band structure for thermoelectrics in realistic systems
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The observation is made that a linear dispersion in any dimension under acoustic-phonon- deformation-
potential scattering theoretically prescribes a constant charge transport distribution, required for the boxcar
profile known to maximize the thermoelectric figure of merit. A linear dispersion squeezed by two transport
gaps for optimized bandwidth under scattering by phonon deformation then theoretically constitutes a globally
optimal qualitative band structure that may arise in real systems.
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I. INTRODUCTION

In electron band transport, the charge transport distri-
bution �(E ) (a.k.a. spectral conductivity, energy-dependent
conductivity, transmission function) determines key proper-
ties such as Ohmic conductivity, the Seebeck coefficient,
and electronic thermal conductivity. It is known that a
boxcar-shaped �(E ) for given magnitude delivers optimal
thermoelectric figure of merit zT in quantum systems obeying
the Landauer-Büttiker transport formalism [1,2] as well as
the semiclassical Boltzmann transport equations (BTE) un-
der the relaxation time approximation [3,4]. The latter has
recently been derived by exact mathematics [4]. Under BTE,
�x(E ) = 1

V 〈v2
x (E )〉D(E )τ (E ), where V is the system volume,

x is a Cartesian direction, 〈v2
x 〉 is the squared group velocity

averaged over constant energy surface, D is the density of
states, and τ is the lifetime, or inverse of the scattering rate
τ−1. A boxcar function, shown in Fig. 1(a), is essentially a
Heaviside step function with an upper cutoff just like the lower
one. Within their confines, the profile is constant and flat, or
�(E ) = �† ∝ E0. The ultimate question yet to be answered
is what, if any, realistic bulk band structures and systems may
physically achieve this and deliver optimal thermoelectric per-
formance. It is herein observed that linear dispersion, in any
dimension, under scattering by acoustic phonon deformation
meets the theoretical requirement for realizing this goal.

II. LINEAR DISPERSION UNDER
DEFORMATION-POTENTIAL SCATTERING

Table I summarizes the E dependence of 〈v2
x (E )〉 and D(E )

of isotropic parabolic and linear dispersions in one, two, and
three dimensions, along with the required E dependence of
τ (E ) and the corresponding D(E ) dependence of τ−1(E ) to
enforce �(E ) ∝ E0. No parabolic case is realistic, as they
require τ−1(E ) profiles that do not match, even approximately,
with any known electron-scattering mechanism. In turn, all
of the linear cases, which exhibit 〈v2

x (E )〉 ∝ E0, require
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that τ−1(E ) ∝ D1(E ), the very behavior of deformation-
potential scattering by long-wavelength longitudinal acoustic
phonons—this has been derived not only for spherical Fermi
surfaces of parabolic bands specifically [5–8] but also for an
arbitrary Fermi surface around some band minimum [9,10].
More generally, consider a d-dimensional dispersion of or-
der p. It is straightforward to show 〈v2(E )〉 ∝ E2(p−1)/p and
D(E ) ∝ E (d/p)−1. The scattering behavior required to enforce
�(E ) ∝ E0 then is τ−1(E ) ∝ E (p+d−2)/p, or in a more useful
form, τ−1(E ) ∝ D(E )E2(p−1)/p. The only realistic solution
is p = 1, or linear dispersion, regardless of dimension un-
der acoustic-deformation-potential scattering. This solution
is as consequential as it is simple because linear dispersion
is common and acoustic-deformation-potential scattering is
ubiquitous in real materials.

To ascertain the need for deformation-potential scattering,
consider the generalized deformation potential derived by
Kahn and Allen [11], whose tensor form is

�k = �0
k + vk ⊗ vk, (1)

where v is the group-velocity vector, and �0 the usual
Bardeen-Shockley term [12] representing the strain-driven
energy shift of bands. Note that the second, correction term
does not contribute any energy dependence for linear bands
since 〈v〉 is a constant of energy. Since � is essentially energy
independent for a single band, the scattering rate is guaranteed
to behave as τ−1(E ) ∝ D1(E ) due to the near elasticity of
the process. Equation (1) has been implemented in the AM-
SET software [13] and has led to very good agreements with
experimentally measured transport properties for numerous
materials. Though optical and high-wave-vector phonon de-
formations can introduce some inelasticity in real systems,
first-principles calculations of full electron-phonon scatter-
ing in three [14–16] and two [17,18] dimensions, as well
as other analyses [19], have demonstrated that the τ−1(E ) ∝
D1(E ) trend persists for scattering due to phonon deforma-
tion, as phonon energies are typically small in the electronic
energy scale. Other common processes, such as polar-
optical or ionized-impurity scattering in semiconductors,
are not known to exhibit as consistently simple E -or-D(E )
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FIG. 1. (a) A boxcar transport distribution. (b) Schematic of the ideal band structure achieving a boxcar transport distribution with a band
gap and high-energy cutoff. (c) Semimetallic schematic where transport cutoffs are achieved by resonant scattering states. All diagrams are
from the n-type perspective where an electron dominates transport as opposed to a hole. The energy axes are zero referenced to the Fermi level
for the sake of graphics, which in practice is an optimization parameter.

dependence of rates. The former has discontinuities at
polar-optical phonon energies with different preemission and
postemission behaviors, while the latter has a logarithmic
screening term [6,10,20]. As such, they cannot be expected to
pair with a simple realistic band to robustly yield �(E ) ∝ E0.

III. OPTIMUM BANDWIDTH AND zT

The �(E ) ∝ E0 profile is of course only one of the three
requirements for realizing a boxcar function. The second re-
quirement is a lower cutoff, and ideally a band gap would
guarantee it as in Fig. 1(b). Unfortunately, a true linear dis-
persion would be gapless, forming a Dirac cone at the Fermi
level with symmetric dispersion on the other side, triggering
bipolar transport that suppresses thermopower. The dispersion
would therefore need to develop a finite curvature at its utmost
tip, similar to a Kane band [21,22] with a huge nonparabolic-
ity parameter. In this semiconducting case, for polar-optical
scattering to be a nonfactor, the material would preferably
be nonpolar. If polar, its dielectric constant must have a tiny
ionic part, or the operation temperature must be below that

TABLE I. Energy dependence of intrinsic isotropic band struc-
ture features as well as that of lifetimes and the causal carrier
scattering rates required for enforcing �(E ) ∝ E 0.

Parabolic 〈v2
x (E )〉 D(E ) τ (E ) τ−1(E ) �x (E )

1D E−1/2 E−1/2 D−1(E )
2D E 1 E 0 E−1 D∞(E ) E 0

3D E 1/2 E−3/2 D3(E )

Linear 〈v2
x (E )〉 D(E ) τ (E ) τ−1(E ) �x (E )

1D E 0 E 0 D1(E )
2D E 0 E 1 E−1 D1(E ) E 0

3D E 2 E−2 D1(E )

seriously activates polar phonons. If the degeneracy at the
Dirac point cannot be lifted, then the viable picture is for the
opposing carrier type to be suppressed in τ to near-zero values
by scattering into heavy resonancelike states, as in Fig. 1(c).
This concept has been demonstrated in real semimetals with
linear dispersion with heavy-band crossings [16,18], if not
quite so ideally as here because the heavy states are not so
flat and inelastic scattering slightly broadens the resolution of
the boxcar edge. Nevertheless, considering the generally low
phonon energies (�30 meV for decent thermoelectrics) in the
energy scale of electronic bands (�1 eV), only the states close
to the resonance states would be affected. The lower cutoff
alone creates a Heaviside �(E ), which would be optimal for
the power factor but not zT [4].

The third and final requirement for completing the boxcar
is an upper cutoff. The reason for this is that, whereas the
power factor does not concern electronic thermal conductivity
(κe), zT does, and high-energy states contribute more to
thermal conduction than charge conduction compared to
low-energy states in relative terms. Shutting down the
transport of high-energy carriers is especially relevant when
κe > κlat, that is, when κlat is low and κe and the PF are high,
precisely the condition for high performance. For this to
happen, there would ideally exist another energy gap at W
with the linear dispersion discontinuously flattening out, as in
Fig. 1(b), though realistically the flattening would be abrupt at
best. Perhaps a more viable picture is for efficient scattering
states to be present or introduced so that τ is essentially
zeroed out above W mirroring the low-energy resonance
states, as in Fig. 1(c). In either case, the resulting bandwidth
W is an important optimization parameter as investigated in
Ref. [23] and is narrower at lower lattice thermal conductivity
(κlat) and higher velocity. The theoretical optimum bandwidth
(Wopt) and the corresponding maximal zT for linear dispersion
under deformation-potential scattering are shown in Fig. 2.
Wopt is obtained by the approach used in Ref. [23], solving for
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FIG. 2. (a) T -and-κlat-dependent optimum bandwidth and zT under deformation-potential scattering for an isotropic three-dimensional
linear band with vx = 5×105 m/s, which is the group velocity of a parabolic band with effective mass 0.067 (approximately that of GaAs)
0.1 eV above the band edge. All other material parameters are kept identically to the analysis in Ref. [23]. The κlat values are given in
W m−1 K−1. (b) Optimum Fermi level (electron chemical potential) for each case.

Wopt = argmaxW zT (W ) where

zT (W ) =
[∫ W

0 (EF − E )�(E )
(− ∂ f

∂E

)
dE

]2

∫ W
0 �(E )

(− ∂ f
∂E

)
dE

[
T κlat + ∫ W

0 (EF − E )2�(E )
(− ∂ f

∂E

)
dE

] − [∫ W
0 (EF − E )�(E )

(− ∂ f
∂E

)
dE

]2 , (2)

and τ is calculated using Eq. (1) and

τ (E ) = ρv2
s

πkBT

D−1(E )

(�0 + 〈v ⊗ v〉)2
, (3)

where vs is the sound velocity, ρ is the mass density, and
〈v ⊗ v〉 = 〈v2

x (E )〉 = v2
x for an isotropic linear band. For the

sake of comparison with previous results for a parabolic
band [23], the same material parameters are maintained. Three
noteworthy observations are made here.

(1) Linear dispersion prescribed with optimized width in-
deed outperforms parabolic dispersion of comparable velocity
and optimized width. The improvement is particularly pro-
nounced at low temperatures. At 200 K, linear dispersion with
Wopt yields nearly five times higher zT than the parabolic
counterpart. In fact, zTmax is identical for all temperatures
for a given κlat value and is in excellent agreement with the
analytically derived results of Ref. [4] purely from boxcar
�(E ). For κlat = 0.2 W m−1 K−1, we have κlat

k2
BT �† ≈ 0.0209

which is temperature independent due to the T −1 factor in
�† through Eq. (3). This quantity converts to zTmax ≈ 18
both analytically and by the present calculation. This is the
highlight for truly optimized band structures: the electronic
performance is temperature independent, and the temperature
dependence of zT is owed solely to that of κlat. A band’s
linearity and its bandwidth optimization are thus critical for
low temperatures notoriously barren of high zT .

(2) Wopt for a linear band is roughly half that of a parabolic
band with a similar velocity. This is ascribed to the �(E ) ∝
E0 trend, which is much less needy of high-energy states to
drive thermopower than the �(E ) ∝ E1 trend of a parabolic
band. It thus becomes more beneficial to trim high-energy
contributions, sacrificing a bit of thermopower in exchange

for reducing electronic thermal conductivity, which naturally
narrows Wopt with appropriate adjustment in EF.

(3) For an isotropic linear dispersion under Eq. (3),

�† = ρv2
s

V πkBT

v2
x

(
�0 + v2

x

)2 , (4)

meaning there is an optimum velocity for maximizing �†

and by default zT , precisely at v2 = �0, or v =
√

�0. For
�0 = 10 eV, this corresponds to v ≈ 1.32 × 106 m/s which
turns out to be close to the Fermi velocity of graphene. Any
higher velocity will, insofar as the Kahn-Allen potential is
valid, in fact lower zT . At 300 K, Wopt for this velocity with
κlat = 0.2 W m−1 K−1 is approximately 30 meV in theory,
though realistically closer to 50 meV if not higher depending
on the maximum optical phonon energy whose deformation
causes inelastic scattering, and translates to zTmax ≈ 32.

IV. DISCUSSIONS

Of note, Ref. [24] derives that �(E ) ∝ δ is optimal. This
is in fact precisely the limit Wopt → 0 as either κlat → 0 or
v → ∞. However, κlat → 0 is unrealistic in real solids, and
v → ∞ is at odds with the band turning completely flat
such that �(E ) ∝ δ is possible. In fact, v → 0 for a flat
band, yielding zero conductivity and zero power, failing to
deliver nonzero zT unless in the unrealistic case of κlat →
0. In theory, even if κlat → 0 were possible in which case
zT → ∞ and the Carnot efficiency is reached, it would only
represent an extremely slow, reversible process that virtually
does not occur, to no engineering relevance. These have been
pointed out by multiple works in the past [1,2,4,23,25]. In
practice, even a completely localized charge may be able
to move via small-polaronic activated hopping, as occurs in
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FIG. 3. Schematics of the effects of (a) band anisotropy, (b) band multiplicity, and (c) resonance levels on the �(E ) profile of a parabolic
band, whose basic trend under deformation-potential scattering is �x (E ) = �†E due to 〈v2

x (E )〉 ∝ E . Notice that their benefits come by either
increasing �† or by making �(E ) more boxcar in shape.

molecular crystals [26], allowing for nonzero conductiv-
ity, power, and zT alike. Unfortunately, the mobility re-
sulting from this mechanism is generally so low (μ �
10−2 cm2 V−1 s−1) that conductivity of at most σ ≈ 103

S m−1 can be expected at a very high, metallic carrier con-
centration of 1022 cm−3. This conductivity is so low that,
even when paired with a very high Seebeck coefficient of 300
µV K−1 and the lowest practically imaginable value of κlat ≈
0.1 W m−1 K−1, the resulting zT is less than 0.5 at 300 K.
This is clearly far from optimal. Therefore, the bandwidth
must conclusively be finite and optimized, with the transport
mechanism remaining high-velocity band motion.

Further, the linear-band carriers within Wopt must not in-
elastically scatter into the heavy states at the cutoffs, which
would drastically reduce τ everywhere to reduce �† and zT .
This means, given a material-dependent maximum phonon
energy ωmax that couples inelastic scattering, which is typ-
ically on the order of 10 meV, that W ∗

opt = Wopt + ωmax if
heavy states exist on only one side [Fig. 1(b)] and W ∗

opt =
Wopt + 2ωmax if heavy states exist on both sides [Fig. 1(c)].
These would allow preservation of constant �(E ) with width
Wopt, but with the boxcar edges broadening and slanting due
to the inelastic effects, rendering the whole profile somewhat
trapezoidal. To minimize the effect of inelasticity in practice,
ωmax must be as small as possible, i.e. the material must be as
soft as possible.

The present viewpoint also unifies the microscopic mech-
anisms by which other band structure features improve zT ,
namely, band anisotropy, band multiplicity, and resonance
levels, whose salient effects have been systematically inves-
tigated in Refs. [14,23]. In short, they all improve zT via
either making �(E ) more boxcar in shape or increasing its
magnitude �†. Figure 3 graphically summarizes each case for
a parabolic band as an example, which has a �(E ) = �†E
profile (linear in E ) under deformation-potential scattering
due to 〈v2

x (E )〉 ∝ E .
As Fig. 3(a) shows, band anisotropy steepens �(E ), i.e., in-

creases �† by steepening 〈v2
x (E )〉 due to the low-dimensional

effect, though where the steepening occurs depends on the

degree of anisotropy [23]. Anisotropy also increases D(E ),
but this is largely if not entirely canceled by reduction in τ (E )
under deformation-potential scattering.

As Fig. 3(b) paints the picture, band multiplicity also
steepens �(E ), i.e., increases �†, but through the enhance-
ment of D(E ) relative to the reduction in τ (E ) due to
interband/intervalley scattering. Because scattering between
bands/valleys located at distant points in the k space is gen-
erally weaker than intraband/intravalley scattering [14,23],
scattering does not increase as much as D(E ) does in the pres-
ence of multiple band pockets. For instance, if D(E ) increased
by a factor of 2, τ (E ) would decrease but by less than half,
leading to an overall increase in �† by a factor less than 2.
Regardless, the τ−1(E ) ∝ D(E ) and �(E ) ∝ �†E profiles are
expected to persist under deformation-potential scattering.

Finally as Fig. 3(c) shows, resonance levels benefit zT
by rendering �(E ) more boxcar in shape. By filtering out
low-energy carriers via resonance scattering, it forms a steep
edge in the �(E ) profile. Macroscopically, this has the effect
of reducing the Ohmic conductivity relative to the thermoelec-
tric conductivity, thereby enhancing the Seebeck coefficient.
In fact, this is precisely the strategy to prescribe the boxcar
edges depicted in Fig. 1(c), not only at low energies but
also at high energies in order to curtail κe. Of course, the
ultimate ingredient to perfecting the boxcar is a flat � profile
in between the edges, which is delivered by linear bands
under scattering by phonon deformation, coming back full
circle.

V. CONCLUSION

In summary, Fig. 1(b) depicts a band structure shape
that would generate a boxcar transport distribution under
scattering by (acoustic) phonon deformation. The likelihood
of achievement put aside, it is a qualitative optimal limit
of a band structure in a realistic system that is physically
conceivable and potentially closely emulatable. Figure 1(c)
depicts an alternative such design suiting semimetals where
linear dispersion is common and deformation-potential
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scattering is nearly always dominant. Realizing the narrow
optimum bandwidth would thus likely be the greatest
challenge. Even if no system realizes it as far as to the ideal
limit, known thermoelectric materials stand to potentially
benefit from engineering the transport distribution such that
it becomes more boxcarlike. The determination of linear
dispersion as the optimal shape delivering a boxcar transport
distribution completes the study of Ref. [23] that identified
multiple band structure features that optimize zT with the

exception of its qualitative shape. Given now the ideality of
linear dispersion under deformation-potential scattering, one
with velocity approaching

√
�0 and symmetry degeneracies

(more carriers and/or less scattering) would lead to higher
�†, while well-tuned bandwidth and Fermi level would
optimize the Boltzmann transport integrals. This would
systematically and globally maximize zT , to the benefit
in particular of low-temperature performance integral to
spacecraft propulsion and refrigeration.
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