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Symmetry-resolved Rényi fidelities and quantum phase transitions
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We introduce a family of quantum Rényi fidelities and discuss their symmetry resolution. We express the
symmetry-resolved fidelities as Fourier transforms of charged fidelities, for which we derive exact formulas for
fermionic Gaussian states. These results also yield a formula for the total fidelities of fermionic Gaussian states,
which we expect to have applications beyond the scope of this paper. We investigate the total and symmetry-
resolved fidelities in the XX spin chain and focus on (i) fidelities between thermal states and (ii) fidelities between
reduced density matrices at zero temperature. Both thermal and reduced fidelities can detect the quantum phase
transition of the XX spin chain. Moreover, we argue that symmetry-resolved fidelities are sensitive to the inner
structure of the states. In particular, they can detect the phase transition through the reorganization of the charge
sectors at the critical point. This a main feature of symmetry-resolved fidelities which we expect to be general.
We also highlight that reduced fidelities can detect quantum phase transitions in the thermodynamic limit.
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I. INTRODUCTION

Quantum phase transitions (QPTs) are ubiquitous in
statistical and condensed matter physics [1]. A QPT is charac-
terized by a strong reorganization of the ground state |ψ (λ)〉
of a quantum many-body Hamiltonian H (λ) as an external
parameter crosses a critical value λ = λc. In contrast with
thermal phase transitions, QPTs are not driven by temperature.
Instead, the parameter λ is typically an interaction strength, a
magnetic field, or an anisotropy parameter.

Over the last two decades, there has been an impor-
tant cross fertilization between quantum information and
condensed matter physics. In particular, it has proven very
efficient to use quantities originally defined in the context of
quantum information, such as entanglement measures [2] and
quantum fidelities [3,4], to detect and characterize QPTs in
many-body systems [5–12]. Since these breakthroughs, the
investigation of entanglement measures has become a promi-
nent research area in condensed matter and statistical physics
[13–16]. Quantum fidelities have generated interest [17], but
they did not receive a treatment as thorough and systematic
as entanglement entropies and related measures did in the
context of quantum many-body systems.

Quantum fidelities and entanglement measures share im-
portant properties. For instance, in one-dimensional quantum
critical systems, the so-called (logarithmic) bipartite fidelity
[18,19] exhibits a logarithmic violation of the area law and
encodes conformal data of the underlying conformal field the-
ory (CFT) [18–23], similarly to the entanglement entropy [8].
Moreover, fidelities are able to detect topological phase tran-
sitions [24–26], and the bipartite fidelity possess a topological
term [27,28] that is related to the topological entanglement
entropy [29,30].
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A quantum fidelity F (ρ, σ ) measures the similarity be-
tween two density matrices ρ and σ . If ρ and σ are projectors
on the normalized pure states |ψρ〉 and |ψσ 〉, respectively,
a natural measure of similarity between these states is the
overlap |〈ψρ |ψσ 〉|. We interpret this overlap as the so-called
pure-state fidelity between the operators ρ = |ψρ〉〈ψρ | and
σ = |ψσ 〉〈ψσ |.

Let us review how pure-state fidelities are suited to detect
QPTs [10]. We consider the fidelity

Fpure(λ, dλ) = |〈ψ (λ − dλ)|ψ (λ + dλ)〉| (1)

between two ground states of a many-body Hamiltonian H (λ)
that possesses a QPT at λ = λc. For finite sizes and away
from the critical point, we expect F (λ, dλ) ∼ 1 for small dλ

because the two states are nearly identical. In stark contrast,
at the critical point, because of the strong reorganization
of the ground state, the two states become orthogonal and
F (λc, dλ) ∼ 0. In the thermodynamic limit, the ground states
at different values of λ become mutually orthogonal, so
F (λ, dλ) vanishes for all values of dλ �= 0 and λ. However, in
the vicinity of the critical point, this suppression of the fidelity
is detectable for finite sizes.

In the more general case where ρ and/or σ are mixed den-
sity matrices, we say that the resulting fidelity is a mixed-state
fidelity. The most common definition of mixed-state fidelity is
the so-called Uhlmann-Jozsa fidelity [3,4]:

F (ρ, σ ) = Tr{(√ρσ
√

ρ )1/2}. (2)

This quantity satisfies a set of properties [4,17] that we discuss
below. In particular, F (ρ, σ ) reduces to the pure-state fidelity
|〈ψρ |ψσ 〉| when both operators project on a pure state, and
0 � F (ρ, σ ) � 1 with F (ρ, σ ) = 1 if and only if ρ = σ .

We mention two physical contexts in which the use of
mixed-state fidelity is relevant. First, we consider a sys-
tem at finite temperature. Because of thermal fluctuations,
the system is described by the thermal density matrix
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ρ(β, λ) = e−βH (λ)/Tr(e−βH (λ) ), where β is the inverse tem-
perature. A fidelity between two thermal density matrices is
called a thermal fidelity. A striking feature of thermal fidelities
is that they allow us to detect the zero-temperature QPT of the
underlying Hamiltonian H (λ), even at finite temperature β <

∞ [31]. Second, we consider a system at zero temperature
in the ground state |ψ (λ)〉 of H (λ) and assume that we have
access only to a subsystem A of the whole bipartite system
A ∪ B. In that case, system A is described by the reduced den-
sity matrix ρA = TrB(|ψ (λ)〉〈ψ (λ)|) and the fidelity between
two reduced density matrices is called reduced fidelity [32].
Reduced fidelities are also known to detect QPTs [26,32–
37]. However, in most examples discussed in the literature,
subsystem A consists of a small number of degrees of freedom
(typically one or two sites for lattice models). In Refs. [33,36],
the authors investigate reduced fidelities for larger systems in
the special case where the reduced density matrix has a 2 × 2
block-diagonal form. Hence, to the best of our knowledge,
reduced fidelities have not been investigated in generic cases
where A is a genuine macroscopic subregion with a large
number of degrees of freedom.

In the context of a quantum many-body system with
a global conserved charge, an important timely challenge
is to understand how the various symmetry sectors con-
tribute to the total entanglement. This so-called symmetry
resolution of entanglement [38–40] has been investigated
in the contexts of critical systems [41–50], integrable sys-
tems and field theories [51–56], topological phases [57–59],
and nonequilibrium quantum many-body systems [60–67].
Many entanglement-related quantities have since acquired
their symmetry-resolved counterpart, such as the mutual infor-
mation [50,63], entanglement negativity [64,68,69], relative
entropies and trace distance [70,71], the Page curve [72] and
the entanglement asymmetry [73]. However, a symmetry-
resolved version of quantum fidelities is still lacking. An
intriguing question is to understand how each symmetry sec-
tor contributes to the total fidelities close to a QPT, as well as
in the critical regime. In this paper, we introduce a family of
quantum fidelities that we dub Rényi fidelities and investigate
their symmetry resolution in the vicinity of a QPT. Since
the symmetry resolution of pure-state fidelity is trivial, we
focus on thermal and reduced ones. We choose to study these
quantities in the XX spin chain [74]. This model is the perfect
test bed for these investigations because it has a global U (1)
symmetry, exhibits a QPT, and is exactly solvable.

This paper is organized as follows. In Sec. II, we define
the Rényi fidelities and show that they obey natural general-
izations of the axioms of the Uhlmann-Jozsa fidelity. We also
define the symmetry-resolved fidelities and express them as
the Fourier transforms of charged fidelities. We conclude the
section with formulas for the charged and total fidelities of
fermionic Gaussian states. In Sec. III, we introduce the XX
spin chain in an external magnetic field h and discuss its QPT
at hc = 1. As a first application, we investigate the total and
symmetry-resolved thermal fidelities in Sec. IV, where the
diagonal form of the XX Hamiltonian allows us to provide
a large number of exact results and approximations that we
verify numerically. We study the reduced fidelities of the XX
spin chain in the thermodynamic limit in Sec. V and solely

rely on numerical evaluations of the formulas for Gaussian
states. We observe similar qualitative behavior as for the ther-
mal fidelities and, in particular, the reduced fidelities are able
to detect the QPT at h = 1. This result shows that reduced
fidelities are able to detect QPTs in the thermodynamic limit,
which is something that pure-state fidelities fail to do [10].
Finally, we conclude with a discussion of the main results and
future potential research directions in Sec. VI.

II. QUANTUM FIDELITIES

A. Definition

In this section, we introduce a family of quantum fidelities
that generalize the Uhlmann-Jozsa fidelity Eq. (2). For two
density matrices ρ, σ , we define the Rényi fidelity of index n
as

Fn(ρ, σ ) = Tr{(ρσ )n}√
Tr(ρ2n)Tr(σ 2n)

. (3)

In the following, we restrict our attention to density matrices
that are positive semidefinite and have unit trace. We note that
the Rényi fidelity reduces to the Uhlmann-Jozsa fidelity for
n = 1/2 if the density matrices commute.1 Moreover, for n =
1 we recover the fidelity introduced in Ref. [75].

The Rényi fidelity Fn(ρ, σ ) satisfies the following proper-
ties for n > 0:

(i) normalization:

0 � Fn(ρ, σ ) � 1, Fn(ρ, σ ) = 1 ⇔ ρ = σ, (4a)

(ii) symmetry:

Fn(ρ, σ ) = Fn(σ, ρ), (4b)

(iii) invariance under unitary transformation U :

Fn(UρU −1,UσU −1) = Fn(ρ, σ ), (4c)

(iv) multiplicativity:

Fn(ρ1 ⊗ ρ2, σ1 ⊗ σ2) = Fn(ρ1, σ1)Fn(ρ2, σ2), (4d)

(v) simplification for pure states:

Fn(ρ, |ψσ 〉〈ψσ |) = 〈ψσ |ρ|ψσ 〉n√
Tr(ρ2n)

,

Fn(|ψρ〉〈ψρ |, |ψσ 〉〈ψσ |) = |〈ψρ |ψσ 〉|2n.

(4e)

These are natural generalizations of the properties satisfied
by the Uhlmann-Jozsa fidelity [4,17].

1One could instead define a double-index Rényi fidelity as

Fn,m(ρ, σ ) = Tr{(ρmσ 2mρm )n}√
Tr(ρ4nm )Tr(σ 4nm )

.

This quantity coincides with the Uhlmann-Jozsa fidelity in the limit
n, m → 1/2, irrespective of the commutation relation between ρ

and σ . However, the forthcoming calculations for Fn(ρ ) generalize
to these double-index Rényi fidelities, and therefore we focus on
Fn(ρ, σ ). Understanding the qualitative differences between Fn(ρ, σ )
and Fn,m(ρ, σ ) in the case of noncommuting density matrices con-
stitutes an interesting future direction that will be addressed in
subsequent work.
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B. Symmetry resolution

Let us consider the case where the density matrices
commute with a U (1) charge Q, [ρ, Q] = [σ, Q] = 0. Both
density matrices thus have a block diagonal form,

ρ = ⊕q pρ (q)ρ(q), σ = ⊕q pσ (q)σ (q), (5)

where q are the eigenvalues of Q, and pρ (q), pσ (q) are
the probabilities of measuring the charge q in states ρ and
σ , respectively. The probabilities satisfy the normalization
condition

∑
q pρ (q) = ∑

q pσ (q) = 1. Moreover, the den-
sity matrices ρ(q), σ (q) have trace one and are interpreted
as density matrices in the charge sector q. We define the
symmetry-resolved Rényi fidelities Fn(ρ, σ ; q) as

Fn(ρ, σ ; q) ≡ Fn(ρ(q), σ (q))

= Tr{(ρ(q)σ (q))n}√
Tr(ρ(q)2n)Tr(σ (q)2n)

.
(6)

We mention that the symmetry resolution of pure-state
fidelities is trivial. Indeed, if [ρ, Q] = 0 and ρ = |ψρ〉〈ψρ |,
this implies that Q|ψρ〉 = qρ |ψρ〉, and similarly for σ . Hence,
both density matrices have only one symmetry sector and
Fn(ρ, σ ; q) = δq,qρ

δqρ ,qσ
|〈ψρ |ψσ 〉|2n. In the following we thus

focus on mixed-state symmetry-resolved fidelities.
To proceed, we introduce the non-normalized symmetry-

resolved fidelities Fn(ρ, σ ; q):

Fn(ρ, σ ; q) ≡ (pρ (q)pσ (q))n Tr{(ρ(q)σ (q))n}√
Tr(ρ2n)Tr(σ 2n)

. (7)

There is a simple relation between the total fidelities and
the non-normalized symmetry-resolved ones:

Fn(ρ, σ ) =
∑

q

Fn(ρ, σ ; q). (8)

In the rest of the paper, we study the non-normalized
symmetry-resolved fidelities Fn(ρ, σ ; q) instead of
Fn(ρ, σ ; q), and thus refer to Fn(ρ, σ ; q) as the symmetry-
resolved fidelities. The reason is the following. If the
probabilities are zero or very small, the fidelities Fn(ρ, σ ; q)
may nonetheless be nonvanishing and amount to comparing
matrices essentially filled with zeros. In contrast, Fn(ρ, σ ; q)
is zero if at least one probability vanishes and it reflects
the true symmetry decomposition of the total fidelities, as
highlighted in Eq. (8).

C. Charged fidelities and Fourier transform

From the total density matrices, it is in general a hard
problem to extract the contribution of a symmetry sector
because it requires the knowledge of the full symmetry de-
composition of the matrices. A way to circumvent this issue,
proposed in Ref. [39], is to express symmetry-resolved quan-
tities as the Fourier transform of certain charged moments.
Following this idea, we introduce the charged Rényi fidelities
fn(ρ, σ ; α) as

fn(ρ, σ ; α) = Tr{(ρσ )neiαQ}√
Tr(ρ2n)Tr(σ 2n)

. (9)

They satisfy fn(ρ, σ ; α = 0) = Fn(ρ, σ ), and their Fourier
transform yields the symmetry-resolved fidelities:2

Fn(ρ, σ ; q) =
∫ π

−π

dα

2π
e−iαq fn(ρ, σ ; α). (10)

D. Formulas for fermionic Gaussian states

Let us now assume that ρ and σ are fermionic Gaussian
operators. In that case, the spectrum of both matrices is ob-
tained from the related two-point correlation matrices Cρ and
Cσ [76–78]. Their matrix elements are

[Cρ] j,k = Tr(ρc†
j ck ), [Cσ ] j,k = Tr(σc†

j ck ), (11)

where c†
j , ck, are fermionic creation and annihilation operators

that satisfy the usual anticommutation relations:

{c†
j , ck} = δ j,k, {c j, ck} = {c†

j , c†
k} = 0. (12)

We introduce the matrices

Jρ = 2Cρ − I, Jσ = 2Cσ − I (13)

and

J• = (I + JρJσ )−1(Jρ + Jσ ), (14)

and denote their respective eigenvalues by ν
ρ
j , ν

σ
j , ν•

j . With
standard techniques of Gaussian operators and Refs. [79,80],
we find

fn(ρ, σ ; α)

=
[

det

(
I + JρJσ

2

)]n

×
∏

j

[( 1+ν•
j

2

)n
eiα + ( 1−ν•

j

2

)n]
[( 1+ν

ρ
j

2

)2n + ( 1−ν
ρ
j

2

)2n]1/2[( 1+νσ
j

2

)2n + ( 1−νσ
j

2

)2n]1/2
.

(15)

In the case where [ρ, σ ] = 0, it is not necessary to introduce
the matrix J•, and the numerator of Eq. (15) simplifies to

∏
j

[( (1 + ν
ρ
j )(1 + νσ

j )

4

)n

eiα +
( (1 − ν

ρ
j )(1 − νσ

j )

4

)n]
.

Moreover, in that case, the definition of Eq. (9) implies
fn(ρ, σ ; α) = f1(ρn, σ n; α) and hence the n dependence is
trivial.

We stress that the limit α → 0 of Eq. (15) gives a formula
for the total fidelities of generic and noncommuting Gaussian
states. We believe that Eq. (15) will enable the systematic in-
vestigation of mixed-state fidelities in the context of quantum
many-body systems, both in and out of equilibrium. More-
over, the limit n → 1/2 is direct, and hence Eq. (15) yields

2To compute Fn(ρ, σ ; q) defined in Eq. (6) with this approach,
one needs to introduce the charged moments Zn(χ ; α) = Tr(χ neiαQ)
with χ = ρ, σ, ρσ , and compute the Fourier transform of these three
quantities separately. Since we do not investigate Fn(ρ, σ ; q) in this
paper and these techniques are now standard in the literature, we do
not discuss them further. We refer the interested reader to Ref. [43]
for a pedagogical introduction to the technicalities of symmetry-
resolved entanglement computations.
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an exact formula for the Uhlmann-Jozsa fidelity. This pro-
vides additional motivation for the investigation of the Rényi
fidelities. As discussed in the footnote below Eq. (3), it is also
possible to define a double-index Rényi fidelity Fn,m(ρ, σ ),
and the generalization of Eq. (15) to the double-index case
is direct. For these reasons, we highlight Eq. (15) as a main
result of this paper.

III. XX SPIN CHAIN AND QPT

A. Definition

In this section, we review the spin-1/2 XX spin chain with
periodic boundary conditions in a magnetic field [74]. The
Hamiltonian is

H (h) = −1

4

N∑
j=1

(
σ x

j+1σ
x
j + σ

y
j+1σ

y
j + 2hσ z

j

)
, (16)

where N is the length of the chain, h is the magnetic field,
and σ a

j , a = x, y, z, is the Pauli matrix σ a acting on site j.
There is a symmetry between ±h, and we focus on h � 0.
For simplicity, we also assume N to be an even number.
This Hamiltonian is equivalent to a tight-biding Hamiltonian
through the Jordan-Wigner transformation, and its diagonal-
ization is standard. In the large-N limit, the Hamiltonian in
diagonal form is

H (h) =
N∑

k=1

εkd†
k dk, εk = − cos

(
2πk

N

)
+ h, (17)

were d†
k , dk are Fourier transforms of the fermion operators

c†
j , c j , and they satisfy the fermionic anticommutation rela-

tions of Eqs. (12).
The XX Hamiltonian chain possesses a U (1) symmetry

with global charge:

Q =
N∑

k=1

c†
kck . (18)

Physically, H (h) conserves the number of fermions, or the
magnetization in the spin-chain picture.

For 0 � h � 1, the ground state of the Hamiltonian is

|ψ (h)〉 =
K (h)∏
k=1

d†
k d†

N−k|0〉, (19)

where |0〉 is the vacuum that satisfies dk|0〉 = 0 for k =
1, . . . , N , and K (h) � N/2 is an integer such that εK (h) � 0 <

εK (h)+1, and

Q|ψ (h)〉 =
⌊

N

π
arccos h

⌋
|ψ (h)〉, |h| � 1. (20)

In the large-N limit, the occupation number of the ground state
is thus N/(2π ) arccos h.

For h > 1, the energies εk are all strictly positive, so the
ground state is exactly the vacuum, |ψ (h > 1)〉 = |0〉. This is
a sign of the well-known QPT of the model at h = 1.

B. QPT and pure-state fidelity

Let us apply the notion of pure-state fidelity [10] to the
QPT of the XX chain at h = 1. We consider the overlap
defined in Eq. (1),

Fpure(h, dh) = |〈ψ (h − dh)|ψ (h + dh)〉|, (21)

with dh > 0.
For finite N and |h| � 1, we have K (h) = �N arccos h

2π
�, and

the occupation number of the ground state is 2K (h). More-
over, we have |ψ (1 + dh)〉 = |0〉 for all dh > 0. It is possible
to choose dh∗ = dh∗(N, h) such that K (1 − dh∗) � 1, and
K (h − dh∗) = K (h + dh∗) for |h| < 1. Therefore, because
two states with a different occupation number are orthogonal,
we have

Fpure(1, dh∗) = 0, Fpure(|h| < 1, dh∗) = 1. (22)

Typically, the variational parameter satisfies dh∗ =
O(N−1). As we discussed in Sec. I, in the thermodynamic
limit N → ∞ all the ground states are orthogonal and hence
pure-state fidelities vanish for all h and dh �= 0. For finite
sizes, the suppression of the fidelity happens only in the vicin-
ity of the QPT [10].

IV. THERMAL FIDELITIES

In this section, we investigate symmetry-resolved and total
fidelities between thermal density matrices,

ρ(β, h) = e−βH (h)

Tr(e−βH (h) )
, (23)

where H (h) is the Hamiltonian Eq. (17) and β is the inverse
temperature. More specifically, we fix a small parameter dh �
0 and study the fidelities between ρ− ≡ ρ(β, h − dh) and
ρ+ ≡ ρ(β, h + dh) as a function of β and h. We note that both
matrices commute: [ρ−, ρ+] = 0.

A. Charged fidelities

Owing to the diagonal form of the Hamiltonian Eq. (17),
we find the following expressions for the charged fidelities:

fn(ρ−, ρ+; α) =
N∏

k=1

1 + e−2βnεk+iα

[(1 + e−2βnε−
k )(1 + e−2βnε+

k )]1/2
. (24)

This result is consistent with Eq. (15) in the case where
[ρ, σ ] = 0. However, the diagonal form of the Hamiltonian
allowed us to directly evaluate the various traces involved in
the definition Eq. (9) of fn(ρ, σ ; α) without using the two-
point correlation matrices.

We also note that the parameter n in Eq. (24) appears only
through the product βn, which we interpret as an effective
inverse temperature. This trivial n dependence stems from
the fact that both density matrices commute, as discussed in
Sec. II D.

To facilitate the forthcoming calculations, we expand
fn(ρ−, ρ+; α) at quadratic order in α and dh. In the large-N
limit, we express the sums as integrals and find

log fn(ρ−, ρ+; α) = iαNI1 −
(

α2

2
+ 2(βn)2dh2

)
NI2,

(25)
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FIG. 1. Total fidelities Fn(ρ−, ρ+) as a function of h for various
values of βn with N = 300 and dh = 10−3. We compare the exact
result of Eq. (27) (symbols) with the approximation of Eq. (28) (solid
lines) and find excellent agreement.

where we introduced

I j = 1

2π

∫ 2π

0
dθ

e2βn(cos θ−h)

(1 + e2βn(cos θ−h) ) j . (26)

Throughout this paper, we use the natural basis for the loga-
rithms.

B. Total fidelities

We start with the computation of the total fidelities
Fn(ρ−, ρ+) = fn(ρ−, ρ+; 0). With Eq. (24), we find

Fn(ρ−, ρ+) =
N∏

k=1

1 + e−2βnεk

[(1 + e−2βnε−
k )(1 + e−2βnε+

k )]1/2
. (27)

We note that this equation was obtained in Ref. [31] for n =
1/2, where the authors studied the behavior of the Uhlmann-
Jozsa fidelity for thermal states close to a QPT in the XY
chain. As expected from Eq. (24), we observe that Fn(ρ−, ρ+)
only depends on the index n through the effective temperature
βn. The Rényi fidelities thus have the same properties as
those observed in Ref. [31] for the Uhlmann-Jozsa fidelity.
To understand the qualitative behavior of the Rényi fidelities,
we use Eq. (25) and find the following quadratic expansion:

Fn(ρ−, ρ+) = e−2dh2(βn)2NI2 . (28)

In Fig. 1, we plot the total fidelities as a function of h for
various values of βn. We find a very good match between the
exact result of Eq. (27) (symbols) and the quadratic approxi-
mation of Eq. (28) (solid lines). As expected from Ref. [31],
we observe a drop in the total fidelities at h = 1, which is
stronger for smaller effective temperatures. The physical in-
terpretation is that the Rényi fidelities are able to detect the
zero-temperature QPT of the XX spin chain at h = 1, even at
nonzero temperature.

Let us discuss some properties of the total fidelities. First,
for dh = 0, we have Fn(ρ−, ρ+) = 1 for all values of h, and
the QPT is no longer detectable via the total Rényi fidelities.

Second, for dh > 0, the quadratic expression of Eq. (28) al-
lows us to understand that the drop in fidelities at h = 1 is
entirely due to the behavior of the I2 integral. For large but
finite βn, I2 is negligible for all values of h, except for a small
interval around h = 1 where it has a sharp peak.

C. Symmetry-resolved fidelities

We turn to the computation of the symmetry-resolved fi-
delities. Combining Eqs. (10) and (24), we find

Fn(ρ−, ρ+; q)

=
∫ π

−π

dα

2π
e−iαq

N∏
k=1

1 + e−2βnεk+iα

[(1 + e−2βnε−
k )(1 + e−2βnε+

k )]1/2
. (29)

1. Sectors q = 0, 1

It is possible to obtain exact results for the Fourier trans-
form. For q = 0, 1, it is simply

Fn(ρ−, ρ+; 0) =
N∏

k=1

1

[(1 + e−2βnε−
k )(1 + e−2βnε+

k )]1/2
,

Fn(ρ−, ρ+; 1) =
∑N

k=1 e−2βnεk∏N
k=1[(1 + e−2βnε−

k )(1 + e−2βnε+
k )]1/2

.

(30)

At quadratic order in dh, we have

Fn(ρ−, ρ+; 0) = e−NIlog e−2dh2(βn)2NI2 ,

Fn(ρ−, ρ+; 1) = NI0e−NIlog e−2dh2(βn)2NI2 ,
(31)

where

Ilog = 1

2π

∫ 2π

0
dθ log

(
1 + e2βn(cos θ−h)

)
, (32)

and I0 is defined in Eq. (26).
In Fig. 2, we compare the exact formula of Eqs. (30)

(symbols) for Fn(ρ−, ρ+; 0) and Fn(ρ−, ρ+; 1) with their re-
spective quadratic approximation of Eqs. (31) (solid lines),
and find excellent agreement. The behavior of Fn(ρ−, ρ+; 0)
clearly allows one to detect the QPT, as it experiences an
abrupt suppression around h = 1, which is sharper for smaller
effective temperatures. In the zero-temperature limit, we ex-
pect Fn(ρ−, ρ+; 0) ∼ �(h − 1), where �(x) is the Heaviside
step function. This is because the integral Ilog in Eq. (32)
diverges in the zero-temperature limit for h < 1 and vanishes
for h � 1. Similarly to the total fidelities, Fn(ρ−, ρ+; 0) thus
detects the underlying QPT, even at nonzero temperature.

However, since the behavior of Fn(ρ−, ρ+; 0) is mainly
dictated by Ilog, it is not very sensitive to dh and, in partic-
ular, the QPT is still visible in the behavior of Fn(ρ−, ρ+; 0)
for dh = 0. This is in stark contrast with the total fideli-
ties discussed in the previous section. The physical intuition
is the following. For dh = 0, ρ− = ρ+ = ρ(h, β ), and the
symmetry-resolved fidelities Fn(ρ+, ρ−; q) are essentially
governed by the probabilities pρ(h,β )(q). While the probabil-
ities sum to one for all values of h, they undergo a strong
reorganization near h = 1. The QPT thus expresses itself in
the probability distribution {pρ(h,β )(q)}q. The total fidelities
are not sensitive to this reorganization, because they involve
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FIG. 2. Symmetry-resolved fidelities Fn(ρ−, ρ+; q) for q = 0 (left) and q = 1 (right) as a function of h for various values of βn with
N = 300 and dh = 10−3. We compare the exact results of Eqs. (30) (symbols) with the quadratic approximations of Eqs. (31) (solid lines) and
find excellent agreement.

a sum over all probabilities, whereas the symmetry-resolved
ones are. We conclude that the symmetry-resolved fidelities
probe the structure of the density matrices and detect reor-
ganization of a state as it undergoes a QPT even when this
reorganization does not affect the total fidelities.

2. Arbitrary q

For arbitrary q and in the large-N limit, the symmetry-
resolved fidelities read

Fn(ρ−, ρ+; q) = NqJq Fn(ρ−, ρ+; 0), (33)

with

Jq= 1

(2π )q

∫ 2π

0
dθ1

∫ 2π

θ1

dθ2 · · ·
∫ 2π

θq−1

dθqe2βn
∑q

j=1(cos θ j−h)

(34)

and J0 ≡ 1. We also note that J1 = I0, so Eq. (33) is compat-
ible with Eqs. (31) for q = 0, 1. We verify Eq. (33) in Fig. 3
for q = 2, 3. In particular, we compare Eq. (29) (symbols)
with Eq. (33) where Fn(ρ−, ρ+; 0) is replaced by its quadratic
approximation of Eqs. (31) (solid lines). We find very good
agreement.

For q > 1, even though Eq. (33) is exact in the large-N
limit, it is not suitable to understand the qualitative physical
behavior of the symmetry-resolved fidelities. To do so, we
use the quadratic approximation of Eq. (25) for the charged
fidelities and perform the integral in Eq. (10). We find

Fn(ρ−, ρ+; q) = e−2dh2(βn)2NI2 e− (q−NI1 )2

2NI2

√
1

2πNI2
. (35)

In the left panel of Fig. 4, we compare Eq. (29) (symbols)
with the quadratic approximation of Eq. (35) (solid lines) for
Fn(ρ−, ρ+; q) as a function of h for various values of βn, and
find excellent agreement. We note that the curves are narrower
for larger βn, and their maximum is located at a value h∗ that
depends on βn. From Eq. (35), it appears that h∗ is such that

q = NI1(h∗), (36)

where I1 is defined in Eq. (26), and we emphasize its
dependence on the magnetic field. This is not an explicit

equation for h∗, since it appears in the kernel of the integral
I1. However, we verified numerically that all the peaks we
observe in the right panel of Fig. 2 and the left panel of Fig. 4
are precisely located at h∗ such that Eq. (36) is verified.

In the zero-temperature limit, we expect the peaks to be
located at h∗ such that q = (N arccos h∗)/π is the occupa-
tion number of the ground state, see Eq. (20). We prove
this physical intuition with the following asymptotic analysis
of I1 in the limit βn → ∞. The integrand of I1 is (1 +
e−2βn(cos θ−h) )−1. In the zero-temperature limit, this quantity
tends to zero for cos θ < h, and to one for cos θ > h. The
integral I1 is thus proportional to the length of the interval
in [0, 2π ] on which cos θ > h. A direct calculation gives

lim
βn→∞

I1 = arccos h

π
, h � 1, (37)

FIG. 3. Symmetry-resolved fidelities Fn(ρ−, ρ+; q) for q = 2, 3
in log scale as a function of h with βn = 5, N = 300, and dh = 10−3.
The symbols are obtained by numerical evaluation of the Fourier
transform in Eq. (29) and the solid lines are given by Eq. (33), where
Fn(ρ−, ρ+; 0) is replaced by its quadratic approximation of Eqs. (31).
We find very good agreement.
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FIG. 4. Left: Symmetry-resolved fidelities Fn(ρ−, ρ+; 50) as a function of h for various values of βn with N = 300 and dh = 10−3. We
compare Eq. (29) (symbols) with the quadratic approximation of Eq. (35) (solid lines) and find excellent agreement. Right: Comparison
between the integral I1 defined in Eq. (26) for various values of βn and the function (arccos h)/π .

and the integral vanishes for h > 1. We illustrate this limit in
the right panel of Fig. 4, where we compare the integral I1 for
various values of βn with the asymptotic value (arccos h)/π .

The fact that the leading charge sector is located at q =
NI1, which is different from the ground-state occupation
number, but converges to that value in the zero-temperature
limit, is a surprising result of this paper. Physically, NI1 is the
average value of the charge in the thermal state ρ(β, h). The
average is defined as

〈Q〉β,h = Tr(ρ(β, h)Q), (38)

and we have

〈Q〉β,h = −i(∂α log f1/2(ρ−, ρ+; α))|α=0,dh=0

= NI1,
(39)

where we used the quadratic expansion in Eq. (25).

D. Total fidelities from symmetry-resolved ones

As a consistency check, we verify that the sum over all sec-
tors of the symmetry-resolved fidelities yields the total ones.
Since we work in the large-N limit, we transform the sum
over q into an integral, and use the quadratic approximation
of Eq. (35) for the symmetry-resolved fidelities. We find

N∑
q=0

Fn(ρ−, ρ+; q)

� e−2dh2(βn)2NI2

∫ N

0
dq e− (q−NI1 )2

2NI2

√
1

2πNI2
. (40)

For large N , the Gaussian integral on the right-hand side yields
e−2dh2(βn)2NI2 , which is exactly the Gaussian approximation of
the total fidelities, see Eq. (28).

V. REDUCED FIDELITIES

In this section, we study the total and symmetry-resolved
reduced fidelities in the XX spin chain. We consider a bipartite

chain A ∪ B of length N , where A = {1, . . . , NA} is a segment
of length NA < N . The whole system is at zero temperature
in the pure state |ψ (h)〉, and we focus on the reduced density
matrix ρA(h) = TrB(|ψ (h)〉〈ψ (h)|). More specifically, we fix
a small parameter dh � 0 and investigate the fidelities be-
tween the reduced density matrices ρA− ≡ ρA(h − dh) and
ρA+ ≡ ρA(h + dh) as a function of h.

Because the XX Hamiltonian is quadratic in terms of
fermion operators, the reduced density matrices ρA± are
fermionic Gaussian operators and we use the results of
Sec. II D. In the large-N limit, the two-point correlation matrix
[CA(h)]x,x′ = TrA(ρA(h)c†

xcx′ ), x, x′ ∈ A, has entries

[CA(h)]x,x′ = sin[(arccos h)(x − x′)]
π (x − x′)

, |h| � 1, (41)

and [CA(h)]x,x′ = 0 for h > 1. From the matrices CA(h ±
dh), we construct the corresponding matrices JA(h ± dh) =
2CA(h ± dh) − I, and J• as in Eq. (14). We diagonalize these
matrices numerically and insert the results in Eq. (15) to
obtain the charged fidelities. Finally, we evaluate the result
at α = 0 to obtain the total fidelities Fn(ρA−, ρA+) or compute
the Fourier transform as in Eq. (10) to evaluate the symmetry-
resolved fidelities Fn(ρA−, ρA+; q).

A. Total fidelities

Let us discuss our results for the total fidelities. We dis-
play our numerical results for Fn(ρA−, ρA+) with NA = 50 and
dh = 10−3 as a function of h for various values of n in the left
panel of Fig. 5. We observe a clear suppression of the fidelities
at h = 1, and this suppression is sharper for increasing values
of n. Even though the whole system is at zero temperature, the
parameter n plays the role of an effective inverse temperature
in system A, similarly as for the thermal fidelities in Sec. IV B.
We also observe that the reduced fidelities oscillate in h with
an amplitude that increases with n.

From these results, we conclude that the reduced fidelities
are able to detect the QPT at h = 1. We stress that the sys-
tem is in the thermodynamic limit N → ∞, and hence the
reduced fidelities can detect QPTs in that limit, provided that
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FIG. 5. Left: Total fidelities Fn(ρA−, ρA+) with NA = 50 and dh = 10−3 as a function of h for various values of n. Right: Total fidelities
Fn(ρA−, ρA+) with h = 0.995 and dh = 10−3 as a function of NA for various values of n. In all panels, the symbols are obtained from the
numerical diagonalization of the correlation matrices and Eq. (15) at α = 0. The solid lines just connect the symbols as a guide to the eye and
do not reflect any analytical prediction or conjecture

subsystem A is finite. This is in stark contrast with pure-state
fidelities that detect QPTs only for finite sizes because all
overlaps vanish in the thermodynamic limit; see Ref. [10] and
Sec. III B.

In the right panel of Fig. 5, we show the total fideli-
ties at h = 0.995 with dh = 10−3 as a function of NA for
various values of n. We observe oscillations in NA, whose
amplitude increases with n and which confirms that the sup-
pression of the fidelity is more important for larger values
of n. We find that the oscillations have a frequency close
to 2 arccos h for h � 1. Similar parity oscillations of the en-
tanglement entropy in the XX chain are known to depend
on universal quantities of the underlying CFT [43,46,81–84],
and model-dependent oscillations were recently discovered
in the context of inhomogeneous spin chains [85]. It is an
intriguing question to understand if oscillations in the reduced
fidelities also bear relevant physical information about the
underlying model, but we leave this issue for forthcoming
investigations.

B. Symmetry-resolved fidelities

We show our results for the symmetry-resolved fidelities
in Fig. 6. For q = 0, we have the same qualitative behavior as
for thermal fidelities, namely, Fn(ρA−, ρA+; 0) drops abruptly
at h = 1 and tends to �(h − 1) in the limit n → ∞. Moreover,
this behavior holds irrespective of dh. This highlights the
fact that symmetry-resolved fidelities probe the inner structure
of the states and detect the QPT through the reorganization
of the charge sectors at the critical point, even though this
reorganization does not affect the total fidelities.

For q > 0, we observe peaks that are narrower for larger n,
which is compatible with the interpretation of n as an effective
inverse temperature. However, in contrast with thermal fideli-
ties, the peaks are all located at h = cos(qπ/NA); see the right
panel of Fig. 6. In particular, for fixed h, the maximal contribu-
tion arises from the sector at q = (NA/π ) arccos h. Physically,
this value of q is the average value of the charge in system A,
and since there are no thermal fluctuations we do not observe

temperature-dependent peaks as opposed to thermal fidelities.
As a consistency check, we also numerically verified Eq. (8).

VI. CONCLUSION

A. Summary

In this paper, we initiated the investigation of symmetry-
resolved quantum fidelities in quantum many-body systems.
First, we introduced a family of quantum fidelities Fn(ρ, σ )
that we call Rényi fidelities. We showed that these quan-
tities satisfy natural generalizations of the axioms satisfied
by the Uhlmann-Jozsa fidelity and, in particular, they reduce
to the latter for n = 1/2. Second, we defined the (non-
normalized) symmetry-resolved Rényi fidelities Fn(ρ, σ ; q)
and expressed them as a Fourier transform of the charged
fidelities fn(ρ, σ ; α). In particular, we derived an exact ex-
pression for the charged fidelities of fermionic Gaussian states
in terms of the associated two-point correlation matrices. This
formula, Eq. (15), is a main result of this paper because not
only does it allow one to compute symmetry-resolved fideli-
ties, it also provides an expression for the total Rényi fidelities
of fermionic Gaussian states, which was lacking in the litera-
ture. We believe that this result will allow for a much-needed
systematic investigation of Rényi fidelities in the context of
quantum many-body systems, both in and out of equilibrium.

We investigated the total and symmetry-resolved fideli-
ties in the vicinity of the QPT at h = 1 in the XX spin
chain. After a brief review of the pure-state fidelities, we
devoted our attention to the thermal and reduced fidelities.
In the context of thermal fidelities, we used the diagonal
form of the Hamiltonian to derive a variety of exact results
and quadratic approximations that we verified with extensive
numerical investigations. For the total fidelities, we derived
an exact expression which generalizes the one of Ref. [31]
to arbitrary n. We found that the quantities only depend on n
through the product βn, where β is the inverse temperature.
As in Ref. [31], we concluded that the thermal Rényi fideli-
ties are able to detect the zero-temperature QPT of the XX
Hamiltonian, even when the system is at finite temperature.
In addition, we understood this result qualitatively with the
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FIG. 6. Symmetry-resolved fidelities Fn(ρA−, ρA+; q) for q = 0 (left) and q = 10 (right) with NA = 50 and dh = 10−3 as a function of h for
various values of n. In the right panel, the grey line is at position h = cos(π/5). The symbols are obtained from the numerical diagonalization
of the correlation matrices and the Fourier transform of Eq. (15). The solid lines just connect the symbols as a guide to the eye and do not
reflect any analytical prediction or conjecture.

Gaussian approximation of Eq. (28) and, in particular, we
noted the importance of the integral I2 in the behavior of the
fidelities close to h = 1.

We then investigated the symmetry-resolved thermal fideli-
ties. For q = 0, we observed that F (ρ−, ρ+; 0) is able to detect
the QPT, even for dh = 0, which is in stark contrast with
the total fidelities. Physically, this means that the symmetry-
resolved fidelities are sensitive to the inner structure of the
states and to the strong reorganization that takes place at the
QPT, even though this reorganization is not detectable with
the total fidelities. For q > 0, the symmetry-resolved fidelities
have peaks located at q = NI1 with a width that decreases
with βn. In the zero-temperature limit, the position of the
maxima converges to the ground-state occupation number
q = (N/π ) arccos h, but it varies at finite temperature because
of thermal fluctuations. We showed that the charge q = NI1

is exactly the average value of the charge in the thermal state
ρ(β, h).

We turned to the reduced fidelities in the case where A is a
finite chain embedded in an infinite one. Using our formulas
for Gaussian states and numerical diagonalization of the cor-
relation matrices, we showed that the total fidelities are able
to detect the QPT at h = 1. This shows that reduced fidelities,
unlike pure-state fidelities, can be used to detect QPTs in
the thermodynamic limit. Moreover, we observed oscillations
in the total reduced fidelities, both as a function of h with
fixed NA and the contrary. The amplitude of the oscillations
increases with n. For the oscillations with NA at fixed h, we
verified numerically that the oscillations have a frequency
close to 2 arccos h for h � 1, which is the same frequency as
the parity oscillations of the entanglement entropy [81–83].
However, we did not conjecture the exact formula for the os-
cillations, and leave this issue for forthcoming investigations.

To conclude, we investigated the symmetry-resolved re-
duced fidelities. For q = 0, we observed the same qualitative
features as for the thermal fidelities, namely, Fn(ρA−, ρA+; 0)
is able to detect the QPT at h = 1, irrespective of dh. This
thus provides a second example where the symmetry-resolved
fidelities can detect the QPT through its action on the in-
ner structure of the states, which does not affect the total

fidelities. This behavior is a main result of this paper and
we expect it to be a general feature of symmetry-resolved
fidelities. For q > 0, the symmetry-resolved fidelities have
peaks with a width that decreases with n. However, in contrast
with thermal fidelities, all peaks reach their maxima at h =
cos(qπ/NA), which implies that for fixed h, the leading sector
is q = (NA/π ) arccos h. This value of the charge is the average
charge of system A, and there are no thermal fluctuations.

B. Outlook

We finish with a series of open questions that would be
worth investigating in the future. First, it would be interesting
to study symmetry-resolved fidelities in the vicinity of other
phase transitions, including topological ones. It would also
be important to generalize our results in interacting critical
systems, such as the XXZ spin chain. Second, the so-called
Loschmidt echo [9,86,87] generalizes fidelities in nonequilib-
rium systems. It would certainly be interesting to investigate
the symmetry resolution of this quantity to probe how each
symmetry sector contributes out of equilibrium. It is known
that Loschmidt echo [88], as well as symmetry-resolved en-
tropies [62,63], evolve according to the quasiparticle picture
[89,90] out of equilibrium, and generalizing these results to
symmetry-resolved fidelities seems promising. A related is-
sue is to investigate symmetry-resolved fidelities during a
dynamical phase transition [91], including recently discov-
ered third-order ones [92]. Another important point, which
we have not addressed here, is to study symmetry-resolved
fidelities in the context of CFT. In particular, the methods
developed in Refs. [70,93] could allow us to investigate the
fidelities for excited states, but we expect it to be a hard
problem. We also mention that, as a byproduct, our results for
thermal charged fidelities provide a method to test recent pre-
dictions made for thermal symmetry-resolved entanglement in
CFT [94,95].

On the analytical side, it would be important to under-
stand the behavior of reduced fidelities from the asymptotic
methods developed to compute entanglement entropies in the
XX chain [82,83,96,97]. However, we expect this to be a hard
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problem because the matrix J• typically does not commute
with the correlation matrices. It is a similar technical issue
that makes exact asymptotic calculations of fermionic nega-
tivities a notoriously hard problem. Exact methods to compute
negativities out of equilibrium have recently been discovered
[98–100], and we expect that they will apply to reduced fideli-
ties. Another important question regarding reduced fidelities
is to understand their oscillations and, in particular, discover
if they contain universal quantities, similarly to the entangle-
ment entropies.

Another problem is to investigate fidelities in the context of
inhomogeneous systems. Entanglement measures in inhomo-
geneous systems have attracted a lot of attention [65,85,101–
106], and we hope that investigating fidelities in the same con-

text will deepen our understanding of these physical systems.
On general grounds, we think that most research questions
raised in the context of entanglement measures are also worth
investigating through the lenses of fidelities.
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