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Advanced approach of superconducting gap function extraction from tunneling experiments
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An advanced theoretical framework is introduced and examined. Its main idea is to extract properties of
the superconducting pairing gap function �(ω) in conventional, nearly localized superconductors. To test the
approach, we present an experimentally relevant benchmark model with defined normal and superconducting
sectors. The developed reverse engineering framework consists of two logic steps. First, dismantle the super-
conducting density of states into the effects coming from the superconducting pairing and effects inherited from
the normal state. Second, extract and reconstruct properties of �(ω) and compare it to the superconducting
sector of the defined benchmark model. Applying this approach, we can (i) simulate extraction from the
actual experimental low-temperature tunneling data and comment on their required properties, and (ii) maintain
absolute control above the reconstructed Cooper-pair-influencing properties during ameliorating the individual
steps of the method.
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I. INTRODUCTION

It has long been known that the density of states and its
resulting low-temperature tunneling conductance of the con-
ventional s-wave superconductors are dramatically different
inside and outside of the region of the spectroscopic gap [1].
The boundary region itself can usually be recognized by the
(easily distinguishable) end of the gap and the raising of the
coherence peak. Described properties are also very resilient
against the disorder caused by the, often present, Cooper-
pair-conserving electron scattering [2,3]. Naturally, scanning
tunneling spectroscopy (STS) measurements are therefore
very often used as standard experimental probes of the super-
conducting state [4–8].

Our main aim will therefore be the reconstruction of the
gap function �(ω) out of data for the density of states (dos1)
function n(ω) considering conventional low-Tc superconduc-
tors, where [3]

n(ω) = Re

[
ω√

ω2 − �(ω)2

]
. (1)

�(ω) representing the gap function contains the information
about the electron pairing interactions.

Routinely, the standard procedure to interpret STS data of
the disordered superconductors commences with introducing
the model of the underlying density of states of the studied
sample material. Next, the assumed model is used to fit the ac-
tual STS data. If we focus on the disordered superconductors
using the Dynes formula as the model for the superconducting
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1This function corresponds to the normalized superconducting den-

sity of states of the material with the same �(ω), but with the ideal
constant density of state in the normal state.

density of states [3,5,6,9], the resulting spectroscopic infor-
mation describing the superconducting state usually consists
of three characteristic energy scales. The first corresponds to
the considered temperature. The other two specify the value of
the pair-creating superconducting gap � and the pair-breaking
scattering rate �. Actual values of � and � result from the
fitting procedure using the Dynes formula for the tunneling
density of states in the superconducting state. Eventually,
encountering the nonconstant density of states in the normal
state requires enriching the assumed parameters describ-
ing the normal state, as in Refs. [7,8,10,11] and references
therein.

Despite the described recipe being very successful in in-
terpreting the main characteristics and the overall trend of the
corresponding STS data, it might overlook essential details
hidden in their minutiae. After all, focusing on these more
detailed imprints [7,8,10–17] can enable us to understand and
describe normal and superconducting states in more detail
than before.

One could therefore ask a very natural question: “Could
we process the tunneling data in such a way that distin-
guishes and describes the effects of superconducting and
normal state without prior model assumption?” Or, since
we focus primarily on the superconducting state, “Could we
reveal the full information about the pair-creating [18] and
the pair-breaking [3,19,20] properties of the superconducting
state with no, or at least absolutely minimal, prior model
assumption about the underlying density of states?” If we
answered these or similar questions, we could go beyond the
current status of knowledge. Elaborating and answering these
and similar questions represents the very core idea of our
manuscript.

Pioneering work in this direction was introduced recently
in Ref. [21]. This work represents a natural continuation
of our previous effort to extract the gap function of nearly
localized conventional superconductors directly from the
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experimental data. In this manuscript, an alternative approach
is presented.

Compared with Ref. [21], we derive the fundamental start-
ing point equations in a more general way. Relaxing one of the
assumptions allows us to obtain more complete equations re-
lating the odd and even parts of superconducting and normal
densities of states. In this manuscript, the nonzero odd parts
of densities of states in the normal state are also assumed and
exploited. Of course, this discussion in principle holds true
also to clean superconductors, and the introduced method can
also be applied to them.

However, as an example, where the reconstruction of the
gap function can be helpful, let us mention the increasing
impact of the STS measurements on the research area of the
quantum breakdown of superconductivity (QBS) [10,22–31],
revealing emergent granularity on the local scale [27,28]. In
principle, the gap function reconstruction can help to dis-
tinguish the roles of separate scenarios of the QBS [32,33],
induced by the increasing disorder [32,34–39]. Knowledge of
�(ω) helps us to identify the role of the so-called fermionic
(amplitude of the order parameter driven) scenario [34,35],
within the conundrum of the QBS transition. In this way,
we would be able to recognize the fundamental nature of
the charge carriers on both sides of the considered quantum
phase transition. In the pure fermionic scenario, the normal
state consists of electrons, while in the pure bosonic (phase of
the order parameter driven) scenario, we have noncommuni-
cating Cooper pairs.

Since the method that we are going to introduce requires a
detailed explanation and testing, we structure this manuscript
in the following way: First, we describe the theory and the
necessary assumptions in Sec. II. Next, the detailed motiva-
tion and formulation of the problem are clarified in Sec. III.
The properties of the normal and the superconducting sectors
of the benchmark model (BM) are defined and explained in
Sec. IV. Individual steps of the numerical procedure itself
demonstrated on the solution of the introduced problem are
discussed in Sec. V.

For further clarification, within Sec. V we provide a test
of the developed numerical procedure on the BM example,
comparing it to the structure known from its original micro-
scopic construction. In this way, we will be able to quantify
and show how accurately we can reconstruct the gap function
�(ω). Technical details, limiting cases, and a more compli-
cated benchmark model (MCBM) example can be found in
Appendixes A–D.

The experimental data and their processing most often
bring an extra degree of challenges, which require a nontriv-
ial explanation, before we start the extraction of the �(ω)
by itself. These challenges include the effect of the finite-
temperature smearing, averaging the measured current data
to get smooth tunneling conductance data, normalization of
the STS spectra, etc. Therefore, to progress thoroughly step-
by-step, we decided to dedicate extra attention to such a
work in a future project. In this way, we can focus better on
the various aspects of the discussed theory and techniques
in this manuscript. We also avoid the scenario in which we
overwhelm and confuse the reader with quanta of informa-
tion focused on the processing of the experimental data. In
the concluding part of this manuscript, we specify feasible

requirements, which should enable the application of the
introduced procedure of the gap function extraction on the
actual experimental data.

II. THEORY

A. Spectral functions in the normal and superconducting state

First, we elaborate on the advantageous form of the
general structure of the spectral functions, describing conven-
tional, low-temperature superconductors [40,41]. To proceed,
it is shown to be efficient to translate the information from
two complex Eliashberg functions, describing wave-function
renormalization Z (ω) and the gap function �(ω), to four real,
auxiliary functions ω̃(ω), γ̃ (ω), �̃(ω), �̃(ω) by means of2

Z (ω)ω = ω̃(ω) + iγ̃ (ω),

Z (ω)
√

ω2 − �2(ω) = �̃(ω) + i�̃(ω). (2)

Using these auxiliary functions, the spectral functions in the
superconducting state can be elegantly written as [41]

As(ε, ω) = 1

2

(
γ̃

�̃
+ 1

)
δ�̃ (ε − �̃) + 1

2

(
γ̃

�̃
− 1

)
δ�̃ (ε + �̃)

+ 1

2

(
ω̃

�̃
− γ̃

�̃

)
4π�̃2

�̃
δ�̃ (ε − �̃)δ�̃ (ε + �̃), (3)

where

δ� (�) = 1

π

�

�2 + �2
.

Notice that �̃ and �̃ have a natural interpretation of the quasi-
particle energy and quasiparticle inverse lifetime, respectively.

The dos function n(ω) and its Kramers-Kronig partner
κ (ω) can be expressed as

ñ(ω) = n(ω) + iκ (ω) = ω√
ω2 − �2(ω)

= ω̃(ω) + iγ̃ (ω)

�̃(ω) + i�̃(ω)
.

(4)

One can also easily check the normal state limit of the spec-
tral functions. We will assume that in such a case we obtain the
solution of Eq. (2) in the form �(ω) = 0, ω̃(ω) = �̃(ω) = ω,
γ̃ (ω) = �̃(ω) = �n, where �n is the normal state scattering
constant, and so Z (ω) = 1 + i�n/ω. Combining this solution
together with Eq. (3) leads to the well-known Lorentzian form
An(ε, ω) = δ�n (ε − ω).

B. Densities of states in the normal and superconducting state

In what follows, we use the language of the supercon-
ducting (normal) spectral functions As,n(ε, ω), carrying the
information about scattering and effects of the electron-
phonon interaction. If we combine it with the density of states
of the clean material in the normal state N0(ε), we can express
the superconducting (normal) state tunneling density of states

2We choose the branch of the square root in such a way that the
signs of �̃ and ω are the same. In this way, we can assume �̃ > 0.
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Ns,n(ω) in the form [42]

Ns,n(ω) =
∫ ∞

−∞
dεN0(ε)As,n(ε, ω). (5)

To take advantage of the knowledge of the spectral func-
tions, let us formally rewrite the density of tunneling states
as a real part of the following contour integral on the closed
contour C in the upper half-plane of the complex space:

Ns,n(ω) = Re
∮

C
dzÑ0(z)As,n(z, ω), (6)

where we assume that the contour C consists of a straight
line, going from −∞ to ∞, infinitesimally close above the
real axis and semicircle, which closes the contour, with the
radius growing to infinity. Since As(z, ω) = An(z, ω) ∝ z−2,
assuming z → ∞, and we will construct Ñ0(z) to be analytic
in the upper half-plane of the complex space, the semicircle
contribution of Eq. (6) is zero.

Since we want to use the knowledge of the position of the
poles of the available spectral functions As,n(z, ω), we have to
consider the function Ñ0(z) to be analytic in the upper half-
plane of the complex space. Therefore, we have to consider
the density of states N0(z) together with its Kramers-Kronig
partner K0(z) in the form

Ñ0(z) = N0(z) + iK0(z),

= N0,e(z) + N0,o(z) + i(K0,o(z) + K0,e(z)),

K0(y) = 1

π
P

∫ ∞

−∞
dx

N0(x)

y − x
,

where the even N0,e(z) [K0,e(z)] and odd N0,o(z) [K0,o(z)] parts
of N0(ω) and K0(ω) can be related as

K0,o(y) = 2y

π
P

∫ ∞

0
dx

N0,e(x)

y2 − x2
,

K0,e(y) = 2

π
P

∫ ∞

0
dx

xN0,o(x)

x2 − y2
.

Next, we use Eq. (3) within Eq. (6). Using Cauchy’s integral
formula, we are, after a few steps of cumbersome algebra, left
with

Ns(ω) = 1 + ñ(ω)

2
Ñ0(�̃(ω) + i�̃(ω))

− 1 − ñ∗(ω)

2
Ñ0(−�̃(ω) + i�̃(ω)). (7)

For completeness, the situation in the normal state results in
Nn(ω) = N0(ω + i�n) = Re Ñ0(ω + i�n).

For further usage, we divide Eq. (7) into even and odd
parts:

Ns,e(ω) = n(ω)N0,e(�̃(ω) + i�̃(ω))

− κ (ω)K0,o(�̃(ω) + i�̃(ω)),

Ns,o(ω) = N0,o(�̃(ω) + i�̃(ω)). (8)

C. Constant quasiparticle lifetime approximation

In the next step, we focus on the situations in which we
assume the so-called constant, �̃(ω) = �n, approximation. In
such a case, Eq. (8) can be rewritten as

Ns,e(ω) ≈ n(ω)N0,e(�̃(ω) + i�n) − κ (ω)K0,o(�̃(ω) + i�n),

≈ n(ω)Nn,e(�̃(ω)) − κ (ω)Kn,o(�̃(ω)), (9)

Ns,o(ω) ≈ N0,o(�̃(ω) + i�n) = Nn,o(�̃(ω)), (10)

where we recognized even (odd) tunneling densities of states
in the normal state Nn,e (Nn,o), smeared by the normal state
scattering rate. Kn,o represents the Kramers-Kronig partner of
Nn,e.

Even without the proper solution of the problem defined
by Eqs. (9) and (10), we can already notice its qualitatively
interesting features. Ns,e in Eq. (9) requires besides �̃ also
knowledge of κ and Kn,o, which are the Kramers-Kronig
partners of n and Nn,e, respectively. The typical qualitative
behavior of the κKn,o(�̃) contribution shows that this term
will be localized in the region of coherence peaks [43–46]. We
remind the reader that this region proves to be very important
for discussing the properties of the superconducting behavior
[4,10,21,39,47–49]. Also, once Nn,e(ω) �= const in Eq. (9),
Ns,e(ω) starts to be dependent also on the pair-conserving
scattering processes present in the overall scattering rate �n.
In cases when �n � “Energy scale of the developed Altshuler
Aronov minimum [50] in the normal state,” we expect features
of Nn(ω) be smeared to nearly a constant. To complete the
qualitative properties, Eq. (10) can also be viewed as the
implicit equation for the function �̃(ω).

Notice, that if we would now assume that the second term
in the Eq. (9) is negligible in comparison with the first one, and
n(ω) = d�̃/dω due to the conservation of the total number
of states, we would end up at the beginning of the approach
developed and discussed in Ref. [21]. Recognizing the known
results in the limit case moves us further towards a different,
more general approach. In what follows, we will also keep
the second κKn,o(�̃) term, and the only thing we will assume,
besides �̃(ω) = �n, is that n(ω) + iκ (ω) is an unknown an-
alytic function of ω that embodies the information about the
gap function �(ω).

III. MOTIVATION AND INTRODUCTION
OF THE PROBLEM

After the introduction of the theory background, we pro-
ceed further towards the development and implementation of
the solution of the resulting Eqs. (9) and (10) in the model
example. The idea of this section is as follows. First, we
introduce some microscopically physically relevant model for
�(ω) [and Z (ω) for completeness], and we calculate its ex-
perimentally available footprint in the form of the tunneling
densities of states Nn,s(ω) in the normal and superconducting
state.

Afterward, take the resulting Nn,s(ω) as a result of the
independent experiment, and by solving Eqs. (9) and (10)
reconstruct the behavior of �(ω). We will explain the de-
tails of this reverse engineering approach as we proceed.
In this way, we gain the advantage of controlling both the
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microscopic input �(ω) [measurable Nn,s(ω)] and also the
output Nn,s(ω) [�(ω)]. We will also identify the required
properties of the data for the future application of the method
on the experimental data samples.

We remind the reader that we focus on the interpretation of
the spectroscopic properties imprinted in the tunneling density
of states. Therefore, as one can understand from Eq. (4), we
focus on the reconstruction of the gap function �(ω), com-
pletely omitting the reconstruction of Z (ω) for now.

IV. DEFINITION OF THE THEORETICAL
BENCHMARK MODEL

A. Superconducting state

As a starting point, we model the properties of the super-
conducting state. The superconducting part of our benchmark
model (BM) corresponds to the theory of the Dynes super-
conductor (DS) [3,41,51–53]. Our choice is based on the
fact that the DS theory is a nonperturbative generalization
of the Bardeen-Cooper-Schrieffer (BCS) theory. The super-
conducting pairing interaction of electrons into Cooper pairs
is characterized by the value of the BCS gap �0. Within
DS theory, we enrich superconducting pairing together with
pair-breaking and pair-conserving scattering processes. These
are represented by the presence of the scattering rates � and
�s. The advantage of the DS theory is its simplicity (once
formulated) and validity in different regimes comparing val-
ues of all involved energy scales characterized by �0, �,
�s, and ω. Also, DS proves to be applicable to all sorts of
sample materials, coming from various areas of research. For
example, macroscopic NbN samples used in superconducting
cavities applications [53,54], or single crystals of La2Ni2In
[55], which is interesting with regard to the formation of the
quantum critical point (QCP), where, as already discussed
earlier, the system is transitioning among different phases
[32].

If we want to consider the DS theory as the superconduct-
ing part of our BM, we have to specify functions �(ω) and
Z (ω), introduced in Eq. (2), in the form presented in Ref. [3]:

�α (ω) = ω�0

ω + i�
,

Zα (ω) =
(

1 + i�

ω

)⎛⎜⎝1 + i�s√
(ω + i�)2 − �2

0

⎞⎟⎠. (11)

We plot the BM superconducting gap function �1,α (ω) +
i�2,α (ω) together with values of the considered parameters in
Fig. 1(a). Our main goal in Sec. V will be the reconstruction
of its behavior. Notice also that the influence of nonzero �s

would lead just toward a larger effect of smearing of the
normal state density of states, since �n = � + �s; therefore,
focusing on the most challenging case, we consider �s = 0.

B. Normal state

To reconstruct the superconducting properties of the un-
derlying state and distinguish them from the normal state,
we have to specify Nn,e(ω) [which also specifies its Kramers-
Kronig partner Kn,o(ω)] and Nn,o(ω) behavior in Eqs. (9) and

FIG. 1. Evaluation of the BM considering values �/�0 = 0.3,
and �s/�0 = 0, αe = −1/3, �e/�0 = 5, αo = 0.2, and �o/�0 = 5.

(10). In principle, we have only two requirements for the
form of the density of state in the normal state. First is the
local minimum of the tunneling density of states, caused by
the plausible Altshuler-Aronov effect [50]. This effect could
potentially disguise the properties of the superconducting gap,
and therefore it has to be distinguished in the extraction pro-
cess of the gap function. Our second requirement is Nn,o(ω) �=
0, since we also want to demonstrate the solution of Eq. (10)
in order to reconstruct the function �̃(ω). Using the properties
of the analytic rational complex functions ρn(x) described in
Appendix A, we model the normal state properties in the form

Ñ0,α (ω) = 1 + αe

1 − iω/�e
+ iαo

1 − iω/�o
,

= 1 + αeρ0(ω/�e) + iαoρ0(ω/�o). (12)

Nonzero parameters αe, αo, �e, and �o specify the properties
of the minimum and asymmetry around the Fermi energy in
the normal state. We plot the BM normal Nn,α (ω), BM super-
conducting Ns,α (ω), and BM superconducting with constant
normal nα (ω) densities of states using the set of Eqs. (4), (9),
(10), (11), and (12) in Fig. 1(b). We specify the values of the
considered parameters in the caption of the same figure. We
also highlight the amplitude of the original καKα,0,o term from
Eq. (8) in orange.

At the end of this section, let us recall all of the considered
parameters in our particular model. Seven parameters of the
BM are �0, �, �s, αe, �e, αo, and �o. For simplicity, we use
nondimensional units �X /�0, which means that we have to
specify six numbers.

We also want to call attention to Appendix D, where we
introduce and subsequently reconstruct a more complicated
model. However, for explanatory purposes of solving tasks
ordered according to their difficulty level, we present in detail
the BM model first.
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FIG. 2. Odd parts of the normal and superconducting densities of
states, together with the illustrated relation between the values ω and
�̃(ω).

V. SOLUTION

Throughout this section, we use the knowledge of the
theory introduced in Sec. II. We provide step-by-step reverse
engineering reconstruction of the superconducting gap func-
tion from Eq. (11). We use only data of the normal Nn,α (ω)
and superconducting densities of states Ns,α (ω), generated in
the previous section.

A. Solution for ˜�(ω)

First, let us focus on Eq. (10) relating the odd parts of the
densities of states. We show the main idea of the solution
in Fig. 2. Basically, we have to identify intervals on which
Ns,o(ω) and Nn,o(�̃(ω)) are monotonous functions up to the
point where they actually merge. Next, inspecting the func-
tions on the assumed interval, we determine the value of �̃(ω)
for which Nn,o(�̃(ω)) = Ns,o(ω). The result of the described
procedure considering the BM model is shown in Fig. 3. We
compare the assumed value of �n/�0 and the determined
function �̃(ω)/�0 together with the BM properties which re-
sult from the combination of Eqs. (2) and (11) and parameters

FIG. 3. Comparison of BM properties �̃α and �̃α together with
the ones assumed and determined so far by the solution of Eq. (10).

specified in the caption of Fig. 1. From the definition of the
auxiliary function �̃(ω) in Eq. (2), we see that once we are in
the limit where �(ω) → 0, we can assume �̃(ω) → ω.

B. Solution for ñ(ω)

Here, we address the reconstruction of n(ω) by solving
Eq. (9). In the beginning, purely for the purpose of controlling
the convergence of the resulting integrals, let us rearrange
Eq. (9) into the form

Ns,e(ω) − Nn,e(�̃(ω)) = (n(ω) − 1)Nn,e(�̃(ω))

− κ (ω)Kn,o(�̃(ω)). (13)

Now, since n(ω) + iκ (ω) is, up to an additive constant, the
analytic function of ω in the upper-half plane of the complex
space, we can expand n(ω) − 1 into a series of complex, an-
alytic (in the upper-half plane of the complex space), rational
eigenfunctions ρn(x) of the Hilbert transformation, introduced
in Ref. [56] and described in Appendix A:

n(ω) − 1 =
∞∑

k=−∞
akρk (ω/
). (14)

The task is to find the values for the coefficients ak .
After integrating both sides of Eq. (13) multiplied by the

complex conjugated eigenfunction ρ∗
m(ω) and using the or-

thogonal relation from Eq. (A1), we are left with the linear set
of equations, defined as

bm = Mml al , (15)

where of course

bm = 1

π

∫ ∞

−∞
dωρ∗

m(ω)[Ns,e(ω) − Nn,e(�̃(ω))], (16)

Mml = 1

π

∫ ∞

−∞
dωρ∗

m(ω)ρl (ω) × [Nn,e(�̃(ω))

+ i sgn(l )Kn,o(�̃(ω))]. (17)

Now, we can inverse the matrix M introduced in Eq. (15) and
express the coefficients al as

al = M−1
lm bm. (18)

In Appendix B, we prove (i) matrix M is real, and (ii) in the
special case when Nn,e(ω) = const, matrix structure reduces
to M = constI and al = bl/const, as it should.

Evaluating coefficients bm in Eq. (16) and matrix elements
Mml from Eq. (17) taking −9 � m, l � 9 by using our BM
and Eq. (18), we can easily get values of the coefficients al .
Since the rational functions ρk (x) used in Eq. (14) require
characteristic energy scale 
, we use 
 = �0.

Using Eqs. (14) and (A2) we can now express the fully
reconstructed ñ(ω). We compare our result marked as ñ =
n + iκ with the BM Dynes-like ñα = nα + iκα in Fig. 4. In
Fig. 5, we plot the full even part of the reconstructed density of
state in the superconducting regime Ns, together with the even
part of the original BM Ns,e,α . The plotted comparison (or the
evaluated Ns − Ns,e,α) can be used in order to fix a sufficient
number of the used eigenfunctions ρk (x) and energy scale 
.
An unnecessarily large value of 
 causes the eigenfunctions
ρk (x) to drop to 0 very slowly, which is a problem since
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FIG. 4. Comparison of the calculated n(ω) and κ (ω) together
with the BM, labeled by the index α.

we integrate within the finite region in Eqs. (16) and (17)
(simulating the case of having the experimental data). On the
other side, a very small value of 
 forces us to consider a large
number of ρk (x). The optimal value of 
 can minimize the
difference of |Ns − Ns,e,α|, together with a reasonable number
of the considered eigenfunctions.

C. Direct inversion for �(ω)

Within this section, we apply the �(ω) extracting method
originally proposed in Ref. [57]. We use it in the same manner
as in Ref. [21]:

�dir(ω) = ω
√

1 − ñ(ω)−2. (19)

The obtained results describing the real and imaginary parts
of �dir(ω) = �1,dir(ω) + i�2,dir(ω) can be seen in Fig. 6.
Despite the simplicity of the direct inversion method, we can
immediately witness its drawbacks in cases when |ω| � |�0|.
As can be seen from Eq. (4), or Eq. (19), the accuracy of
the determined �dir(ω) is suppressed, since this region, even
for the relatively precisely reconstructed ñ(ω) (see Fig. 4),
is dominated by the value of ω. However, while we limit
ourselves to the region below the gap, |ω| � |�0|, we see
that the extraction of �dir(ω) leads to a plausible result in
comparison with the considered BM.

FIG. 5. Even parts of the BM superconducting density of states
(green) and the one expanded to the set of eigenfunctions (see the
text) ρk (x) (black).

FIG. 6. Gap function �dir(ω)/�0 (upper panel), together with its
detail (lower panel), obtained by direct inversion and compared to
the original gap function �α (ω)/�0 from the BM being the Dynes
superconductor.

D. Fitting for �(ω)

As we have seen in Sec. V C, if we want to extract the
gap function out of the already reconstructed ñ(ω), we need
a more accurate method. Therefore, motivated by Ref. [21],
we use the verified analytic eigenfunctions from Appendix A
once again. Now, we expand the searched gap function
�fit(ω) as

�fit(ω) = �0 + 2
N−1∑
k=0

ckρk

( ω

�

)
, (20)

FIG. 7. Evolution of the cost function integral Fc with the num-
ber of considered functions ρk (x) and their optimal values for the
coefficients ck . The inset shows values of the coefficients c0, . . . , c8

minimizing Fc defined in Eq. (21). The purpose of the black line is to
guide the eye.

224521-6



ADVANCED APPROACH OF SUPERCONDUCTING GAP … PHYSICAL REVIEW B 106, 224521 (2022)

where we also need to specify (i) the number N , determining
the number of ρk (x) functions and thus how many coefficients
ck we need to fix, and (ii) the energy scale �.

To fix �, we use an educated guess based on the results
from the previous section plotted in Fig. 6. First, we limit
ourselves to the region |ω| � |�0|. Second, even without
assuming any particular microscopic model, in this regime
we can simply suggest �(ω) ≈ (ω/λ)

2 − i(ω/λ). Following
fitting results to the value of λ = 0.32�0 and reflecting the
fact that in principle this scale can only be valid close to
ω ∼ 0, we take this value into reasonable consideration, and
at the end we fix � = 0.2�0.

Next, to find values of the coefficients ck in Eq. (20), we
define the following cost-function integral:

Fc({c0, . . . , cN−1}) ≡
∫ ω0

0
dω

∣∣∣∣ ñ(�fit(ω), ω)

ñ(ω)
− 1

∣∣∣∣
+

∫ ∞

ω1

dω

∣∣∣∣ �fit(ω)

�∞(ω)
− 1

∣∣∣∣, (21)

which consists of two contributions. The first one, dom-
inating the cost-function value, uses ñ(ω), which is the
function determined by the expansion in Eq. (14) together
with the coefficients al determined from Eq. (18). The func-
tion ñ(�fit(ω), ω) is Eq. (4) combined together with Eq. (20).3

The scale ω0 represents the natural boundary beyond which
ñ(ω) ≈ 1. For our purposes, we assume ω0 = 5�0.

The second, order of magnitude smaller, term of
Eq. (21) represents just the bookkeeping property of the
gap function approaching the BCS-like real-part-constant
limit form �∞(ω) ≈ �0 + i�2,∞(ω) assuming ω � ω1 �
�0. The imaginary part �2,∞(ω) ∝ 1/ω preserves the ana-
lytic behavior maintained by the Kramers-Kronig relations.
The full form of �∞(ω) results from the sum rule derived and
fully explained in detail in Appendix C:

�∞(ω) ≈ �0 + i
2�

ω

N−1∑
k=0

(−1)kck . (22)

In our case, we fix ω1 = 10�0, which justifies all the assump-
tions used in Appendix C.

We plot the results of the numerical minimization of the
Fc cost-function integral from Eq. (21) as a function of N in
Fig. 7. As we expect, with the increasing number of consid-
ered coefficients N , the value of Fc can be optimized to lower
values. However, upon adding more optimization parameters
in the form of the coefficients ck , the parameter space grows
as well and so does the required time for their optimization.
In our case, it proves sufficient to explore N � 9.4

We show the resulting optimized coefficients ck for N = 9
in the inset of Fig. 7. Notice that the absolute value of the
coefficients is going to zero with increasing k. We show results

3We remind the reader that the known or assumed attributes used
for constructing Fc are coming from the so far reconstructed ñ(ω)
[not ñα (ω), describing BM].

4It is natural to expect that one will need a similar number of
eigenfunctions ρk (x) to describe the gap function as was needed in
order to reconstruct ñ(ω) in Sec. V B.

for the resulting gap function �fit(ω) compared with the BM
model �α (ω) and �dir(ω) (all in units of �0) in Fig. 8. As we
can see, the fitting method works with a margin of error on the
level of the thickness of the line for all considered energies.
We consider this accuracy to be sufficient for our particular
example. In Appendix D we elaborate on the reconstruction
of the even more complicated model, including a more chal-
lenging form of the microscopic gap function and noise.

Coming back to the message of the inset in Fig. 7, we
can see that the most important coefficient c0 is in absolute
value close to the value �0/2, while the rest is suppressed.
Our results are much more easily understood once we realize
that the sought after �(ω) coming from the superconducting
part of our BM model defined by Eq. (11) can also be writ-
ten as �α (ω)/�0 = 1 − ρ0(ω/�). Once we compare it with
our �fit(ω) expansion defined in Eq. (20), we immediately
notice that in the case of the perfectly reconstructed ñ(ω) and

FIG. 8. (a) Gap functions reconstructed by fitting �fit(ω)/�0

(black and black-dot-dashed lines) compared with the BM Dynes
gap function �α (ω)/�0 (orange-dot-dashed and green-dashed lines).
For completeness, we show also the directly inverted gap func-
tion �dir(ω)/�0 (blue and red). Panel (b) captures details at lower
energies 0 � ω/�0 � 5. Control panel (c) shows ñ(ω) using gap
functions from (a) and (b).
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properly estimated scale �, we should have just one nonzero
series coefficient a0 = −�0/2. Our numeric procedure con-
firms this idea nicely once we fix the scale � = �. The values
of the coefficients plotted in the inset of Fig. 7 are close
to this behavior, since the estimated value of � = 0.2�0 is
close to our chosen value of the pair-breaking scattering rate
� = 0.3�0. This sanity check is also one of the reasons why
we considered the superconducting sector of the BM in the
form of the DS in the first place.

VI. CONCLUSIONS

To briefly summarize the main results, we conclude that
our developed extraction method is shown to work accurately
in cases with relatively simple behavior of the microscopic
gap function. Results obtained in Appendix D suggest that
in cases with more effects, and with different energy scales,
as well as included noise, the extraction method is shown
to have a decent qualitatively informative value. Separation
of the superconducting dos function n(ω) and normal state
density of states Nn(ω) works well for both BM as well as
MCBM. Computational time reduction in cases when we want
to include a large number of basis functions within the fitting
method represents one of the directions for further develop-
ment and improvement of the introduced method.

Application to data

Of course, the plan is to apply our method to the data from
the experiment. Let us therefore summarize the main required
properties of the appropriate data. In principle, we need the
tunneling densities of states in the normal and superconduc-
tive state, which fulfill the following requirements: (i) They
are measured on the sufficiently large energy intervals |ω| �
20|�0|, with high resolution δω ≪ �0, so we can accurately
construct their Kramers-Kronig partners; and (ii) they have
nonzero odd parts and low enough noise to identify these odd
parts in order to exploit Eq. (10).

Published data that are almost suitable for our method
are found in Ref. [10]. The low-temperature measurements
of the tunneling conductance dI/dV in the superconducting
state could potentially be used as the input superconducting
density of states. Published data have low noise and very
good resolution, and they are measured in the wide interval
of (−27 mV, 27 mV). Meanwhile, the value of the super-
conducting gap is roughly 1.2 mV. However, the biggest
drawback, considering our purposes, is the lack of measure-
ments of the low-temperature tunneling conductance in the
normal state (e.g., above the transition driven by the exter-
nal magnetic field). If those data were provided, we could
proceed. Nevertheless, this example clearly shows that our
procedure, in principle, is technically completely feasible.
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FIG. 9. Real (upper panel) and imaginary (lower panel) parts of
the basis functions ρn(x) for n = 0, . . . , 5. Note that, with increasing
n, the period of oscillations at small x increases and, at the same
time, the largest nodes xn of both components grow [21]. The overall
shape of the basis functions explains why a more lengthily expanded
function will require a larger number of eigenfunctions in order to
reconstruct it accurately.

APPENDIX A: RATIONAL FUNCTIONS

In this Appendix, we remind the reader of the basic prop-
erties of rational, analytic (in the upper half-plane of the
complex space), orthogonal basis functions from Ref. [56],
defined in the form

ρn(x) = (1 + ix)n

(1 − ix)n+1
, n = 0,±1,±2, . . . ,

together with their orthogonality relation,5

1

π

∫ ∞

−∞
dxρ∗

n (x)ρm(x) = δnm. (A1)

Equation (A1) implies that the coefficients in the expansion
of the function f (x) = ∑

n anρn(x) can be calculated as

an = 1

π

∫ ∞

−∞
dxρ∗

n (x) f (x).

The first few functions ρn(x) are shown in Fig. 9.

5It is good to remember that once we use this mathematical equa-
tion in physics, where we are confronted with dimensional quantities,
we are left with

1

π�

∫ ∞

−∞
dωρ∗

n

( ω

�

)
ρm

( ω

�

)
= δnm,

where � is a suitable energy constant.
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The crucial point to observe is that ρn(x) are eigenfunctions
of the Hilbert transform [56], i.e., they satisfy

1

π
P

∫ ∞

−∞

dxρn(x)

x − y
= i sgn(n)ρn(y), (A2)

where P
∫

dx denotes the principal value integration.

Expansion of the constant function

To demonstrate some of the properties of ρn(x), let us
expand the simplest nonzero case f (x) = 1. We can examine

1

π

∫ ∞

−∞
dxρn(x) = 1

π

∫ ∞

−∞
dxρ∗

n (x), (A3)

=
⎧⎨⎩(−1)n for n ∈ {0, 1, . . . ,∞},

(−1)n+1 for n ∈ {−∞, . . . ,−2,−1}.
(A4)

The proof (by using the induction method) assumes branch
k ∈ {0, 1, . . . ,∞}:

Proof. (a) For case k = 0, obviously,

1

π

∫ ∞

−∞
dxρ0(x) = 1

π

∫ ∞

−∞

dx

1 − ix
= 1.

(b) The proof for n = k + 1 assumes (A3) is true for n = k,
where k ∈ {0, 1, . . . ,∞}:

1

π

∫ ∞

−∞
dxρk+1(x) = 1

π

∫ ∞

−∞
dxρk (x)

1 + ix

1 − ix

= 1

π

∫ ∞

−∞
dxρk (x)

(
2

1 − ix
− 1

)
= 2

π

∫ ∞

−∞
dxρk (x)ρ0(x) − (−1)k

= 2

π

∫ ∞

−∞
dxρk (x)ρ∗

−1(x) + (−1)k+1

= (−1)k+1.

In the fourth line we used the symmetry relation ρl (x) =
ρ∗

−l−1(x), and in the fifth we used the orthogonality relation
(A1).

Now, we focus on the proof of the second branch
of Eq. (A4), which represents cases in which k ∈
{−∞, . . . ,−2,−1}:

Proof. At first, let us rewrite Eq. (A3), which holds true
generally, for all k ∈ Z in the following form, which is the
most illustrative for our purposes:

1

π

∫ ∞

−∞
dxρ−|k|(x) = 1

π

∫ ∞

−∞
dxρ∗

−|k|(x)

= 1

π

∫ ∞

−∞
dxρ|k|−1(x)

= (−1)|k|−1

= (−1)−k−1

= (−1)k+1.

In the second line, we used the symmetry ρ∗
−|l|(x) = ρ|l|−1(x).

In the third line, we realized that the index |k| − 1 ∈

{0, 1, . . . ,∞}, so we can use the already proven result for the
upper branch of Eq. (A4). In the fourth line, we realized that
assuming k < 0, |k| = −k. The fifth line is just trivial algebra
in order to simplify the result and finish the proof of the lower
branch of Eq. (A4).

The proven result is shown to be useful also for further
purposes explained in Sec. V D and Appendix C. In this Ap-
pendix, we just combine Eq. (20) together with Eq. (A4), so
we are left with∫ ∞

−∞

dω

2π
[�fit(ω) − �0] = �

N−1∑
k=0

(−1)kck . (A5)

Expansion of the constant function f (x) = 1, resulting in
Eq. (A4), also shows that in principle we need to use an
infinite amount of expansion coefficients. To avoid this behav-
ior in our presented framework, we assume that the behavior
of the superconducting properties naturally approaches those
from the normal state, considering energy scales much larger
than the superconducting gap. Therefore, we always expand
the difference between the superconducting and normal state,
which diminishes to zero for |ω| ≫ �0.

APPENDIX B: PROPERTIES OF THE MATRIX M AND
OTHER TECHNICAL DETAILS

In this Appendix, we comment on a few properties of the
matrix M introduced in Eq. (17) and technical details of the
recipe described in Sec. V.

(i) Matrix Mml is real.
Proof. The structure of the integral is simply

I =
∫ ∞

−∞
dω

N∏
k=1

(ek (ω) + iok (ω)), (B1)

where e(−ω) = e(ω), o(−ω) = −o(ω) are real even or odd
functions, and N = 3 in our specific case. After the transfor-
mation ω → −ω inside I , we can immediately notice I = I∗
for any considered N , since for the imaginary part we integrate
an odd function on the even interval. This means that I in
Eq. (B1) is real.

(ii) If Nn,e(ω) = const, then Mml = const δml .
Proof. All we need to do is to realize that the square brack-

ets in Eq. (17) will be const, since the Kramers-Kronig partner
to a const is 0. Next, we apply the orthogonality relation
Eq. (A1) and the coefficients an = bn/const.

(iii) Also, in the numerical calculation, infinities in (14),
(16), and (17) will be replaced by finite (but sufficiently large)
numbers.

APPENDIX C: �∞(ω)—�fit(ω) ASSUMING ω � �0

We start with the full Kramers-Kronig equation for the
imaginary part of the gap function:

�2(ω) = P
∫ ∞

−∞

dω′

π

�1(ω′) − �0

ω − ω′ . (C1)

Now, assuming very large ω � �0 representing the energy
scale on which we can assume �1(ω) ≈ �0 and that the ω′
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term in the numerator of Eq. (C1) is negligible, we can write

�∞,2(ω) ≈
∫ ∞

−∞

dω′

πω
(�1(ω′) − �0) = 2�

ω

N−1∑
k=0

(−1)kck,

(C2)

where we used Eq. (A5) in the last step in order to derive
Eq. (22) in the main text.

APPENDIX D: MORE COMPLICATED
BENCHMARK MODEL

In this Appendix, we want to demonstrate that the method
introduced and explained in the main text can reconstruct an
even more complicated model than the BM from the main text.
In principle, the model that we show here is based on the most
complicated theory model, reconstructed in Ref. [21]. How-
ever, in order to go beyond its capabilities as well as fulfill
the requirements of applicability of the approach presented in
this manuscript, we add a nonzero odd part to the normal state
behavior, and we also add a completely random noise on top
of the normal and also on the top of the superconducting state.
The level of noise is kept at the level of 5% of the maximal
amplitude of the odd part of the normal state density of states.

1. Definition

For further purposes, we refer to our more compli-
cated model just as the more complicated benchmark model
(MCBM). We define the superconducting part of the MCBM
by the gap function �β (ω) (originally used in Ref. [21]) in the
form

�β (ω) = �∞ + (�0 − �∞)F (ω) − i��0

ω + i�
,

F (ω) = i

π

[
�

(
1

2
+ ω + ω∗

2π iη

)
− �

(
1

2
+ ω − ω∗

2π iη

)]
,

Zβ (ω) =
(

1 + i�

ω

)
. (D1)

The model of the superconducting gap function �β (ω) aims at
describing different effects of the superconducting behavior.
First, the gap value reduction is represented by the parameter
�0 at the energy scale ω∗, whereas the scale of the change
is defined by the parameter η. Secondly, we also consider
the effects of the Dynes-like pair-breaking scattering rate at
a much smaller energy scale (in comparison with the value of
the gap) represented by the term including parameter �.

As in the main text, Fig. 10(a) represents the gap function
�β (ω) = �1,β (ω) + i�2,β (ω), which we want to reconstruct
using data from the related densities of states.

To model the normal state, we use Eq. (12) once again,
but this time the normal state minimum in the density of
states is significantly thinner and deeper in comparison with
the one presented in Fig. 1(b) of the BM model. We present
the evaluation of the MCBM properties in the normal and
superconducting densities of states in Fig. 10(b).

The effect of the Altshuler-Aronov minimum from the
normal state is clearly visible if we compare the black line
representing the superconducting dos function nβ (ω), with the
red curve representing the actual density of states Ns,β (ω),

FIG. 10. (a) Gap function of the MCBM model defined by
Eq. (D1) normed on the value of �∞. We use parameter values
�/�∞ = 0.02, �0/�∞ = 0.5, ω∗/�∞ = 1.8, and η/�∞ = 0.1. In
part (b) we evaluate the full MCBM defined by Eq. (8). The nor-
mal state density of states Nn,β (ω), represented by the dot-dashed
blue line, is defined by Eq. (12) using αe = −0.466, �e/�∞ = 1.2,
αo = 0.2, and �o/�∞ = 5.

with the minimum in the normal state. Notice the influence
of the deeper minimum on the superconducting properties,
which are as follows: (i) Relatively small impact inside the re-
gion of the smeared gap itself. (ii) Significant influence on the
magnitude of the coherence peaks. (iii) Deformed signature
from the reduction of the gap function at the scale ω∗. MCBM
also represents an example, which is the non-negligible effect
of the second term of Ns,e(ω) from Eq. (8) of the main text.
We plot and highlight its absolute value with the orange curve
in Fig. 10(b).

The odd parts of the densities of states are presented in
Fig. 11. It has been created in the same manner as the one
using the BM model and presented in Fig. 2 of the main text.
In Fig. 11, we can also notice the level of the included random
noise.

2. Solution

Having fully defined the properties of the MCBM model,
we can take the data of the resulting densities of states and we
can proceed to the extraction of the superconducting proper-
ties.

Solution for �̃(ω). First, following the procedure described
in Sec. V A, we proceed to the reconstruction of �̃(ω). We
show the result in Fig. 12, where we can also recognize the
effect of random noise. Let us note that we assume �̃(ω) = ω,
considering ω � 4�∞. Focusing on the results of the re-
constructed �̃(ω) (blue curve) with the actual MCBM model
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FIG. 11. Odd parts of the normal Nn,o,β (ω) and superconducting
Ns,o,β (ω) densities of states for the MCBM model.

(green dashed curve), we are overall satisfied with the result
so far.

Solution for ñ(ω). Next, we continue with the reconstruc-
tion of ñ(ω) based on Sec. V B. Since the whole recipe
is already fully described in that section, together with the
referenced Appendixes, we can skip directly to the results
presented in Fig. 13.

As we can notice, our method can nicely and qualitatively
reconstruct all of the incorporated properties of the supercon-
ducting state on the level of n(ω) and κ (ω), despite the deep
suppression (rather harsh) assumption �̃(ω) ≈ �n = �, or the
included noise.

Let us note that this result is important on its own since
n(ω) describes the properties of the superconductor with the
constant density of state in the normal state. The properties
of the κ (ω) are guaranteed by being the Kramers-Kronig
partner of n(ω) since we compound the analytic ñ(ω) from
the analytic basis functions ρn(ω).

We also show a comparison of the even part of the su-
perconducting part of the original model Ns,e,β (ω), together
with Ns,e(ω), being expanded to the basis functions ρk (x)
in Fig. 14. Despite all of the mentioned complications, the

FIG. 12. Comparison of MCBM properties together with the
ones we assumed and determined so far by solving Eq. (10).

FIG. 13. Comparison of the calculated n(ω) and κ (ω) together
with the MCBM.

FIG. 14. Even parts of the MCBM superconducting density of
states (green) and the reconstructed one (black).

FIG. 15. Gap function �dir(ω)/�∞ (upper panel) together with
its detail (lower panel) obtained by direct inversion and compared
to the gap function �β (ω)/�∞ from the MCBM being defined by
Eq. (D1).
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FIG. 16. Evolution of the cost function integral Fc with the num-
ber of considered functions ρk (ω) and their optimal values for the
coefficients ck . The inset shows values of the coefficients c0, . . . , c19

minimizing Fc, defined in Eq. (21). The purpose of the black line is
to guide the eye.

reconstruction of the superconducting state has turned out
quite well until now. Note that we assume 20 basis functions
ρk (ω).

Direct inversion for �(ω). The last thing that needs to
be done is to extract �(ω) similarly to what was done in
Secs. V C and V D. As we have already seen in the main text,
the direct inversion method works well in reconstructing the
properties on the scale ω � �∞, but it completely fails on the
scale ω � �∞. We can see exactly this behavior in Fig. 15.

Fitting for �(ω). The very last step that needs to be done is
to extract �(ω) by the method of fitting. Once again, proceed-
ing exactly as described in Sec. V D, we come to the result that
shows the minimization of the cost function Fc together with
the rising number of considered basis functions N in Fig. 16.

For completeness, let us note that we clearly have multiple
energy scales involved in the evolution of ñ(ω), and so also
for �(ω). Therefore, we assume probably the most simple
and sensible combination of the parameters: � = 
 = �∞
and ω0 = ω1 = 3�∞, required by the definition of Fc from
Eq. (21).

As can be noticed, beyond N � 15 the changes in the
considered cost function are relatively small. This property
can be understood through the behavior of the ck coefficients,
which come close to 0 for larger N . This behavior is presented
in the inset of Fig. 16.

The final result of the extracted �fit(ω) is presented in
Fig. 17. As can be seen in Fig. 17(a), the qualitative behavior
of the extracted �fit(ω) corresponds to the features assumed
in our challenging MCBM model. However, in Fig. 17(b) we
can notice that the directly extracted �dir(ω) works better
assuming the energy scale ω → 0. In Fig. 17(c) we can see
that either �fit(ω) or �dir(ω) lead to very similar results for
n(ω), which is in very good agreement with the assumed
nβ (ω) of the original MCBM model.

Assuming all of the complications of the MCBM model,
the reconstruction of the dos function is satisfactory.

FIG. 17. (a) Reconstructed gap functions by fitting �fit(ω)/�∞
(black and black-dot-dashed lines) compared with the MCBM gap
function �β (ω)/�∞ (orange-dot-dashed and green-dashed lines).
For completeness, we show also the directly inverted gap function
�dir(ω)/�∞ (blue and red). Panel (b) captures details at lower
energies 0 � ω/�∞ � 3. Control panel (c) shows ñ(ω) using gap
functions from (a) and (b).

Subsequent extraction of the gap function qualitatively reveals
the main physically relevant characteristics of the MCBM
model gap function, which are as follows: (i) Drop of the
�1(ω) at ω close to 0 caused by the very small Dynes �

parameter. (ii) Step caused by the pair breaking mode at
ω∗ = 1.8�∞. Values of the gap function �1(ω) = 0.5�∞
below ω∗ and �1(ω) → �∞ for ω → ∞. Further qualitative
improvement can be achieved by involving more basis func-
tions and more fitting parameters in the expansion for �fit(ω).
The time-cost of such an attitude can be one of the things to
address in further development of the introduced method.
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