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Majorana zero modes in a magnetic and superconducting hybrid vortex
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We propose and investigate a new platform for the realization of Majorana zero modes in a thin-film
heterostructure composed of an easy-plane ferromagnet and a superconductor with spin-orbit coupling. The
system can support an energetically favorable bound state comprising a magnetic vortex and a superconducting
vortex. We show that a hybrid vortex thus created can host a robust zero-energy Majorana bound state at its
core over a wide range of parameters, with its partner zero mode located at the boundary of a disk-shaped
topological region. We identify a novel mechanism underlying the formation of the topological phase that,
remarkably, relies on the orbital effect of the magnetization field and not on the usual Zeeman effect. The
in-plane components of magnetization couple to electrons as a gauge potential with nonzero curl, thus creating
an emergent magnetic field responsible for the gapped topologically nontrivial region surrounding the vortex
core. Our construction allows the mobility of magnetic vortices to be imposed on the Majorana zero mode at
the core of the superconducting vortex. In addition, the system shows a rich interplay between magnetism and
superconductivity which might aid in developing future devices and technologies.
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I. INTRODUCTION

One of the primary thrusts in current condensed matter
physics is the search for new platforms capable of supporting
exotic quasiparticles of which the Majorana particle is of
special significance. These emergent Majorana excitations are
topologically protected against local perturbations and exhibit
non-Abelian exchange statistics [1–3], making them ideal to
store and manipulate quantum information via topological
qubits [4].

Initial theoretical proposals [5] showed that edge states
of a spinless p-wave superconductor in one dimension and
correspondingly vortices in a spinless px + ipy phase in two
dimensions will host Majorana zero modes. However, these
systems do not occur naturally. Consequently, a large re-
search effort was dedicated to realizing the same topological
properties in more conventional systems leading to proposals
involving the surface states of a topological insulator [6],
semiconductor-superconductor heterostructures [7–9], chains
of magnetic adatoms [10] and many more.

One possible and realistic implementation of topological
p-wave superconductivity is in the form of superconducting
heterostructures. Such heterostructures require the presence
of a large superconducting gap, strong spin-orbit coupling
(SOC), and a time-reversal breaking field to obtain an ef-
fective topological superconductor [7,9]. While a simple
construction in principle, it was soon realized that it can
be difficult to obtain semiconductor wires with large-enough
SOC. This prompted alternate proposals where the need for
an SOC was circumvented by exchange coupling the spins
in the superconductor to noncollinear magnetic islands. In

particular, Choy et al. [10] showed that in the presence of a
chain of magnetic adatoms, where the spins of the adatoms
were not aligned, the s-wave order parameter converts to an
effective spin polarized p-wave superconductor with Majo-
rana modes at the end. This proposal was followed by a series
of works where a similar s-wave-to-p-wave conversion was
shown for a wire with a helical magnetic order, proximitized
to an s-wave superconductor [11–13]. In these constructions
the helical magnetic state is self-stabilized through an effec-
tive RKKY-type interaction mediated by the superconductor.
An analogous construction was used by Nakosai et al. [14] to
obtain a chiral p-wave superconductor in two dimensions by
proximitizing an s-wave superconducting slab to a magnetic
slab with a non-co-planar skyrmion-like arrangement of mag-
netic moments. In this chiral p-wave state, a vortex core was
predicted to host a Majorana zero mode (MZM). Recent ex-
periments have shown signatures of chiral topological phases
in ferromagnetic islands [15,16].

Building on these efforts Yang et al. [17] constructed a
heterostructure with a double winding skyrmion proximitized
to an s-wave superconductor, which produced stable MZMs
bound to the center of the skyrmion core. The isolation of the
MZM from the other states in the vortex core was enhanced
by increasing the winding. However, it is difficult to generate
skyrmion textures with high winding numbers; if one tries
to construct them by merging individual skyrmions with a
single winding, then the skyrmions tend to energetically favor
annihilation. What works is a heterostructure comprising a
single winding skyrmion in the ferromagnetic layer bound
to a superconducting vortex in the s-wave superconductor.
This construction hosts an MZM at the vortex core and the
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FIG. 1. System comprising a ferromagnet-superconductor het-
erostructure. The magnetic and superconducting vortex form an
energetically favorable hybrid vortex which hosts Majorana modes.

skyrmion-vortex system is bound together through an ex-
change coupling [18].

The nature of the coupling between the magnetic texture
and the proximitized superconductor was studied in Ref. [19],
where the authors showed that the magnetic moments gen-
erate supercurrents which in turn generate the interaction
between the superconducting vortex and the underlying mag-
netic texture. The current-current interaction reduces to an
effective magnetoelectric potential with a strength propor-
tional to the SOC and size of the magnetic moments. Hals
et al. [20] used this term to produce an energetically stable
bound state between a superconducting vortex and a magnetic
skyrmion and further showed how this composite object can
be manipulated by using a spin current to move the mag-
netic skyrmion in the magnet. The vortex being bound to the
skyrmion core is dragged along [20]. These works proposed a
setup where one could, at least theoretically, isolate an MZM
and move it around freely.

Inspired by this, here we investigate conditions for the
stability of a hybrid magnetic and superconducting vortex
pair in a heterostructure composed of ferromagnetic and su-
perconducting thin films shown schematically in Fig. 1. The
magnetic vortex is a defect native to an easy plane ferromag-
net, unlike the skyrmion, which exists as a soliton in the easy
axis ferromagnet. Such systems are rare in the natural state
but recent studies have shown that monolayer van der Waals
materials such as NiPS3 and CrCl3 have strong easy plane
character and nearly isotropic behavior within the easy plane
[21–24].

Another route to magnetic vortices is through domain walls
in two-dimensional uniaxial ferromagnets. For an easy axis
in the xy plane we have domain walls which interpolate be-
tween two states via a magnetic vortex and half vortices [25].
These strips can be fairly wide (around 600 nm) which is an
order of magnitude larger than the typical magnetic vortex
radius (∼10 nm) [26]. Thus we can isolate the vortex core
in the center of the magnetic strip which then interacts with
the superconducting vortex. A similar domain wall hosting
a vortexlike spin structure can form in the triangular chiral
antiferromagnets Mn3X (X = Sn/Ge). There the local easy
axis anisotropy creates a D3h symmetric environment, produc-
ing six magnetic domains which meet at a vortex [27,28]. At
the vortex core the magnetic normal mode structure ensures
a spin canting out of the kagome plane which provides the
necessary time-reversal breaking field to the superconducting

vortex [29]. The domain wall version of the magnetic vortex
is easier to generate than an isolated magnetic skyrmion, typ-
ically generated by melting skyrmion crystals which exist in
a very small temperature window of the phase diagram in a
chiral magnet [30].

We want to couple the magnetic vortex to a super-
conducting vortex in an s-wave superconducting film. The
superconducting gap of the order of 0.3–0.5 meV [16] is much
smaller than the exchange interaction energies of the magnetic
materials (particularly those where the vortex occurs at a
domain wall) which are of the order of 10 meV [31]. So the
magnetism is largely unaffected by the superconducting order
parameter. In addition, the superconductor-ferromagnet het-
erostrucure needs to have a Rashba interaction in order to form
a bound state [19]. For an insulating ferromagnet this Rashba
interaction can be sourced from the superconductor [32] or
through an interfacial Dzyaloshinsky-Moriya interaction in
the magnet. We use the former in our tight binding model.
The coupling between the two systems can be modeled as an
effective exchange interaction between the magnetic moments
and the spins of the electrons in the superconductor [20]. This
time-reversal symmetry breaking coupling is responsible for
the topological property of the superconductor. Note that the
magnetic field of the ferromagnet is confined to the magnetic
layer and does not penetrate the superconductor, much like the
electric field of a charged parallel plate capacitor.

We find that the magnetic vortex and the superconducting
vortex cores comprising the hybrid vortex form an energeti-
cally favorable state and exhibit a strongly attractive behavior
with an energy density that varies as a square of the core
separation. The question then is whether such a system can
host a Majorana bound state, without an external Zeeman
field, localized at the hybrid vortex, which we find to be
the case. Specifically one zero mode is located at the core
of the hybrid vortex and its partner at the outer ring of the
topologically nontrivial region centered at the core. We find
that the topological phase inside the ring is enabled by an
emergent orbital magnetic field effect and, interestingly, not
by the Zeeman field as would be the case in conventional mod-
els [7,9]. Majorana bound states in such hybrid vortices are
distinguished by their ease of manipulation via the magnetic
textures and by scalability.

General conditions for stability of such a hybrid vortex are
discussed in Sec. II B. Using a lattice model for this system
(Sec. II A), we then investigate the presence of Majorana
bound states in a stable hybrid magnetic and superconducting
vortex pair (Sec. III).

II. HYBRID VORTEX

We consider a heterostructure made of an in-plane ferro-
magnet proximitized to an s-wave superconducting film. The
ferromagnetic order parameter is represented by the magneti-
zation field m(r) that is related to the spin field through the
gyromagnetic ratio m = γ s. The magnetic soliton we want to
couple to the superconductor is the vortex shown in Fig. 1. The
corresponding magnetization configuration, detailed below,
is a solution to the Heisenberg energy density functional in
two spatial dimensions [33] and forms naturally without the
need for Dzylaoshinsky-Moriya interactions. This is unlike
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the skyrmion used in Rex et al. [18] and Hals et al. [20],
which exists only in an easy axis Heisenberg ferromagnet with
a substantial Dzyaloshinsky-Moriya interaction.

The magnetic vortex has spins mostly in the xy plane,
except at the core of the vortex where the spins are forced
to cant out of the plane by the exchange interaction. The
magnetization field m(r) can be represented by a unit vec-
tor field with a magnetization of length M, m(r) = Mm̂(r).
This length can be absorbed into the strength of the effective
exchange between the magnetization and the spins of the su-
perconductor. We denote the product of the two as a magnetic
exchange coupling strength, m0. The orientation of the unit
vectors is conveniently parametrized through two scalar fields,
�(r) and �(r), representing the polar and azimuthal angles,
respectively,

m̂(r) = [cos�(r)sin�(r), sin�(r)sin�(r), cos�(r)]. (1)

For the vortex centered at the origin the �(r) field obeys the
boundary conditions �(r → ∞) = π/2 and �(r = 0) = 0
or π . This is different from the magnetic skyrmion texture
considered by Rex et al. [18] and Hals et al. [20], where the
boundary conditions are �(r → ∞) = π (or 0) and �(r =
0) = 0 (or π ). The �(r) field encodes the winding number
defined as 2πnm = ∮

c dr · ∇�, where the integration contour
is taken to enclose the vortex center. The winding number can
be any integer, but we restrict ourselves to a singly quantized
vortex or antivortex corresponding to nm = ±1.

A. Microscopic model

We investigate the effect of coupling magnetic and super-
conducting vortices present in a two-dimensional heterostruc-
ture comprising a ferromagnet and an s-wave superconductor.
Our microscopic model focuses on the superconductor, incor-
porating the effect of the underlying magnetic layer through
an exchange coupling between the electron spins and the
magnetic moment. The spin configuration of the magnet is
considered to be frozen in this situation.

The Hamiltonian for an s-wave superconductor with spin-
orbit coupling in a two-dimensional (2D) geometry can be
written as H = ∫

d2r�†(r)H(r)�(r), where

H(r) =
[
− ∇2

2m∗ − μ + iα(σ y∂x − σ x∂y)

]
τ z

+ m0m̂(r) · σ + τ xRe�(r) − τ yIm�(r), (2)

with �†(r) = [ψ†
↑(r), ψ†

↓(r), ψ↓(r),−ψ↑(r)] the Nambu
spinor. Here μ is the chemical potential, m∗ denotes the ef-
fective electron mass, α is the Rashba spin orbit coupling,
and m0 ∝ M is an effective exchange coupling strength; σ j

and τ j are Pauli matrices acting in spin and Nambu space,
respectively.

A superconducting vortex with its center at rs = (xs, ys)
is modeled with open boundary conditions using the order
parameter

�(r) = �0tanh

( |r − rs|
2ξs

)
eiθs , (3)

where |r − rs| is the distance from the center of the vortex, ξs

is the superconducting coherence length that controls the size

of the superconducting vortex, and θs is the phase winding
around the vortex core. We define θs = nstan−1( y−ys

x−xs
), where

ns is the vorticity. In the presence of the SC vortex, we can
write ∇θs = nsφ̂s/rs where (φs, rs) are polar coordinates in
the frame where the superconducting vortex core lies at the
origin.

To this we add the ferromagnet with a vortex centered at
rm = (xm, ym) with a magnetization profile parameterized as
in Eq. (1). The helicity profile is chosen as � = nmφ + ϕ with
φ the polar angle, nm denoting its vorticity and ϕ being the
helicity. In addition we take �(r) = π

2 tanh (|r − rm|/2ξm),
with ξm controlling the size of the magnetic vortex core.

For numerical calculations it will be convenient to regular-
ize the Hamiltonian Eq. (2) on the square lattice leading to the
BdG lattice Hamiltonian of the form

Hsc =
∑
r,s,s′

{
c†

r;s(4t − μ)δss′cr;s′

+ [
c†

r;s

(−tδss′ − iuσ
y
ss′

)
cr+x;s′ + H.c.

]
+ [

c†
r;s

(−tδss′ + iuσ x
ss′

)
cr+y;s′ + H.c.

]}
+

∑
r

[�rc†
r;↑c†

r;↓ + H.c.]. (4)

Here r labels the coordinates of lattice sites, t is the nearest-
neighbor hopping amplitude, �r is the superconducting pair
field, and u is proportional to the spin-orbit coupling param-
eter, α. For the simulations in this paper, we take u = α

2a ,
where the lattice constant, a, is 1. The exchange field of the
ferromagnet is included as follows:

Hm =
∑
r,s,s′

c†
r,s

[
m(r) jσ

j
ss′

]
cr,s′ , (5)

where m(r) contains the spin texture of the ferromagnet. The
Hamiltonian of the composite system is then

H = Hsc + Hm. (6)

In the next part, we analytically study the interaction
between a magnetic and superconducting vortex using an
effective magnetoelectric free-energy density. We then com-
pare our analytical results with full numerical simulations
of the free-energy density using the composite Hamiltonian,
Eq. (6). We find that in certain ranges of the SOC strength
α and the magnetic exchange coupling strength m0 we get
a stable structure for a superconducting vortex bound to a
magnetic vortex.

B. Magnetoelectric free energy

Our heterostructure explicitly breaks inversion symmetry
which allows a Rashba SOC term in the superconductor. This
SOC induces a corresponding magenetoelectric interaction
between the supercurrent induced by the spin moments of
the ferromagnet and the supercurrent density already present
in the superconductor, say, from a vortex. Note that this
current-current interaction can be obtained by considering
an exchange interaction between the spin moments of each
system and then integrating out the fermions through their
propagator [19].
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The coupling can be expanded in powers of the SOC
strength α [19]. We now carry out the calculation of this
energy density for a magnetic vortex interfaced with a su-
perconducting vortex in order to study the stability of the
bound state between the two defects. The linear coupling
between the magnetization m(r) = m0m̂(r), see Eq. (1), and
the supercurrent Js ∝ ∇θs/2 − A is

FME = κ

∫
dr(ẑ × m) ·

(∇θs

2
− A

)
, (7)

where A is the magnetic vector potential and κ ∝ α.
In the heterostructure we consider, we place a magnetic

vortex at the origin. The profile of the magnetic vortex is
given by m(r) with the boundary conditions on the � field
chosen as �(r = 0) = 0 and �(r → ∞) = π/2. In addition,
we have the � field vorticity, nm, for a contour around the core.
In the superconducting layer we assume an order parameter
with a vortex core which can be displaced from the origin,
θs = ns arctan[(y − ys)/(x − xs)]. Here (xs, ys) is the location
of the superconducting vortex core. This can be used to calcu-
late the gradient of the phase in the planar polar coordinates,

θs

ns
= arctan

(
r sin φ − rs sin φs

r cos φ − rs cos φs

)
,

(8)

∇
(

θs

ns

)
= (r − rs cos φ̃)φ̂ − 2rrs cos φ̃ r̂

r2 + r2
s − 2rrs cos φ̃

,

where φ̃ = φ − φs. In the limit where the penetration depth
exceeds the core sizes λ � ξm, ξs, which will almost always
be the case for thin SC films [34], we can ignore the screen-
ing currents j = −A/4πλ2 induced by orbital [35] or dipolar
magnetic fields [36]. In addition, since no magnetic field pen-
etrates the superconductor we can take A to be constant. In
the following, we set A = 0. This is similar to the assumption
made by Hals et al. [20].

For the magnetic vortex we set the azimuthal field to
�(r, φ) = nmφ + ϕ and consider the situation where nm = 1.
The resulting free energy is given by

FME = κnsm0 f (rsm) cos ϕ,
(9)

f (rsm) = π

∫ ∞

rsm

dr sin �(r),

where rsm (in our setup rsm = rs) is the separation between
superconducting and magnetic vortex cores. Crucially, since
we have a magnetic vortex where the � field varies between
[0, π/2], this integral is always positive definite. Thus the
nature of the interaction, attractive or repulsive, between the
two cores is controlled by the product κnsm0 cos ϕ.

Note that this term vanishes for ϕ = π/2 and is maximum
for ϕ = 0. This can be anticipated from the supercurrent me-
diated interaction picture presented in Pershoguba et al. [19].
For ϕ = 0, the supercurrents induced by the magnetic vortex
are collinear with the superconducting vortex supercurrents.
This maximizes the interaction between the two. In the case of
ϕ = π/2, the induced supercurrent density from the magnetic
vortex is zero to first order in SOC, with some small second-
order corrections, and hence we have negligible interaction.
The transition between the two scenarios is shown in Fig. 5
and discussed in Sec. III in further detail. On evaluating the

integral in Eq. (9), for our chosen magnetization field, we find
the interaction energy between the vortex pair is quadratic in
the core separation rsm, FME ∝ ξm(rsm/ξm)2.

We can numerically calculate the free energy of the system
using the tight-binding Hamiltonian Eq. (4). The free energy,
F , of the BdG system is evaluated from the energy eigenvalues
En using the standard formula,

F = −2kBT
∑

n

′
ln

[
2cosh

(
En

2kBT

)]
, (10)

where the prime indicates summation over positive eigen-
values En > 0. In the limit of zero temperature, the above
equation simplifies to FT →0 = ∑′

n(−En). The formation of
the hybrid vortex is energetically favorable if the free-energy
minimum occurs when the superconducting and the magnetic
vortex overlap, i.e., rsm → 0. The conditions for the formation
of the hybrid vortex are summarized in Fig. 2. In these sim-
ulations, we fix the vorticity and the helicity of the magnetic
vortex as nm = 1 and ϕ = 0, respectively.

Taking F0 as the free energy when rsm = 0, we plot F̃ =
F − F0 of the hybrid vortex as a function of distance between
the magnetic and superconducting vortices in the region of
stability for different parameter choices in Fig. 2. Matching
our analytical prediction we see a quadratic dependence of the
mutual interaction energy on the core separation, rsm. Further,
we observe that the minimum of F̃ is stable at rsm = 0 when
the decay length of the magnetic vortex, ξm, is increased but
the parabola becomes narrower, indicating that the coefficient
of the quadratic interaction is dependent on ξm. Further, we
observe that F̃ remains nearly the same when the magnitude
of the exchange coupling, m0, is increased with the minimum
occurring at rsm = 0 as expected.

We have also numerically verified the linear dependence of
FME on α and m0. We observed that the variation with ϕ fol-
lows the cosine form near ϕ = 0 and ϕ = π/2 but deviates at
other helicities due to the contribution of higher-order terms.

The second order in SOC term can be written down as

F (2)
ME = β

∫
dr(∇mz × ẑ) ·

(∇θs

2
− A

)
, (11)

with β ∝ α2. We can calculate this term in the same con-
figuration with the magnetic vortex at the origin and the
superconducting vortex at rs. We will take the limit rsm(=
rs) → 0 and look at the leading order in rsm correction. Set-
ting A = 0 as before the integral reduces to:

F (2)
ME = βm0

2

∫
dr sin �(r)

(
∂�

∂r
r̂ × ẑ + 1

r

∂�

∂φ
φ̂ × ẑ

)
· ∇θs,

(12)

where ∇θs is shown in Eq. (8). We can drop the second term
∂�/∂φ when the magnetic vortex is at the origin. The re-
maining integral can be evaluated after noting that r̂×ẑ = −φ̂,
obtaining

2F (2)
ME = πβm0ns

{
cos

[
π

2
tanh

(
rsm

2ξm

)]
− 1

}
, (13)

for rsm � ξm and 2F (2)
ME = πβm0ns for rsm > ξm. To evaluate

the exact forms we have used the magnetization profile shown
in Eq. (1).
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FIG. 2. Left two panels: Energetically favorable regions in parameter space for hybrid vortex formation. With the magnetic vortex texture
(ξm = 1) fixed at the center of the system of size L = 21, the superconducting vortex core (ξs = 1) is moved along the diagonal starting at
the position. The yellow shaded regions in all plots correspond to the points in the parameter space where the free-energy minima roughly
correspond to the limit where the superconducting and the magnetic vortex are perfectly superimposed on each other (i.e., rsm = 0) thereby
forming a stable hybrid vortex. Regions of stability calculated for a magnetic vortex and superconducting vortex pair (ns = nm = 1) and for a
magnetic vortex and a superconducting antivortex pair (ns = −1, nm = 1). Right two panels: Calculation of free energy of the hybrid vortex
as a function of the distance between the magnetic and superconducting vortex. Here F0 is the free energy when rsm = 0. With the magnetic
vortex texture fixed at the center of the system, the superconducting vortex core is moved along the diagonal. Free energy is plotted for different
magnetic decay length parameters ξm at fixed m0 = −0.35 and for different exchange coupling m0 at fixed ξm = 1. The distance between the
magnetic and the superconducting vortex is normalized with respect to ξm. Here � = 0.3, μ = 0, t = 1.

The second-order term is bound from above and can take
a maximum value of (π/2)βm0ns unlike the first-order term.
This in addition to the fact that it appears at a higher order
in SOC ensures that the first-order term dominates except
when ϕ → π/2. Since F (2)

ME is independent of the helicity ϕ of
the magnetic vortex it dominates when ϕ → π/2 where FME
vanishes [see (7)]. Even in this situation this term is not suffi-
ciently large enough to produce a stable bound state between
the two vortices according to our numeric simulations of the
free energy.

C. Motion of the bound state

One of the key engineering features of binding supercon-
ducting vortices carrying an MZM to the magnetic vortex is
that we can now propel the magnetic vortex in its own layer
and hence propel the MZM. One has to take care that the
vortices are still bound to each other during the process, and
this can be ensured that the intercore distance, rsm does not
exceed the effective radius of the magnetic vortex, controlled
by ξm. Within these bounds we use the effective interaction
between the two cores

Uint = k

2
(rm − rs)2, (14)

where one can extract the value of the spring constant k from
our tight binding model. As mentioned above it is dependent
on the decay length of the magnetic vortex but is independent
of the exchange coupling parameter.

For our case we analyze the effect of a spin current in the
magnetic layer, following Hals et al. [20]. The equations of
motion and the steady-state velocity are similar for us, with
the skyrmion gyroscopic term replaced by that of the vortex.
Notably, the magnetic vortex does not have an inertial mass
unlike the magnetic skyrmion and obeys the Thiele equa-
tions [37,38]. Let us first look at the system in the absence
of any damping:

Gm × [ṙm − v] = −k(rm − rs)
(15)

msr̈s + Gs × ṙs = −k(rs − rm),

where Gm = 2πSns pẑ is the gyroscopic tensor for the mag-
netic vortex, with S as the spin density and p as the
polarization, sgn(mz ), of the magnetic core. The supercon-
ducting cortex gyroscopic term, Gs = 2πρsnsẑ, with ρs as
the superfluid density. The spin current is an external spin
polarized current adiabatically coupled to the ferromagnetic
layer [39]. It enters as a correction to the time derivative in the
equation of motion of the magnetic vortex and is represented
by a velocity v [40]. In the case of a standard magnetic
insulator-like permalloy |v| = h̄P j/(2eS), where j is the ex-
ternal current density.

In the steady-state limit, r̈s = 0, with ṙs = ṙm = ṙ, i.e., the
cores move together. We obtain

(Gs + Gm) × ṙ = Gm × v, (16)

leading to a steady-state velocity of |ṙ| = |v|[Gm/(Gs + Gm)].
In the presence of Gilbert damping and fieldlike damping
from the spin current the steady-state velocity is modified.
Going back to the original equations of motion, Eq. (15), in
steady state, without the assumption ṙs = ṙm, we can see that
a situation with Gm = −Gs would result in a steadily growing
core separation. This, however, requires fine-tuning the sys-
tems and is not generic. The strong attraction between the two
cores also creates a situation where a drifting superconduct-
ing vortex can bind and carry a magnetic vortex, providing
long-range dissipation-free spin transport. This schematic has
been sought after in spintronics, and other proposals with
magnetic vortices carrying spin currents have been proposed
Kim et al. [41].

III. MAJORANA MODES

Majorana bound states (zero modes) are expected to be
localized at the cores of vortices in two-dimensional supercon-
ductors which have a significant spin orbit coupling to mimic
spinless fermions and are acted on by a Zeeman-like field to
break the time reversal symmetry [7–9]. This Zeeman field is
essential for accessing the topological region for a pure two-
dimensional superconductor. However, for a hybrid vortex, the
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proximitized spin texture breaks the time-reversal symmetry
without an external Zeeman field and induces a manner of spin
polarization. We show here that the system with the hybrid
vortex hosts Majorana bound states. One of these states is
localized at the vortex core while the other is at the edge of
the disk-shaped topological region centered at the vortex. As
we shall explain, the nontrivial topology in a system with a
hybrid vortex originates from a novel orbital effect mediated
by an emergent magnetic vector potential induced by the
magnetic vortex.

In simple models with parabolic form of the kinetic en-
ergy it is possible to establish the existence of the vortex
core modes by analytic calculations following the classic
work of Caroli, de-Gennes, and Matricon (CdGM) [35] or by
semiclassical approaches [42]. In our present case obtaining
such analytical solutions for a hybrid vortex becomes dif-
ficult because of the more complicated form of the kinetic
energy Eq. (2) combined with the presence of the spatially
nonuniform magnetization field m(r). As explained below
it is nevertheless still possible to unambiguously establish
the presence of Majorana zero modes in the hybrid vortex
by a combination of adiabatic continuity arguments and ex-
act numerical diagonalization using the lattice version of the
Hamiltonian Eq. (4).

To demonstrate the presence of MZM in our model we
begin by considering what we call a “pure superconduct-
ing” vortex configuration; this consists of a conventional
Abrikosov vortex coupled to the magnetic layer with a uni-
form magnetization along the ẑ direction. We observe that in
this limit the Hamiltonian (2) coincides with the model studied
by Cheng, Lutchyn, Galitski, and Das Sarma in Ref. [43]. A
direct analytical solution in this limit is available and shows
that a single unpaired MZM is present in the vortex core when

m2
z > �2

0 + μ2. (17)

In the following we confirm this result numerically by ob-
serving a zero-bias peak in the local density of states (LDOS)
defined as

ρr(E ) =
∑
σ,n

′[∣∣un
rσ

∣∣2
δ(En − E ) + ∣∣vn

rσ

∣∣2
δ(En + E )

]
. (18)

Here the eigenvector at energy En of the BdG Hamilto-
nian assumes the form ψr,n = (ur↑, ur↓, v∗

r↓,−v∗
r↑)T

n (see
Appendix A 1). Note that the spin polarized LDOS can be
obtained using the same equation without the summation over
the spin degrees of freedom, σ .

The second step in our argument consists of adiabatically
deforming the uniform magnetization configuration into a
magnetic vortex configuration which transforms the pure su-
perconducting vortex into the hybrid vortex. Mathematically,
this is achieved by smoothly evolving the spin texture defined
in Eq. (1) between the two configurations. We start with
ξm → ∞, corresponding to a uniform magnetization, and then
reduce ξm to a value smaller than the system size, which
produces the hybrid vortex. If throughout this evolution the
numerically observed zero mode remains present and sepa-
rated by a gap from the rest of the spectrum, then we may
conclude that it is adiabatically connected to the MZM in the
pure SC vortex and therefore must be regarded as a Majorana
mode. To further test this conclusion we perform additional

checks on the symmetry of the zero mode wave function
which unambiguously distinguish it from the trivial CdGM
state.

A. Pure superconducting and magnetic vortex

When only the superconducting vortex is present, a Zee-
man field is required to stabilize the topological phase. This
setup is equivalent to the system described by the BdG Hamil-
tonian in Eq. (2) in the limit where the magnetic vortex decay
length is ξm → ∞, which implies m = m0ẑ. The resulting
model is identical to the Hamiltonian studied in Ref. [43],
which is known to support a topological phase when Eq. (17)
is satisfied. As a result, a Majorana zero mode is present in
the vortex core and, in a finite system, its partner is localized
at the outer edge of the sample.

The local density of states for this system, shown in
Figs. 3(a) and 3(b), reveals a prominent zero bias peak local-
ized at the vortex core, which we identify as MZM. The spin
polarization in the LDOS is expected due to the time-reversal
breaking Zeeman field provided by mz in this case.

Now we consider a complementary configuration with a
magnetic vortex and uniform superconducting order parame-
ter. We will use this configuration to deduce the presence of an
emergent orbital magnetic field B that will play an important
role in our understanding of the formation of the topological
phase in our heterostructure. A numerical simulation of this
situation reveals a high density of states near zero energy in
the spectrum. This is evident in Fig. 3(c) where the distinct
Majorana zero-bias peak in the LDOS is absent but a large
number of low-lying excitations dominate the spectrum. Fig-
ure 3(d) indicates that these are concentrated along a ringlike
structure surrounding the magnetic vortex. The presence of
low-energy excitations suggests that the excitation gap van-
ishes at the ring, as would be the case if this were a boundary
between a topological and a trivial phase. However, because
ξm = 1 in this plot, the magnetization is entirely in plane long
before one reaches the ring and the condition Eq. (17) cannot
explain the apparent topological phase inside the ring. As
we argue below, the topological phase inside the ring instead
owes its existence to a novel orbital effect associated with
the spatially varying magnetization field in the vicinity of the
vortex center.

As explained in Refs. [7,9] the existence of the topological
phase in the general class of models considered here depends
on the nature of the excitation gap at the origin of the momen-
tum space p = 0. We thus examine the low-energy effective
Hamiltonian obtained by expanding Eq. (2) to leading order
in small momenta,

Heff = α(σ × p)zτz + �0τx + (m · σ )τ0, (19)

where m = (mx, my, mz ). This can be rearranged into a more
revealing form,

Heff =
(

α[σ × (p − A)]z �0

�0 −α[σ × (p + A)]z

)
+ mzσz,

(20)

where we have identified the in-plane magnetization with
an emergent gauge potential A = ( my

α
,−mx

α
, 0) minimally

coupled to Dirac electrons. The electrons, therefore, can be

224518-6



MAJORANA ZERO MODES IN A MAGNETIC AND … PHYSICAL REVIEW B 106, 224518 (2022)

FIG. 3. [(a) and (b)] System with only superconducting vortex with external Zeeman field [equivalent to hybrid vortex with ξm → ∞)].
(a) The LDOS, ρ(rs, ε), shows prominent zero-bias peak corresponding to Majorana zero modes. Spin-polarized LDOS reveals that the main
contribution to the central Majorana zero-bias peak is from the spin-up LDOS. (b) The 2D plot shows LDOS (log[ρ(r, ε = 0)]) plotted at
zero energy shows a Majorana mode localized at the vortex core. [(c) and (d)] System with only magnetic vortex (with ξm = 1) without any
superconducting vortex. (c) LDOS at the vortex core shows that there is no isolated zero-bias peak. (d) The LDOS plotted at zero energy shows
a ringlike structure (Rmv) surrounding the vortex core. The black dotted circle depicts the radius at which the local excitation gap vanishes
[see Eq. (22)]. [(e)–(h)] System with hybrid vortex (ξm = ξs = 1). (e) The LDOS, ρ(rs, ε), shows prominent zero-bias peak corresponding
to Majorana zero modes. Spin-polarized LDOS reveals that the main contribution to the central Majorana zero-bias peak is from the spin-up
LDOS, as expected when ns = nm. (f) The 2D plot shows LDOS (log[ρ(r, ε = 0)]) plotted at zero energy shows a Majorana mode localized
at the vortex core. Additionally, there is a ring (radius Rhv) surrounding the core where the excitation gap vanishes. The radius, shown by
the dotted black circle, is estimated where the local excitation gap in equation Eq. (B6) vanishes. [(g) and (h)] The decoupled wave-function
probabilities, |φe|2 and |φc|2, corresponding to the two zero modes show that one Majorana mode is localized at the core while the other is
present at the outer ring surrounding the vortex. Parameters: L = 75, � = 0.3, m0 = −0.35, ϕ = 0, u = 0.6, μ = 0, t = 1.

thought of as moving in an emergent magnetic field B =
∇×A. This field can be calculated explicitly, away from the
vortex core, using the magnetic texture m̂ = (cos �, sin �, 0)
with � = φ + ϕ. Here the core is placed at the origin and ϕ is
the helicity discussed in Sec. II B. This gives

B = nmm0

r
cos ϕ ẑ. (21)

It is well known that application of a uniform magnetic field
B = ẑB to Dirac electrons in 2D rearranges their spectrum
into a set of discrete Landau levels, thus creating an excitation
gap ∝ √

B. Here, according to Eq. (21), we are dealing with a
nonuniform magnetic field that decays as 1/r away from the
vortex center. Accordingly, in a semiclassical approximation
we might expect the emergent field B to produce an excitation
gap ∝ 1/

√
r locally. Then, in analogy with Eq. (17), the ring

observed in Fig. 3(d) can be interpreted as marking the edge
of the topological region, where the magnetic gap dominates
over the SC gap.

To find the radius of the ring, we estimate in Appendix B
the size of the energy gap produced by the emergent magnetic
field away from the vortex core. This local excitation gap, Eg,
to lowest order in spin field gradients reads

E2
g = ∣∣�2

0 + m2
0 − 2

√
�2

0m2
0 + u2B2

∣∣. (22)

The excitation gap Eg vanishes at a radius Rmv marking the
topological region. This coincides with the radius of the ring
in the LDOS simulation shown in Fig. 3(d). In the subsequent
discussion, it will be clear that these ringlike features are
essential in the characterization of the topological regions for
the hybrid vortex.

B. Hybrid vortex

Now we explore the characteristics of the low-lying modes
present in the hybrid vortex. We consider the case where the
magnetic and superconducting vortex have a similar core size
(ξm = ξs = 1) and choose m0 such that m2

z > �2
0 + μ2 at the
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FIG. 4. Numerical simulations of a hybrid vortex on a 75×75 lattice. (a) The LDOS, ρ(rs, ε), for varying magnetic vortex decay lengths
ξm and fixed exchange coupling strength, m0 = −0.35. (b) LDOS at the vortex core for varying exchange coupling, m0, at fixed magnetic
vortex decay length, ξm = 1. LDOS exhibits a zero-bias peak for |m0| � 0.33. Parameters: L = 75, � = 0.3, ξs = 1, u = 0.6, μ = 0, and
t = 1. (c) LDOS at different values of magnetic vortex decay length, ξm (with m0 = −0.35). The plot shows a diagonal cross section of
the LDOS at zero energy for different values of ξm (values depicted by the color bar). The central zero-bias peak suppressed in order to
highlight the density at the outer ring using the envelope function (1 − e−|δrs|), where |δrs| = |r − rs|. Outside the shaded gray region, the
spin texture flattens out (up to 10−5 mcenter

z ). The peaks corresponding to the ring structure lie outside the shaded region and remain pinned at
the same location with increasing decay length until ξm � 8 and begin to diverge thereafter due to edge effects. (d) LDOS at different values
of exchange coupling m0 (with ξm = 1). The plot shows a diagonal cross section of the LDOS at zero energy with the central zero-bias peak
suppressed. (e) Representative 2D zero-energy LDOS plots are shown at magnetic vortex decay lengths, ξm = (3, 5, 8) with fixed m0 = −0.35.
(f) Representative 2D zero-energy LDOS plots are shown at magnetic vortex decay lengths, m0 = (−0.36, −0.39, −0.42) with fixed ξm = 1.
Radius Rhv calculated from Eq. (23) is shown by dotted black circles in (e) and (f). Parameters: L = 75, � = 0.3, ϕ = 0, u = 0.6, μ = 0, and
t = 1.

vortex core. In Fig. 3(e) we observe a clear zero-bias peak in
the local density of states. Importantly, this peak has evolved
continuously from the Majorana zero mode present in the pure
SC vortex. By adiabatic continuity we thus conclude that it
must represent a Majorana mode. The contribution to the zero-
bias peak is entirely sourced from spin-up sector—reflecting
the polarization of the superconductor electrons by the spin
vortex.

In addition to the localized Majorana mode at the core of
the hybrid vortex, we observe in Fig. 3(f) a ring surround-
ing the vortex core. It is natural to interpret this feature as
marking the boundary between the inner topological region
and the outer trivial region. We may also expect it to contain
the second Majorana zero mode that was previously localized
at the system outer boundary. This identification is confirmed
by a decoupling procedure detailed in Appendix A 2 which
allows one to disentangle wave functions belonging to two
weakly coupled MZMs. Plotting the decoupled MZM wave
functions in Figs. 3(g) and 3(h) indeed shows that the two
Majorana modes are localized at the vortex core and at the
ring, respectively. This procedure also provides a sharp dis-
tinction between a pair of MZMs weakly split in energy by
their wave-function overlap and a pair of ordinary CdGM

states—the latter would be both localized at the vortex core. It
is a unique characteristic of MZMs that they can be spatially
separated to an arbitrary distance, a property that also under-
lies their ability to encode quantum information in a way that
is inaccessible to environmental decoherence [4].

We can estimate the radius Rhv of the ring by comparing
it with the radius at which the local excitation gap vanishes.
The local excitation gap for the hybrid vortex [see Eq. (B6)]
includes contributions from the gradients of the phase of both
the superconducting and the magnetic vortex which modifies
the expression for the local excitation gap given in Eq. (22),
as discussed and derived in Appendix B. For the hybrid vortex
system, we find

Reqn
hv = 2u

||m0| − �0| . (23)

This analytical expression of the critical radius again coin-
cides with the radius of the ring from the LDOS numerical
simulations.

Majorana zero modes are present at the core of the hybrid
vortex for a range of parameters as demonstrated in Figs. 4(a)
and 4(b). Here we observe a prominent zero-bias peak in the
LDOS that is robust for different values of the decay length,
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ξm, which controls the size of the magnetic vortex. We also
find the critical value of magnitude of the exchange coupling
parameter, m0, below which the zero-bias peak splits (≈0.33
for the chosen parameters and magnetic vortex profile).

To study the spatial features of the Majorana modes present
in the hybrid vortex, we plot the LDOS at zero energy across a
diagonal cross section of the lattice for different decay lengths
of the magnetic vortex in Fig. 4(c). The value of Rhv is much
larger than the radius at which the spin texture flattens out with
mz nearly zero (mz ∼ 10−5 mcore

z ). Further, we observe that
there is no significant difference in the location of the peaks
corresponding to the outer ring on variation of ξm. This further
supports our interpretation of the topological phase as being
enabled by the orbital magnetic effect through the emergent
vector potential A introduced in the previous subsection.

Now we look at the spatial features of zero-energy LDOS
while varying the magnitude of the exchange coupling m0

at fixed value of ξm plotted in Fig. 4(d). The vortex core
Majorana state persists for the entire range of parameters
shown in Fig. 4(d). The radius of the outer ring, apparent in
the LDOS, decreases with the increase in exchange coupling
strength. This decrease in the radius of the topological region
is expected from the analytical estimate given in Eq. (23).
We finally note that at larger magnitude of m0, the wave
function corresponding to outer Majorana mode can exhibit
delocalization in the region between the ring and the edge of
the system. We attribute this to the relatively small gap size in
the outer region as illustrated further in Fig. 8 of Appendix B,
which implies long SC coherence length in this region.

C. Supercurrents

To understand the characteristic features of hybrid vortices,
we study the local supercurrents in these systems. As derived
in Appendix A 3, supercurrent flowing along the bond con-
necting sites r and r′ is given by

Ji j = − ie

h̄

∑
σ,σ ′

[∑
n

hiσ, jσ ′un
iσ un∗

jσ ′ f (En) − c.c.

]
, (24)

where we denote the matrix element between site i (spin σ )
and site j (spin σ ′) as hiσ, jσ ′ . We denote the bond current from
x to x + 1 on the lattice as Jx and that from y to y + 1 as Jy.
The local supercurrent vector is then given by Jxy = (Jx, Jy ).

To understand the origin of this supercurrent analyti-
cally, let us revisit Eq. (20) where we incorporated the
in-plane magnetization into the magnetic vector potential
αA = (my,−mx, 0). The supercurrent density is generally
given by

j(r) = ns(∇θs − 2A), (25)

where ns denotes the superfluid density. In the self-consistent
solution the phase field θs(r) will adjust to minimize the
free-energy cost of the current, ∼(∇θs − 2A)2. Because
∇×∇θs = 0, except for isolated points (vortices), only the
longitudinal part of A can be screened completely; the trans-
verse part, corresponding to nonzero field B, can only be
screened partially by incorporating vortices into the phase
field. More details on this and a relevant calculation are pro-
vided in Appendix C. We know from Eq. (21) that |B| ∝

cos ϕ, implying that supercurrents should decrease as the
helicity parameter increases from 0, eventually vanishing as
ϕ → π/2 and A becomes purely longitudinal. This expec-
tation is indeed borne out in the microscopic calculation of
the supercurrent displayed in Fig. 5 for several values of the
helicity parameter. An interesting feature of the current flow
is its constant magnitude independent of the radius r. This is
to be contrasted with a regular Abrikosov vortex where the
magnitude decays as |∇θs| ∼ 1/r. This peculiar behavior can
be traced back to the fact that the current here is proportional
to the magnetization field of the magnetic vortex which itself
retains a constant magnitude independent of r.

In a hybrid vortex we expect the usual vortex current pat-
tern with the amplitude decaying as 1/r to be superimposed
on the anomalous current distribution shown in Fig. 5. For
different values of magnetic vortex decay lengths ξm this is
displayed in Figs. 6(a)–6(d). The case where ξm → ∞, shown
in Fig. 6(a), corresponds to a pure superconducting vortex
subject to an external Zeeman field, mz. The supercurrents
now flow counterclockwise and follow the expected 1/r be-
havior outside the vortex core. For finite decay lengths, the
hybrid vortex exhibits clockwise supercurrents away from the
core while closer to the core the currents are counterclock-
wise. This can be understood as a competition between the
1/r Abrikosov contribution and the r-independent magneti-
zation contribution. The former partially cancels the latter
at intermediate distances, thus lowering the free-energy cost
of the hybrid vortex compared to the pure magnetic vortex.
This cancellation also provides some intuition behind the
notion of stability of the hybrid vortex. Another interesting
feature to note is the presence of the outer ringlike structure
in the magnitude of the supercurrents. The outer edge of these
supercurrent rings also correspond to the ring in the LDOS
observed earlier in Fig. 4.

We perform a similar analysis for the local supercurrents
with varying exchange coupling parameter, m0, and plot the
results in Figs. 6(e)–6(h). As before, we observe the clockwise
supercurrent flow away from the core of the vortex. Closer
to the vortex core, we expect the supercurrents to reverse
the direction. Note that in the representative plots shown in
Figs. 6(e)–6(h), the reversal of the supercurrent is not im-
mediately evident owing to the fact that magnetic and the
superconducting vortex are approximately of the same size.
Here again, we see a prominent outer ring in the magnitude of
the supercurrents. The radius of this outer ring decreases with
increasing magnitude of the exchange coupling, similarly to
the outer ring in the LDOS plots Fig. 4.

IV. DISCUSSION

We performed a study of a novel “hybrid” vortex com-
prising a superconducting and magnetic vortex. Such a
composite can occur in a quasi-2D heterostructure formed
by a thin easy-plane ferromagnet and a superconductor with
Rashba spin-orbit coupling. The magnetic and superconduct-
ing vortices present in this composite structure can form an
energetically favorable hybrid vortex. We showed this analyt-
ically by considering the magneto-electric interaction induced
by the spin-orbit coupling as well as by detailed numerical
simulations of a minimal microscopic model.
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FIG. 5. Supercurrents in a system with uniform superconducting order parameter and a magnetic vortex with helicities ϕ = (0, π

6 , π

3 , π

2 ).
The phase of the superconducting order parameter is given by Eq. (C2). Parameters: L = 75, � = 0.3, m0 = −0.3, ξs = ξm = 1, u = 0.6,
μ = 0, and t = 1.

We established the presence of zero-energy Majorana
bound states in the hybrid vortex by appealing to adiabatic
continuity arguments. Using the characteristic zero-bias peak
in the local density of states, we studied the features of these
Majorana modes. In addition to the Majorana zero mode lo-
calized at the core of the hybrid vortex, we also observed its
partner zero mode localized in the ringlike structure surround-
ing the hybrid vortex. The ring demarcates a disk-shaped
topological region centered at the vortex core. Remarkably,
the topological phase inside the ring is stabilized not by an
out of plane magnetization mz, as would be the case in conven-
tional models, but by an emergent orbital magnetic field. This
emergent orbital magnetic field arises from the magnetization

field of the spin vortex which couples as vector potential to
electrons in the superconductor. We derived an estimate for
the ring radius using the emergent magnetic field hypothesis
and found that it agrees quantitatively with our numerical
results. We also studied the dependence of the topological ring
radius on the helicity of the magnetic vortex which likewise
supports the physical picture that we presented.

The superflow pattern around the hybrid vortex shows
an unusual behavior in that the supercurrent generically re-
verses its direction at some intermediate radius. This can be
understood as a competition between the usual Abrikosov
vortex superflow that decays as 1/r and an anomalous
magnetization-induced current that is r independent. This par-

FIG. 6. [(a)–(d)] Local supercurrents plotted for different values of magnetic vortex decay lengths, ξm = (∞, 9, 6, 3). Case (a) corresponds
to a system with superconducting vortex and uniform Zeeman field. [(e)–(h)] Local supercurrents plotted for exchange coupling strengths,
m0 = (−0.35, −0.37, −0.39, −0.41). The vectors (arrows) correspond to the direction of the flow of the supercurrent given by the vector Jxy.
The color bars represent the magnitude of Jxy. The insets show the orientation of the local supercurrents around the vortex core. Parameters:
L = 75, � = 0.3, ξs = ξm = 1, ϕ = 0, u = 0.6, μ = 0, and t = 1.
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tial cancellation of the net current near the reversal region
also provides intuition for the energetic stability of the hybrid
vortex.

As future avenues of research, the theory for single hy-
brid vortex can be extended to multiple hybrid vortices. For
instance, the energetics in the two hybrid vortices would
now need to account for the repulsion between two magnetic
vortices in addition to the attraction between the supercon-
ducting and magnetic vortices of different pairs. This makes
the extension to multiple hybrid vortices an interesting prob-
lem. Additionally, a detailed analysis of the Majorana modes
with the helicity of the magnetic vortex would be very use-
ful in further understanding the Majorana modes in hybrid
vortices.

Last, we note that the techniques developed here to in-
vestigate the topological phase of the hybrid vortex are also
more broadly applicable to systems where superconductiv-
ity and ferromagnetism can coexist. An example of this is
the iron-based superconductor FeTe1−xSex, where topological
superconductivity [44] has been established with recent exper-
imental [45–47] and theoretical [48–51] evidence supporting
the existence Majorana modes in vortices. Such systems ex-
hibiting complex interplay among topology, magnetism, and
superconductivity are of burgeoning interest in device tech-
nology.
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APPENDIX A: DETAILS OF THE NUMERICS

1. Local density of states

Consider the particle number operator on site i given by
Ni = ∑

σ Niσ with Niσ = c†
iσ ciσ . The eigenvector at energy

En after diagonalization of the BdG Hamiltonian assumes
the form ψi,n = (ui↑, ui↓, vi↓,−vi↑)T

n . Using the symmetries
of the BdG Hamiltonian, we can also write the number
operators as

Niσ =
∑

n

∣∣un
iσ

∣∣2
f (En) =

∑
n

∣∣vn
iσ

∣∣2
[1 − f (En)], (A1)

where f (En) is the Fermi-Dirac distribution function.
The probability distribution of the particle wave function at

site i with energy En > 0 is evaluated as |ψn
pi|2 = ∑

σ |un
iσ |2.

The local density of states is given by

ρiσ (E ) =
∑

n

′[
un

iσ

∣∣2
δ(En − E ) + ∣∣vn

iσ

∣∣2
δ(En + E )

]
. (A2)

2. Majorana wave functions

The Majorana modes, if present, will manifest themselves
as zero-energy peaks in the local density of states. Majorana
modes always come in pairs [3] and, in a finite-size system,
there will always be a small energy splitting due to their wave-

function overlap. Because of this, in the context of the vortex
core states, it may be difficult to distinguish such weakly
split Majorana modes from the ordinary CdGM modes [35]
based purely on their energy spectra. As we explain below a
sharp distinction between the two types of states can never-
theless be drawn based on the structure of their corresponding
eigenstates.

We first assume two near-zero modes to be a linear super-
position of two Majorana wave functions localized at the core
of the vortex and the edge of the topological region, respec-
tively. If we denote the Majorana mode creation operators as
γc and γe, then the Hamiltonian for the small overlap of the
wave functions is uniquely defined by their self-conjugation
property γ = γ † as follows:

heff = iε0γcγe = ε0

2
�†σ y�, (A3)

where � = (γc, γe)T . The above equation implies that the
wave functions φ± corresponding to the eigenvalues of ±ε0

are related to the zero mode wave functions as φ± = 1√
2
(φc ±

φe). Inverting this relation then gives the decoupled Majorana
modes localized at the vortex core and edge of the topological
region, respectively. Crucially, we note that this type of de-
coupling procedure applied to a pair of ordinary CdGM states
at opposite energies will yield two states with wave fuctions
both localized in the vortex core.

For the hybrid vortex discussed in Sec. III B, the local
density of states at the core [Fig. 3(e)] exhibits a prominent
peak near zero energy. The wave functions corresponding
to the two near-zero modes are decoupled according to the
procedure outlined above and the corresponding amplitudes
|φc/e|2 are plotted in Fig. 7. The amplitudes show clear spatial
separation with |φc|2 and |φe|2 supported at the core and the
ring, respectively, as expected of a pair of Majorana modes.
By contrast, the higher-energy states do not show such sepa-
ration and are identified as CdGM modes.

The particle-hole symmetry of the BdG Hamiltonian fur-
thermore implies that a Majorana mode at zero energy must
also be an eigenstate of the charge conjugation operator [3].
As a result the individual components of the Majorana wave
function satisfy the relations u↑ = c∗v∗

↑ and u↓ = c∗v∗
↓ where

|c| = 1. These conditions can be observed in Fig. 7 where
we plot we the spatial distribution of the decoupled Majorana
wave-function amplitudes |φc|2 and |φe|2 as a function of the
distance from vortex center. This again is to be contrasted
with the behavior of ordinary CdGM states (ε1) in Fig. 7 by
observing that all the components of such non-Majorana wave
function are independent, i.e., |u↑|2 �= |v↑|2 and |u↓|2 �= |v↓|2.
Further, the spin-polarization of the decoupled Majorana wave
functions is evident in Fig. 7.

3. Local supercurrents

To calculate the local supercurrents we begin with the
Heisenberg equation of motion for particle at lattice site i,

ih̄
∂〈Ni〉
∂t

= 〈[Ni, H]〉, (A4)
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FIG. 7. Spatial distribution of the decoupled Majorana wave
functions φe/c and the ordinary CdGM wave functions (energy ε1)
as a function of distance from the hybrid vortex core. The CdGM
state corresponds to a dominant nonzero energy peak at ε1 = 0.14�

in the LDOS shown in Fig. 3(e). Here the system parameters are the
same as those in Figs. 3(e)–3(h) of the main text.

where H is the tight-binding Hamiltonian. Denoting its matrix
element between site i (spin σ ) and site j (spin σ ′) as hiσ, jσ ′ ,
we can rewrite the Heisenberg equation of motion as follows:

ih̄
∂〈Ni〉
∂t

=
〈∑

j �=i,
σ,σ ′

(hiσ, jσ ′c†
iσ c jσ ′ − h jσ ′,iσ c†

jσ ′ciσ )

〉
. (A5)

Using the above relation, the current operator from site j to
site i is

Ĵi j = − ie

h̄

∑
σ,σ ′

(hiσ, jσ ′c†
iσ c jσ ′ − h jσ ′,iσ c†

jσ ′ciσ ). (A6)

The average bond current is given by taking the expectation
value of the current operator with the ground-state eigenvec-
tors (for a superconductor, the ground-state eigenvectors are
given by summing over all negative energies),

Ji j = − ie

h̄

∑
σ,σ ′

hiσ, jσ ′
∑

n

′{
un

iσ un∗
jσ ′ f (En)

+ σσ ∗vn
iσvn∗

jσ ′ [1 − f (En)] − c.c.
}
. (A7)

Using the symmetries of the BdG Hamiltonian [see Eq. (A1)],
the equation of bond current can be simplified to

Ji j = − ie

h̄

∑
σ,σ ′

[∑
h

hiσ, jσ ′un
iσ un∗

jσ ′ f (En) − c.c.

]
. (A8)

APPENDIX B: TOPOLOGICAL REGION OF THE HYBRID
VORTEX SYSTEM

We consider energy spectra in the vicinity of a pure mag-
netic and a hybrid vortex using a semiclassical approximation
with the goal of understanding the apparent gap closing out-
side the core observed in our numerical simulations. Away
from the vortex core, near-zero momenta at μ = 0, this is
described by the Hamiltonian in Eq. (19). We assume that
away from the vortex core, the spins of the ferromagnet are
entirely in the xy plane, making the magnetic texture m =
m0(cos φm, sin φm, 0). Superfluid velocity in a superconduct-
ing vortex is defined as vs = ∇θs = 1

r φ̂. Similarly, here we
define the magnetic vortex phase gradient as vm = ∇φm =
1
r φ̂.

We begin with a pure magnetic vortex. Squaring the
Hamiltonian in Eq. (19) and systematically neglecting terms
containing p2 results in

H2 = �2
0 + m2

0 + 2�0m0(m · σ )τx

+ m0{α(σ × p)z, (m · σ )}τz, (B1)

where the the anticommutator is defined as {A, B} = AB +
BA. Reshuffling the constant terms and squaring once again
using the same assumptions as before, we find(

H2 − �2
0 − m2

0

)2

= 4�2
0m2

0 + m2
0({α(σ × p)z, (m · σ )})2

+ m2
0{2�0(m · σ )τx, {α(σ × p)z, (m · σ )}τz}. (B2)

The anticommutators in the above equation can be solved
by identifying p = −i∇ and by considering all spatially de-
pendent functions to be slowly varying such that the second
derivatives are negligible,

m2
0({α(σ × p)z, (m · σ )})2 = α2m2

0v
2
m, (B3)

{2�0(m · σ )τx, {α(σ × p)z, (m · σ )}τz} = 0. (B4)
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FIG. 8. Top: Energy gap Eg from Eq. (B6) for the hybrid vortex
as a function of the distance from the core. Vanishing Eg defines the
critical radius Rhv which is dependent on m0. Bottom: log(Eg) plotted
for representative values of m0 to illustrate the disk shaped topologi-
cal region of radius Rhv. Parameters: L = 75, � = 0.3, ξs = ξm = 1,
ϕ = 0, u = 0.6, μ = 0, and t = 1.

Solving for the eigenvalues gives

E2
g = ∣∣�2

0 + m2
0 ± 2

√
�2

0m2
0 + u2m2

0v
2
m

∣∣, (B5)

where u = α
2a and v2

m = 1
r2 as defined previously. We set the

lattice constant a = 1. As the minus sign clearly corresponds
to a lower energy it will represent the local energy gap. This,
along with identifying m2

0v
2
m = B2, leads to Eq. (22) in the

main text. The disk-shaped topologically nontrivial region
surrounding the vortex core extends up to a radius Rmv where
Eg = 0.

A similar procedure gives the energy gap for the hybrid
vortex where the additional terms arise from the spatial de-
pendence of the phase of the superconducting order parameter.
We find

E2
g = ∣∣�2

0 + m2
0 − 2

√
�2

0m2
0 + u2(m0vm + �0vs)2

∣∣. (B6)

We plot Eg in Fig. 8 where we show that the system is gapped
on either side of Rhv defined by the condition Eg = 0 and given
in Eq. (23). In Fig. 9 we compare it to the ring radius obtained
in the numerical simulations.

While Eq. (23) suggests a divergence at |m0| = �0, we
note here that the topological region exists only when |m0| is
above a critical value which is always greater than �0. This
is also discussed in Sec. III B (Fig. 4) where we show the
splitting of Majorana zero-bias peak below a critical value,
|m0| � 0.33, for � = 0.3.

APPENDIX C: SUPERCURRENTS IN A PURE
MAGNETIC VORTEX

To the first order in SOC, the supercurrent is given by [19],

j(r) = ns

2m
∇θs + α(ẑ × m). (C1)

FIG. 9. The plot shows the radius of the topological region of
the magnetic vortex (Reqn

mv ) given by Eq. (22) as a function of the
exchange coupling parameter and compares it to the radius of the
ring obtained by simulations (Rsim

mv ) for �0 = 0.3 (top panel) and
�0 = 0.4 (bottom panel). The plot also compares the radius of the
topological region around the hybrid vortex (Reqn

hv ) calculated from
Eq. (B6) and the radius of the ring around the hybrid vortex obtained
from the simulations (Rsim

hv ).

On imposing continuity, ∇ · j = 0, the solution of the super-
conducting phase, as derived by Pershoguba et al. [19], is
given by

θs = mα

ns
r · (m × ẑ). (C2)

For our system, m = 1 and ns = 1. To obtain the supercur-
rents for a pure magnetic vortex shown in Fig. 5, we include
the phase, θs, from Eq. (C2) in the superconducting order
parameter.

We note here that a pure magnetic vortex can by itself
induce a topological phase transition in the superconductor
since it has a non-co-planar spin ordering Nakosai et al. [14].
In our case when the magnitude of the exchange coupling
is increased beyond a critical value we see this transition.
The signature of the phase transition can be observed in the
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FIG. 10. Supercurrents for a pure magnetic vortex in the trivial
phase (left) and the topological phase (right). The topological phase
transition occurs at the critical exchange coupling |m0| ≈ 0.33 when
� = 0.3 for the chosen parameters. The phase of the superconduct-
ing order parameter is given by Eq. (C2).

supercurrents as we tune m0. Above a certain value the su-
percurrents are no longer uniform throughout the system as
expected from (C1), a clear ring forms separating an inner
topologically non trivial region including the vortex core. This
is shown in Fig. 10 for ϕ = 0.

APPENDIX D: MODIFIED
ELECTROMAGNETIC DUALITY

The theory for the planar ferromagnet can be cast into a
dual theory of electromagnetism in 2 + 1 dimensions with
magnons acting as the single photon and vortices acting as

electric charges carrying magnetic fluxes [33,52]. The duality
transformation is between the Lagrangian densities:

S(cos � − 1)�̇ − Ã

2
(∇�)2 − K

2
cos2 �

⇒ −2πJμÃμ − FμνFμν

e2
. (D1)

In the spin Lagrangian S is the spin density Ã is proportional
to Heisenberg exchange and Ka is the easy plane anisotropy,
in the electromagnetic Lagrangian e2 = SÃ/Ka. This duality
mapping has two parts, the conserved Noether current con-
jugate to the field � (magnetic spin current Jm) which is
mapped through a Bianchi identity to the gauge field A and
the electromagnetic tensor. The second part is the matter cur-
rent J which consists of electrical charges (magnetic vortices
[52]) which are also conserved due to their topology, and
hence follow a continuity equation, for details see Dasgupta
et al. [33]. A similar dual construction can be made with
the superconducting phase, the conserved current there is the
supercurrent, Js ∝ ∇θs.

While this duality would have existed in our heterostrucure
for an interaction of the form—Jm · Js, the magnetoelectric in-
teraction does not allow such a construction. This implies that
the mapping to electrostatics no longer holds and treating the
magnetic vortices and superconducting vortices as interacting
charges is not possible.
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