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Lifshitz gauge duality
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Motivated by variety of realizations of the compact Lifshitz model, I predict and explore properties of its
three phases, study its phase transitions and derive its fractonic gauge dual. The resulting U(1) vector gauge
theory efficiently and robustly encodes the restricted mobility of its dipole conserving charged matter and
the corresponding topological vortex defects. The gauge theory provides a transparent formulation of the three
phases of the Lifshitz model and gives a field theoretic formulation of the associated two-stage Higgs transitions.
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I. INTRODUCTION AND MOTIVATION

Recently, there have been much interest in systems with
generalized global symmetries and their fractonic gauge duals
[1]. One of the simplest is the Lifshitz model (and its m-
Lifshitz generalization [2]), that describes a diverse number
of physical systems. Its classical realizations date back a half
century in studies of Goldstone modes of cholesteric, smectic,
and columnar liquid crystals, tensionless membranes and ne-
matic elastomers [3–11], and many other soft-matter phases
exhibiting rich phenomenology [12,13].

Quantum realizations of the Lifshitz model include Hall
striped states of a two-dimensional (2d) electron gas at
half-filled high Landau levels [14–19], striped spin and
charge states of weakly doped correlated quantum magnets
[20,21], critical theory of the Resonant-Valence-Bond (RVB)
to Valence-Bond-Solid (VBS) transition [22–25], ferromag-
netic transition in one-dimensional spin-orbit-coupled metals
[26], the putative Fulde-Ferrell-Larkin-Ovchinnikov paired
superfluid [27,28] in imbalanced degenerate atomic gases
[29,30], and spin-orbit coupled Bose condensates [31,32], as
well helical states of bosons or spins on a frustrated lattice
[33].

The most notable feature of the 3d classical and 2+1d
quantum Lifshitz model is its enlarged “tilt” or dipolar sym-
metry and the concomitant logarithmic “roughness”, φ2

rms ∼
log L of its Goldstone mode φ (akin to the XY model in two
dimensions), that leads to its power-law correlated, quasi-
long-range ordered state for the matter field eiφ . Depending
on the nature of its physical realization, the enlarged sym-
metry may result from fine-tuning to a critical point, as
e.g., in RVB - VBS [22–25], paramagnetic-ferromagnetic in
spin-orbit-coupled metals [26] and a membrane buckling [8]
phase transitions, or is dictated by an underlying symmetry, as
e.g., “target-space” rotational invariance of smectic, colum-
nar, cholesteric, and tensionless membrane ordered phases.
[3–7,30,34] In these realizations the nonlinearities (elastic in
the context of smectics and membrane states) become relevant
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for d < dc (dc = 3 and dc = 5/2 for the classical smectic
[30,34] and columnar states [35,36], respectively), leading to
universal “critical phases”.

II. DIPOLAR SYMMETRY AND FRACTONIC ORDER

In addition to above examples, Lifshitz model also natu-
rally arises as the Goldstone-mode (superfluid phase, φ) field
theory of the ordered state of interacting bosons with addi-
tional dipole-charge conservation, explored in great detail in
Refs. [37,38]. At harmonic level the symmetry is equivalent
to the aforementioned target-space rotational invariance of a
3d smectic. [39,40] Our interest in the Lifshitz model is also
motivated by the recent observation that generalized quantum
elastic systems, e.g., 2+1d conventional and Wigner crystals,
supersolids, smectics and vortex crystals, under elasticity-
gauge duality [41–43] map onto generalized “fractonic” gauge
theories [44,45], that exhibit charged matter with restricted
mobility. [39,40,46–51]

For concreteness, in what follows, when discussing phases,
transitions, and topological defects, I will use the language of
bosons, ψ ∼ eiφ in the dipolar Bose-Hubbard model. [37,38]
The boson and dipole number conserving symmetry,

φ → φ + α + β · x (1)

is encoded in the high derivative “elasticity”, forbidding
lowest order gradient of the compact superfluid phase φ

(with only dipole-conserving hopping, e.g., ψ†
x+δ

ψxψxψ
†
x−δ

∼
d†

x,δ
ψxψ

†
x−δ

+ h.c.). The symmetry parameters, α,β are zero
modes that may be constrained by system’s boundary con-
ditions. The generalized Lifshitz model is a minimal such
continuum field theory, with a Euclidean Lagrangian density,

L = 1
2κ (∂τφ)2 + 1

2 Ki jkl (∂i∂ jφ)(∂k∂lφ), (2)

where κ is the compressibility, tensor Ki jkl encodes lattice
hopping anisotropy and τ is the 0-th imaginary time compo-
nent of xμ. I note that, in striking contrast to the rotational
invariance of the closely related smectic and other Lifshitz
systems discussed above, here, the more stringent dipolar
symmetry forbids all relevant nonlinearities. [34] It thus pro-
tects the fixed line of the noncompact Lifshitz model (2).
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In 2+1d the model (2) is generically expected to undergo
a two-stage disordering transition. In the familiar context of
smectic liquid crystals (with φx the compact phonon field)
it corresponds to a transition from a smectic state (a peri-
odic array of stripes, that spontaneously breaks rotational and
translational symmetries, with (quasi-) long-range ordered
(ψx ∼ eiφx ) dx,δk ∼ eiδk ·∇φx ≡ eiθk field), through the trans-
lationally invariant nematic fluid (that breaks rotational C2

symmetry) to a fully disordered isotropic and translationally
invariant fluid [39,40] (with the 3d classical analog studied
for many decades [12,13]). However, the critical nature of the
nematic-smectic transitions, even in the 3d classical case [52]
remains an open problem. Here, I utilize duality to provide
a gauge theory formulation of the 2+1d Lifshitz model, al-
lowing a transparent characterization of its phases and a field
theoretic analysis of the corresponding Higgs transitions.

III. PHASES OF LIFSHITZ MODEL

To this end, as was introduced in Refs. [39,40,51], for a
vector gauge theory formulation of fractons, it is convenient
to reformulate the Lifshitz model in terms of coupled XY mod-
els for the atom (ψx ∼ eiφx ) and dipole (dx,δk = ψ†

x ψx+δk ∼
eiδk ·∇φx ≡ eiθk ) superfluid phases, φ and (θ)k = θk , with a La-
grangian density, [53]

L = 1
2κ (∂τφ)2 + 1

2 g(∇φ + θ)2 + 1
2 I (∂τ θ)2

+ 1
2 Ki jkl (∂iθ j )(∂kθl ). (3)

At low energies the g coupling in L enforces ∇φ ≈ −θ (i.e.,
φ ≈ φ0 − θ · r) and thus reduces L (3) to the standard form
in (2), with corrections that are subdominant at low energies.
This form of Lifshitz Lagrangian (3) displays a gaugelike
coupling between atoms and dipoles, that thereby underlies a
nontrivially intertwined atom-dipole (and corresponding vor-
tices) dynamics of the Lifshitz fluid and its aforementioned
phase transitions. [54]

Before turning to a detailed analysis, (3) already reveals the
structure of the phases of the Lifshitz model:

(i) In the absence of vortices, i.e., a fully Bose-condensed
state of atoms and dipoles, BECad is characterized by
single-valued φ and θ phases. The state is gapless and is
well-described by a Gaussian fixed line of standard Lifshitz
form (2), with a dynamical exponent z = 2. For constant
θ, the BECad state is orientationally ordered, atomic con-
densate at momentum θ akin to a Fulde-Ferrell [27–30], a
spin-orbit coupled condensate [31,32] and a helical state of
frustrated bosons [33]. However, I expect it to be challenging
to probe this momentum, since in the bulk it can be gauged
away. [55] Given the resemblance of Eq. (3) to the Abelian-
Higgs model (with a nongauge invariant “Maxwell” sector
for θ, characterized by Ki jkl ), I expect the BECad - BECd

(Bose-Enstein condensate) transition to be in a generalized
normal-superconductor universality class. This is expected
due to a nontrivial gaugelike coupling between the dipolar and
atomic condensates, whose consequences we will also see in
the dual gauge theory formulation discussed below.

(ii) Increasing fluctuations (at zero temperature done by in-
creasing boson interaction relative to dipole hopping), drives a
proliferation of vortices in the atomic phase φ Mott-insulating

atoms, with dipoles remaining Bose-condensed in BECd , and
in the case of an underlying isotropic system spontaneously
breaks rotational symmetry by the choice of θ. With this ∇φ

becomes an independent vector field (with both transverse and
longitudinal components) that can thus be safely integrated
out, leading to a z = 1XY-like Lagrangian density for the
dipolar Goldstone mode,

LBECd = 1
2 I (∂τ θ)2 + 1

2 Ki jkl (∂iθ j )(∂kθl ) . (4)

(iii) Increasing interaction further then proliferates vortices
in θ, leading to a fully Mott-insulating (MI) phase of atoms
and dipoles. The shortcoming of the continuum form (3) of the
compact Lifshitz model, L, is that compactness (i.e., vortex
degrees of freedom) of the Goldstone modes φ and θ is not
manifest [63]. To remedy this, I make the corresponding vor-
tex degrees of freedom explicit by allowing nonsingle-valued
configurations of φ and θ. Namely, I “gauge” L in (3), with
atomic (a-) and dipolar (d-) vortices, respectively, represented
by fluxes of the associated gauge fields, [64]

L = LM[ãμ, Ãμ] + 1

2
κ (∂τφ − ã0)2 + 1

2
g(∇φ − ã + θ)2

+ 1

2
I (∂τ θ − Ã0)2 + 1

2
Ki jkl (∂iθ j − Ãi j )(∂kθl − Ãkl ),

= LM[ãμ, Ãμ]+κ

2
(∂μφ − ãμ + θμ)2 + K

2
(∂μθ − Ãμ)2

(5)

with the corresponding discrete vortex (dual) 3 currents given
by

j̃μ = εμνγ ∂ν ãγ − εμνkÃνk ≡ (∂ × ã)μ − Ã∗
μ,

=
∑

p

∫
τp

npv̂μ(τp)δ3
(
xν − xν

p(τp)
)
, (6)

J̃μ = εμνγ ∂νÃγ ≡ (∂ × Ã)μ,

=
∑

p

∫
τp

NpV̂μ(τp)δ3
(
xν − xν

p(τp)
)
, (7)

θμ = (0, θi ), ãμ = (ã0, ãi ), (Ãμ)k = Ãμk = (Ã0k, Ãik ),
(np, Np) (boson, dipole) pth vortex integer windings, and
(v̂μ(τp), V̂μ(τp)) unit 3 velocities of their corresponding
world-lines. Throughout, to emphasize the structure of the
expressions, I use a short-hand notation:(i) bold-faced for
Roman flavor k and spatial i, j indices, and, (ii) where
obvious, omit the space-time Greek indices, as defined below.
In the last line in Eq. (5), for transparency of analysis I
took Ki jkl = Kδikδ jl and rescaled coordinates so that g = κ

and I = K , i.e., chose the speeds of “sound” to be 1; in an
isotropic lattice-free system Ki jkl reduces to a tensor of Frank
elastic energy [12] for θ, characterized by twist, splay and
bend elastic constants, that, more generally will be broken
by the underlying lattice. With a- and d-vortices encoded
by gauge fields aμ, Aμk , above phases are single-valued
Goldstone modes satisfying, εμνγ ∂ν∂γ φ ≡ ∂ × ∂φ = 0,
εμνγ ∂ν∂γ θ ≡ ∂ × ∂θ = 0, where I have used the same
symbols for simplicity of presentation. In (5) I also included
vortex 3-current core energies (accounting for the lattice-scale
physics), that take the form of a generalized Maxwell
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Lagrangian,

LM = 1
2 Ec1(∂ × Ãk )2 + 1

2 Ec2((∂ × ã)μ − Ã∗
μ)2, (8)

where I defined a Hodge dual of Ãνk as Ã∗
μ ≡ εμνkÃνk . L is

invariant under a generalized gauge transformation,

φ → φ + α, θ → θ + χ, (9)

ãμ → ãμ + ∂μα + δμ jχ j, Ãμ → Ãμ + ∂μχ.

and in Eq. (8) the flux (∂ × ã)μ is itself gauged by a 2-form
component of Ãμ, according to dã − Ã. This reflects arbitrari-
ness of division between dipole current and atom vorticity,
as illustrated in Fig. 1(a). Microscopically this corresponds to
the contribution of the antisymmetric component of the dipole
current ∇ × θ = εikÃik to the bosonic vortex ∇ × ã, encoded
in the combination ∇φ + θ.

With discrete atom, np and dipole, Np vortex charges, (6),
(7) the Lifshitz model (as the aforementioned 3d classical
smectic [12,13,39,40]) displays three phases of a dipole-
conserving bosonic fluid [38]:

(1) MI: a gapped phase with proliferated both atomic
and dipole vortices, thereby described by continuous ãμ, Ãμ

gauge fields, with a gapped Debye-Huckel Lagrangian density

LMI = K

2
(Ãμ)2 + Ec1

2
(∂ × Ãk )2

+κ

2
ã2

μ + Ec2

2
((∂ × ã)μ − Ã∗

μ)2, (10)

where Ãμ and ãμ are implicitly understood as gauge invariant
projections transverse to momentum kν , and in this vortex
condensate phase I used Eq. (9) to gauge away the phases,
φ, θ, with a transverse low-energy constraint θ ≈ ã.

(2) BECd : a gapless, z = 1, orientationally ordered con-
densate of dipoles (vacuum of dipole vortices Ãμ = 0) and
MI of atoms. This gapless insulator is characterized by a
Lagrangian density

LBECd = 1
2 K (∂μθ)2, (11)

with a low-energy transverse constraint θ ≈ ã.
(3) BECad : a gapless, z = 2, orientationally ordered con-

densate of atoms and dipoles, characterized by vanishing
gauge fields ãμ = Ãμ = 0, with a vortex-free Lagrangian
density, LBECad at low energies is given by Eq. (3) and equiv-
alently by Eq. (2).

Although the above description of the phases MI, BECd ,
BECad is quite transparent in this picture, because in Eqs. (6)
and (7) the gauge fields are sourced by discrete vortex charges,
the nature of the MI-BECd and BECd -BECad quantum phase
transitions (beyond a mean-field approximation) is not easily
accessible. In contrast, a dual gauge theory provides a suitable
field theory of these transitions.

IV. LIFSHITZ BOSON-VORTEX DUALITY

Following quantum smectic studies [39,40,51] I dualize
the Lifshitz model, obtaining a gauge theory that encodes
the restricted mobility of its charge and dipole vortices and
a provide a description of its phase transitions. To this end I
introduce a Hubbard-Stratonovich atom and dipole currents,

jμ, Jμk and integrate out the smooth component of the super-
fluid phases φ, θk , that impose atom and dipole conservation
constraint,

∂μ jμ = 0, ∂μJμk = jk, (12)

latter encoding that motion of atoms generates dipoles. These
are respectively solved by gauge fields, aμ, Aμk with

jμ = εμνγ ∂νaγ ≡ (∂ × a)μ, (13)

Jμk = εμνγ ∂νAγ k + εμνkaν ≡ (∂ × Ak + a∗
k )μ, (14)

and allows the interpretation of Eq. (12) as generalized cou-
pled Faraday equations,

∇ × e = −∂τ b, ∇ × Ek = −∂τ Bk + εkiei, (15)

for the electric and magnetic fields, ei = −εi j j j, b = j0, Eik =
−εi jJ jk, Bk = J0k ,

b = ∇ × a, e = −∂τ a + ∇a0, (16)

Bk = ∇ × Ak − x̂k × a, Ek = −∂τ Ak + ∇A0k − x̂ka0.

x̂k is unit coordinate vector with components δik . I note that
εkiei (atomic current) appears as the magnetic monopole cur-
rent sourcing the dipole Faraday equation (15). Above dual
field strengths and currents are invariant under generalized
dual gauge transformation

aμ → aμ + ∂μφ̃, Aμk → Aμk + ∂μθk − δμkφ̃. (17)

With this, the Lifshitz model (2), (3), (5) transforms to a
generalized mutual Chern-Simons-Maxwell Lagrangian,

L = LM[Ãμk, ãμ] + LCS[Ãμk, ãμ, Aμk, aμ] + L̃M[Aμk, aμ],
(18)

where LCS = iÃμkJμk + iãμ jμ = iAμk J̃μk + iaμ j̃μ is the cou-
pling of atoms and dipoles to the associated a- and d-vortices,

LCS = iÃk · (∂ × Ak + a∗
k ) + iã · ∂ × a, (19)

= ia · (∂ × ã − Ã∗
k ) + iAk · ∂ × Ãk, (20)

with (a∗
k )μ ≡ εμνkaν , Ã∗

μ ≡ εμνkÃνk , type of Hodge duals of
aν and Ãμk , and

L̃M = 1
2 K−1(∂ × Ak + a∗

k )2 + 1
2κ−1(∂ × a)2, (21)

the generalized Maxwell Lagrangian for bosons dual to LM

(8). I note the appealing symmetric form between bosonic
matter and corresponding vortices.

To complete duality, I express L above in terms of vortex
currents,

L̃ = 1

2
K−1(∂ × Ak + a∗

k )2 + 1

2
κ−1(∂ × a)2

+iAμ · J̃μ + iaμ j̃μ + Ec1

2
J̃2

μ + Ec2

2
j̃2
μ, (22)

and sum over these discrete vortex currents, obtaining dual
Lagrangian, L̃,

L̃ = 1
2 K−1(∂ × Ak + a∗

k )2 + 1
2κ−1(∂ × a)2

−K̃a cos(∂μφ̃ − aμ) − K̃d cos(∂μθ̃k − δμkφ̃ − Aμk ),

(23)
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where I utilized Eq. (17) to include dual matter (vortex) de-
grees of freedom, φ̃, θ̃, and for transparency of presentation
approximated the Villain potential by its lowest harmonic. The
compact dual phases are subject to integer winding bound-
ary conditions along τ , φ̃x(τ + β ) = φ̃x(τ ) + 2πwx, θ̃x(τ +
β ) = θ̃x(τ ) + 2πwx, wx ∈ Z, wx ∈ Z.

As required, the dual Lifshitz model reproduces the three
phases discussed above:

(1) MI: a gapped condensate of dual (atom and dipole
vortex) matter, that Higgses gauge fields aμ, Aμk that encode
bosonic and dipole matter, thereby fully gapping them. The
resulting Lagrangian density is

L̃MI = 1
2 K−1(∂ × Ak + a∗

k )2 + 1
2κ−1(∂ × a)2

− K̃a cos(aμ) − K̃d cos(Aμk ), (24)

a dual of Eq. (10).
(2) BECd : an orientationally ordered, gapless, z = 1 state,

that is a dual condensate of atomic vortex matter, Higgsing
aμ and an insulator of dipole vortex matter (that thereby
decouples), giving a Lagrangian density,

L̃BECd = 1
2 K−1(∂ × Ak+a∗

k )2+ 1
2κ−1(∂ × a)2 − K̃a cos(aμ),

(25)

≈ 1
2 K−1(∂ × Ak )2, (26)

a dual of Eq. (11).
(3) BECad : a gapless, z = 2 state that is a dual insulator of

a- and d-vortex matter, φ̃, θ̃k [allowing one to set J̃μk = j̃μ = 0
in Eq. (22)], leading to a dual Maxwell Lagrangian, L̃BECad =
L̃M, (21). It is a dual to the Lifshitz superfluid state, with a
Lagrangian, Eqs. (3) and (2).

In this dual picture the BECad -to-BECd transition is driven
by a condensation of atomic vortices, ψ̃ ∼ eiφ̃ , with an in-
sulating (vacuum) state of dipole vortex matter, d̃k ∼ eiθ̃k

(corresponding to a dipole condensate). The latter property
decouples disordered d-vortex matter [last term in Eq. (23)],
allowing one to integrate it out. With this observation, the
BECad -to-BECd transition is thus described by a generalized
Abelian-Higgs model (a dual superconductor), with the La-
grangian density,

L̃ = 1

2
K−1(∂ × Ak + a∗

k )2 + 1

2
κ−1(∂ × a)2

+ K̃a

2
|(∂μ − iaμ)ψ̃ |2 + Va(|ψ̃ |), (27)

where Va(|ψ̃ |) is a standard U (1)-symmetric Landau potential
for atomic vortex matter. In the BECd the dual a-vortex con-
densate ψ̃ thus Higgses out aμ (quantizing Mott-insulating
atomic matter) giving a gapless Maxwell dipole Lagrangian
for Aμk , Eq. (26).

The subsequent BECd -to-MI transition is then driven by a
condensation of dipole vortices, d̃k ∼ eiθ̃k from a condensed
(Higgs) BECd state of atomic vortex matter (with a gapped
atomic gauge field aμ). With this, the BECd -to-MI transition is
thus described by a conventional Abelian-Higgs model, with

FIG. 1. (a) An illustration of a dipole current Jk transverse to
the dipole moment and its equivalence to atomic counter-flow (red
arrows) and the associated induced vortex density j̃0. They both con-
tribute to atomic circulation, corresponding to dual charge density of
the Gauss’s law (30). (b) An illustration of a vortex current j and in-
duced transverse dipole density (black arrow), J0k , both contributing
to atomic number imbalance, as dual current sources of the Ampere’s
law (31).

the Lagrangian density,

L̃BECd -MI = 1

2
K−1(∂ × Ak )2+ K̃d

2
|(∂μ−iAμk )d̃k|2+Vd (|d̃k|),

(28)

where Vd (|d̃k|) is a standard U (1)-symmetric Landau potential
for dipole vortex matter. In the MI the dual d-vortex con-
densate d̃k thus Higgses out Aμk (quantizing Mott-insulating
dipolar matter) giving a fully gapped Lagrangian for aμ and
Aμk , Eq. (24). I note that generically the two flavors of the
k = x, y dipoles may condense at two distinct transitions,
allowing for yet another intermediate phase, where only one
of the dx and dy has condensed. [38–40]

One appeal of above dual description is that the BECad -
BECd and BECd -MI quantum phase transitions are Higgs
transitions (associated with condensation of atomic vortex
and dipole vortex matter, respectively), well described by
conventional gauge field theories (27), (28). Thus duality
allows a computation of criticality beyond a mean-field ap-
proximation. I leave these nontrivial analyses for future
studies.

The corresponding dual Hamiltonian is given by

H̃M = K

2
E2

k + K−1

2
(∇ × Ak − x̂k × a)2 (29)

+κ

2
e2 + κ−1

2
(∇ × a)2 + iAk · J̃k + ia · j̃,

with canonically conjugate electric fields and gauge poten-
tials. The associated coupled Gauss’s laws,

∇ · e = j̃0 − Eii, ∇ · Ek = J̃0k, (30)

encode a relation between circulations of atomic and dipolar
currents and the corresponding vortex densities, j̃0, J̃0k . The
appearance of Eii as a source of the atomic Gauss’s law cor-
rectly encodes the dipolar current εikJik ∼ d × v transverse
to the local dipole moment d, a bosonic counter-flow that
contributes to atomic vorticity, as illustrated in Fig. 1(a).
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Finally, to further elucidate Lifshitz model dynamics, I
examine the atomic and dipole Ampere’s equations (in real
time),

κ−1∇ × b = −∂t e + j̃ − κ−1B∗, (31)

K−1∇ × Bk = −∂t Ek + J̃k, (32)

corresponding to Lagrangian (22). In (31) I note that the
vortex current j̃ induces a dipole density B∗

i ≡ εikBk and a
gradient in atom density ∇ × b transverse to the vortex cur-
rent. The detailed physical content of this intriguing relation is
illustrated in Fig. 1(b). I also note that in terms of atomic phase
φ, the source-free atomic Ampere’s law just corresponds to
a vortex-free condition ∇∂tφ = ∂t∇φ. This condition is vio-
lated by a vortex current j̃ and dipole density B∗

i . Equivalently,
in terms of atom and dipole densities, in steady state Ampere’s
law simply corresponds to force balance between a gradient of
the atomic chemical potential (to lowest order the atomic den-
sity n), a dipole density and the Magnus force associated with
the vortex current. I thus observe that Gauss’s and Ampere’s
laws illustrate boson-dipole cross coupling and the associated
vortex defects, encoded in the Lagrangian, Eqs. (29), (30).

V. SUMMARY

In this manuscript I studied phases and phase transitions
of a quantum 2 + 1d Lifshitz model, a continuum Goldstone-
mode field theory of a Bose-Hubbard model with dipole

conservation. [37,38] Reformulating the dipole-conserving
second derivative coupling in terms of coupled XYmodels of
bosons and their dipoles, allows for a description of the phases
and transitions in terms of an extension of familiar Bose-
condensed and Mott-insulator phases of bosons and dipoles.
I complement this direct analysis by a dual coupled gauge
theory, that elucidates nontrivial dynamics between bosons,
dipoles, and their corresponding vortices. It also allows for
a transparent description of these transitions as generalized
Higgs transitions, whose beyond-mean-field criticality I leave
for future studies.

Note Added: After this work was completed I received an
interesting preprint from P. Gorantla et al., presenting a com-
plementary lattice duality of a 2+1d compact Lifshitz model,
with a detailed treatment of the ground state degeneracy for
the periodic boundary conditions. [65]
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