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Evidence of triplet superconductivity in Bi/Ni bilayers: Theoretical analysis of point contact
Andreev reflection spectroscopy results

Jia-Cheng He ®" and Yan Chen’
Department of Physics and State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China

® (Received 3 August 2021; revised 13 November 2022; accepted 22 November 2022; published 12 December 2022)

A theoretical formalism of Andreev reflection is employed to provide theoretical support for distinguishing
between the singlet pairing and the triplet pairing by the point contact Andreev reflection (PCAR) experiments.
We utilize our theoretical curves to fit the data of the PCAR experiment on unconventional superconductivity in
the Bi/Ni bilayer [G. J. Zhao, X. X. Gong, J. C. He, J. A. Gifford, H. X. Zhou, Y. Chen, X. F. Jin, C. L. Chien,
and T. Y. Chen, Triplet p-wave superconductivity with ABM state in epitaxial Bi/Ni bilayers, arXiv:1810.10403]
and find the Anderson-Brinkman-Morel (ABM) state satisfies the main characteristics of the experimental data.
The chiral cross section of the ABM state might explain well the broken time-reversal symmetry determined by
the polar Kerr effect measurements and the time-domain terahertz spectroscopy in Bi/Ni bilayers. Moreover, the
Andreev reflection spectra of the Balian-Werthamer state and the chiral p-wave state are also presented.
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I. INTRODUCTION

At the interface of a normal metal (N) and a supercon-
ductor (S), incident electrons from the N side are reflected
as holes and transmitted into the S side as Cooper pairs.
This is the Andreev reflection (AR) [1] process which is
the primary mechanism of electron transport across an N-S
interface. The AR spectra can be used to study the charac-
teristics of the superconducting gap, including its symmetry
and magnitude. As the quantitative model for the AR process,
the Blonder-Tinkham-Klapwijk (BTK) model [2] has been
used to study the isotropic gap of the BCS superconductor.
The model proposed by Kashiwaya ef al. [3] and Tanaka
and Kashiwaya [4] can be used to describe the anisotropic
gap superconductor by analysis of the corresponding con-
ductance spectra of the N-S junction. The model of Mazin
et al. [5] can be used to analyze the fully polarized current
across an N-S junction quantitatively. The unified model [6] is
valid for the quantitative analysis of the current with arbitrary
polarization.

As the well-known triplet pairing, the p-wave state was
first found in the electrically neutral superfluid *He [7].
However, the p-wave state has never been verified in solids
experimentally. The triplet pairing superconductors are often
associated with topological superconductivity [8] and appli-
cations in quantum computing and spintronics [9,10]. There
are some candidates for triplet superconductivity, including
the heavy-fermion superconductors (e.g., UPt3) [11-15], the
superconductors with broken inversion symmetry [16,17],
and the well-known Sr,RuQO, [18-20]. Recently the AR
spectroscopy of Bi/Ni bilayers [21] might indicate the ex-
istence of p-wave superconductivity in solids. Moreover,
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the Bi/Ni bilayer itself is interesting enough. The single-
crystal Bi (110), observed bulk superconductivity below
0.53 mK [22], is epitaxially grown on the weak ferromagnetic
Ni (100) layer to yield a Bi/Ni bilayer whose supercon-
ducting transition temperature is enhanced to 4 K [21].
Therefore, this bilayer system has attracted much research
interest [21,23-27].

In this paper, we employ a theoretical formalism of AR
by the four-component wave function to naturally obtain the
singlet pairing case or the triplet pairing case. Our work pro-
vides theoretical support for point contact Andreev reflection
(PCAR) experiments to distinguish between the singlet pair-
ing and the triplet pairing. The AR conductance of singlet
pairing superconductivity depends on spin polarization, but
the case of triplet pairing superconductivity is not related to
spin polarization.

This paper is organized as follows. In Sec. II, our formal-
ism is introduced briefly. In Sec. I1I, we follow the procedure
of the formalism to obtain the results of the Anderson-
Brinkman-Morel (ABM) state. In Sec. IV, by utilizing the
theoretical curves to fit the data of the PCAR experiment on
the unusual superconductivity of the epitaxial Bi/Ni bilayer,
we find that the theoretical conductance spectra of the ABM
state can describe well the main features of the experimental
conductance spectra. In Sec. V, we discuss the AR for an
arbitrary cross section of the three-dimensional (3D) gap of
the ABM state. The chiral cross section of the gap of the
ABM state might explain well the polar Kerr effect measure-
ments and the time-domain terahertz (THz) spectroscopy in
the Bi/Ni bilayer. The discussion and conclusion will be given
in Sec. VL.

II. CONDUCTANCE FORMULA

The plane wave at the normal metal side of the N-S junc-
tion can be expressed by using the four-component wave
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where k| and ky (k_) are wave-vector components parallel
and vertical to the N-S junction interface, respectively. The
subscripts + and — denote the electronlike and holelike quasi-
particles, respectively. The dimensionless real number « is

2
related to spin polarization P [6], i.e., P = 4_0;0[2.
spin-up incident plane wave. be~*+* is a normal reflection
wave. a;e@t%* i5 a normal AR wave which is evanescent
and spin up. a,¢’** is an unconventional AR wave with spin
down. Since we can always choose the spin direction of the
incident electron as the positive sz direction, the second row,
which represents the electron with spin down, is 0. As a result,
Eq. (1) has no loss of generality. In addition, the coefficients
(a1, ap, and b) can be calculated using the boundary conditions
given below.

The wave function at the superconductor side is given by
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where the superscripts (+) and (—) denote electronlike and
holelike quasiparticles, respectively. uy,y and vk are coher-
ence factors originating from the equation [28],

aks = Z(ukm’ak‘r’ + ka.&"aiks/)v 3)

s

where s is the spin index. ag, is the electron’s annihilate
operator, and oy is the quasiparticle’s annihilate opera-
tor. In this paper, we only consider the unitary solution
of the superconductor. More details about Eq. (2) can be
found in Appendix A. For simplification, we take g+ ~ ki =~
kr cos 6y where kr is the Fermi wave-vector size at the nor-
mal metal side, and 6y is the angle between the direction of
the incident electron and the normal to the interface.
The boundary conditions are given by
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For the ballistic transport, we utilize the two-dimensional (2D)
BTK model [3,4,29,30] and, thus, the normalized conductance
with a bias voltage V is

f dk“ gT (eV)

[ dkg" (00)’

where g7 (eV)= [y g(leV + 5 In L |df, g(E)=1 + |ai (E)|?
+ |ay(E)|? — |b(E)|*> and B = 1/kgT. kg is the Boltzmann
constant. g(oco) = m with Z = mU/R*kp is the
transparency of the N-S interface and is a function of the inci-
dent angle 6y of the electron [29]. To make it more concrete,

o(eV) = (6)

the normalized conductance formula is rewritten as
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/2
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The 2D model for AR cannot fully describe the case of
the 3D anisotropic gap and is only applicable to the case
of the isotropic gap, such as the s-wave case, and a specific
cross section of the 3D anisotropic gap. The 3D model for
AR can be applied to any k-dependent 3D order parameter
and any shape of the Fermi surface [29,30], and it has been
successfully used to fit spectra in a variety of compounds
[31-33]. We will present the method by the ABM state case
for an arbitrary cross section of the 3D anisotropic gap.

Following the steps described above, one can obtain ex-
pressions for the coefficients ay, a,, b, ¢, and d of the s-wave
and d-wave cases, which are consistent with Ref. [6] and
Ref. [3], respectively. The conductance of the s-wave or
d-wave case depends on spin polarization, which is the sig-
nificant characteristic of the singlet pairing case; that is, the
conductance peak of the singlet pairing case disappears, and
the conductance within the gap voltage approaches zero as
spin polarization increases [6].

Note that we have presented the part of our theoretical
formalism in the Supplemental Material of Ref. [23], and
our theoretical fitting curves to the experimental data can
also be found in Ref. [23]. This paper demonstrates a more
detailed version of our theoretical formalism. Furthermore,
the following sections contain some in-depth discussions of
the theoretical fitting curves to the experimental data.

III. CONDUCTANCE OF THE ABM STATE

There are two important p-wave states in the triplet pairing
case [28,34]. The first state is the ABM state [35-37], and its
superconducting order parameter has the form

—e'% sin G 0 > ®)

Al = A( 0 €% sin Oy

Here 6k and ¢ are related to the spatial direction (6, ¢k)
on the Fermi surface. More details about the ABM state
can be found in Appendix B. The relation AK)AT(k) =
A%sin® 66y indicates that the ABM state belongs to
the unitary solution. Thus, its coherence factors are el-

ements of matrices g = ./ %[l + €(k)/Ex]69, and vx =
Aei%sin 046/ 2E[Ex + e(K)], (uy) = v{7 =0).

We choose the coordinate system / in which the I, — I,
plane lies on the N-S interface and the /, axis points to the S
side. We restrict the axis of symmetry of the ABM state’s gap
to the I, — I, plane, so the angle part of the axis of symmetry is
(6., ¢n) = (w, 0). For instance, the form of the ABM state in
Eq. (8) corresponds to the case of w = 0. The electron across
the N-S interface has four trajectories [2]: electron reflection,
hole reflection, electronlike quasiparticle transmission, and
holelike quasiparticle transmission as shown in Fig. 1. These
four trajectories lie on the same plane according to the transla-
tion invariance in the interface [3]. We use (6, , ¢k, ) to denote
the direction of the wave-vector K; of the incident electron.
Therefore, ¢, and ¢i, + 7 can be used to determine the plane
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FIG. 1. The process of transmission and reflection at the N-S
junction. The parameter 6 represents the incident angle of the elec-
tron. The parameter ¢ represents the angle between the x axis of the
p wave (d wave) and the normal direction of the interface.

where the AR process occurs, and the parameter ¢, given by
Po = ¢y, is enough to denote this plane. The parameters w and
¢o together determine the configuration of connecting the tip
and the sample of the ABM state in the PCAR experiment.

The ABM state’s gap is anisotropic in three dimensions,
but we first study the gap’s cross section in the case of
¢o = 0 to get a sense of it. The other parameter @ of this
cross section is free, and the corresponding form of the order
parameter is given by FA sin(6x F w)é, with 6k, w € [0, ].
We apply the polar coordinates to this cross section with the
polar angle measured from the positive I, axis of the I, — I,
plane for simplification. We use 64 to denote this polar angle
with the vector ¢ in this cross section to avoid confusion.
Therefore, the ABM state’s order parameter projected onto
this cross section can be written as A sin(fq — )6, with
0q € [0, 2]. The calculated coefficients ay, a;, b, ¢, and d in
this cross-sectional case are listed in Table I, where Z is given
by Z =mU/R’ky and T is the inelastic-scattering factor
[38]. The corresponding process of AR is shown in Fig. 1.
Other parameters can be illustrated in Fig. 1. The transmitted
electronlike quasiparticle and the holelike quasiparticle have
different effective pair potentials A(6;) and A(6_) with
0+ =6 and 6_ = — 0, respectively. We can easily under-
stand from a; = O that these coefficients are not related to the
parameter «, according to Eq. (1). Thus, these coefficients are
independent of spin polarization P, according to P = ;7.
Therefore, the conductance of the ABM state is not related to
spin polarization, contrary to the singlet pairing case.

(a) (c)

Along the*B direction .-

(A7) A

(b)

FIG. 2. The incident quasiparticle from the S side will change its
phase of the pair potential after being reflected by the N-S interface in
different cases. The thick dark line represents the N-S interface. The
red dotted line with an arrow represents the axis of symmetry of the
gap of the ABM state. (a) The d-wave case of ¢ = 0 (¢ is explained
in Fig. 1), (b) the d-wave case of ¢ = 7 /4, (c) the cross section of
the 3D gap of the ABM state in the case of w = 0 and ¢y = 0, (d) the
cross section of the 3D gap of the ABM state in the case of w = 7 /2
and ¢y = 0. The zero-bias conductance peak of the PCAR spectra
originates from the w-phase difference of the pair potential of the
reflected quasiparticle to that of the incident quasiparticle.

IV. THE FIT AND ANALYSIS OF THE
EXPERIMENTAL DATA

Before discussing the conductance spectra of the ABM
state, we provide a physical understanding of the Andreev
reflection conductance peak to help you understand the results
of the PCAR experiments on the Bi/Ni bilayer. It was pro-
posed that the conductance peak in the d-wave case originates
from the bound states localized around the N-S interface.
These bound states decay into the bulk [3]. The N-S interface
can be regarded as the node of pair potential for the quasi-
particles. The tunneling electrons flow from N to S via the
bound states, similar to the resonant tunneling process. More-
over, the conductance peak forms at the energy levels of the
bound states.

For example, in the d-wave case of ¢ = /4 (¢ is ex-
plained in Fig. 1), the incident quasiparticle of the negative
pair potential A~ from the S side is reflected by the N-S
interface as shown in Fig. 2(b). Subsequently, the phase of
the pair potential changes from 7 to O at the interface. Then,
the pair potential at the point of incidence is equal to zero
(i.e., A; = 0) due to the overlap between the negative pair
potential of the incident quasiparticle and the positive pair

TABLE L Here (" = \/5(1 £ e*(q)/(|Eq| + iT))8y, D5 = sgn(sin 9(,*)\/%(1 F e5(q)/([Eq| +iM6,, p = (Z2 + Duhv* ), —
Z2u v DL e (q) = V(Eg| + D) — AX07), ABF) = A sin(0F), 0 =0y — 9.0, =71 — 0y — ¢. Zy=Z/cos 0y, the incident angle

q7qtt T —qtt
of the electron given by 9,?, =04, Z = mU/hzkp, and 64 € [0, 27].

ai a b c d
#(4) L #(=) V") ) (+)  #(=) i My *(—) i7 k()
v v Zq(Zq+i)(u v —u v ) —i(Zq+i)v_ iZqv_
ABM state (2D case) 0 w art p‘” e % TW
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potential of the reflected quasiparticle. Therefore, there is
a perfect elastic-scattering process for quasiparticles at the
interface due to the complete destructive interference of the
effective pair potential. The reflectivity of quasiparticles is
enhanced by increasing the barrier height Z, and the large
barrier height limit gives rise to high-density bound states
at the interface. There will be a zero-energy peak when the
bias voltage makes the Fermi energy of the S side slightly
higher than that of the N side (vice versa). However, in the
d-wave case of ¢ = 0, the incident quasiparticle of the pair
potential A~ (A™) from the S side will not change the phase
after being reflected by the interface as shown in Fig. 2(a).
Then, the overlap between the identical phases of the incident
quasiparticle and the reflected quasiparticle at the point of
incidence results in the finite amplitude of the pair potential
(i.e., A; # 0). This contradicts that the pair potential at the
N-S interface is zero in the case of the zero-bias voltage. Thus
incident quasiparticles from the S side are not reflected by the
N-S interface in the d-wave case of ¢ = 0 and the zero-bias
voltage. However, if a positive-bias voltage A /e is applied, the
Fermi energy difference between the S and the N sides will
become A. The pair potential at the N-S interface becomes
A; = A since the holelike quasiparticle excitation needs, at
least, energy A. If a negative-bias voltage —A/e is applied,
the pair potential at the N-S interface will become A; = A
since the electronlike quasiparticle excitation needs, at least,
energy A. In the large barrier height limit, the two cases give
rise to the high density of bound states at the interface, and,
thus, there is a peak near the bias voltage A/e (or —A/e).

The ABM state is analyzed similarly. In the case of the
cross section of w = 0 and ¢y = 0, the incident quasiparticle
of the pair potential At (A™) from the S side will not change
the phase after being reflected by the interface as shown in
Fig. 2(c). Thus, there is a conductance peak near the bias
voltage A/e (or —A/e) in the large barrier height limit. In
the case of @ = /2 and ¢ = 0, the pair potential At (A7)
of the incident quasiparticle from the S side will change a
sign after it is reflected by the interface as shown in Fig. 2(d).
This case yields the zero-energy conductance peak in the large
barrier height limit.

There is the highly unusual superconductivity discovered
experimentally in epitaxial Bi/Ni bilayers [39,40]. Evidence
of the p-wave superconductivity in Bi/Ni bilayers is pro-
posed in Ref. [21]. Figure 3 depicts the PCAR experimental
work on Bi/Ni bilayers [23]. The gold (Au) tip and the
Lag ¢7S19.33MnO3; (LSMO) tip can produce incident electrons
with spin unpolarized and highly polarized, respectively. They
used these two tips to make vertical contact with the Bi/Ni
bilayer surface (i.e., in the A direction). They found that the
conductance spectra always show a single peak in the A di-
rection, whether the material of the tip is Au or LSMO. The
conductance spectra in the other two directions parallel to the
Bi/Ni bilayer surface show a double peak in the B direction
and a single peak in the C direction, independent of the spin
polarization of incident electrons.

The normalized conductance spectra of the point contacts
on Bi/Ni bilayers along the different directions are shown in
Fig. 4. The features of these experimental conductance spectra
are completely consistent with our theoretical conductance
spectra. In Fig. 4, the black circles and the blue circles rep-

Au /LSMO tip

FIG. 3. Schematic of the PCAR experimental work on Bi/Ni
bilayers [21,23]. They measured the conductance spectra of epi-
taxial Bi/Ni bilayers (based on various thicknesses of the Ni layer
(0-7.5 nm) and the Bi layer (0-500 nm) [21,23]) in three almost
mutually perpendicular directions (i.e., the A, B, and C direc-
tions). Compared with their experimental conductance spectra, our
Figs. 4(a) and 4(b) correspond to the A direction case, Figs. 4(c) and
4(d) correspond to the B direction case, and Figs. 4(e) and 4(f)
correspond to the C direction case. Therefore, the ABM state might
be indicated in the bulk of the Bi layer, and the axis of symmetry of
the gap of the ABM state might be almost parallel to the B direction.

resent the experimental data of the conductance obtained by
using the Au tip and the LSMO tip, respectively. The data
of Figs. 4(a) and 4(b) are measured in the A direction, the
data of Figs. 4(c) and 4(d) are measured in the B direction,
and the data of Figs. 4(e) and 4(f) are measured in the C
direction. Furthermore, we utilized the theoretical curves of
the ABM state to fit the data of the PCAR experiment of
the Bi/Ni bilayer [23]. In Fig. 4, the black and blue circles
represent the experimental data [23], whereas the red lines
represent the theoretical fitting curves based on our theory.
The normalized conductance spectra do not depend on spin
polarization. Figures 4(a) and 4(b) show a single peak with
values of ¢ = 0.257 and ¢ = 0.3, respectively; Figs. 4(c)
and 4(d) show a double peak with a value of ¢ = 0.0lx
around zero; Figs. 4(e) and 4(f) show a single peak with values
of ¢ = 0.297 and ¢ = 0.187, respectively. The angle param-
eter ¢ mainly determines the peak features of the conductance
spectra of the ABM state, including the number of the peaks.
The angle parameter values shown in Fig. 4 are the best that
we can find to fit these measured data and satisfy the features
of the measured data. The value of Z mainly determines
the height of the conductance peak. The value of I mainly
changes the small details of the conductance spectra. We can
easily find that the configuration of the ABM state shown
in Figs. 2(c) and 2(d) satisfies the features of the measured
conductance peaks in the three directions. Moreover, it is
consistent with our theory that their experimental conductance
spectra are independent of spin polarization. Therefore, the
ABM state might be indicated in the bulk of the Bi layer of
the Bi/Ni bilayer as shown in Fig. 3. We should consider the
three-dimensional gap structure of the ABM state in the Bi/Ni
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FIG. 4. The normalized conductance spectra of the ABM state. The black circles and the blue circles represent the experimental data of the
conductance obtained by using the Au tip and the LSMO tip, respectively [23]. The Au tip and the LSMO tip can produce incident electrons
with spin unpolarized and highly polarized, respectively. The red lines are theoretical fitting curves based on our theory. Its normalized
conductance spectra do not depend on spin polarization, contrary to the singlet pairing case. (a) and (b) show a single peak with values of
¢ = 0.257 and ¢ = 0.37, respectively; (c) and (d) show a double peak with a value of ¢ = 0.017 around zero; (e) and (f) show a single peak

with values of ¢ = 0.297 and ¢ = 0.18x, respectively.

bilayer, according to Figs. 3, 2(c), 2(d), and 4. Moreover, the
axis of symmetry of the ABM state’s gap is almost parallel
to the B direction. It is enough that we only consider the
3D gap cross section parallel to the Bi/Ni bilayer surface for
the conductance spectra in the B direction, according to the
symmetry of the ABM state’s gap. However, we only obtain
the AR in the particular cross section of the 3D gap of the
ABM state when the tip is in the A direction or the C direction.
Thus, we should consider an arbitrary cross section of the
3D gap.

The gap values obtained by the fitting procedure range
from 1.9 to 2.7 meV as shown in Fig. 4. The fitted gap
values of the B direction are smaller than those of the A or
C directions. We propose the inhomogeneity of the Bi/Ni
bilayer samples should be the reason. The inhomogeneity
of these samples may result from aging, air exposure, and
imperfections during growth [27].

V. ANDREEYV REFLECTION OF THE ABM STATE
IN AN ARBITRARY CROSS SECTION OF THE GAP

As said above, we should consider the gap structure of the
ABM state in three dimensions for the PCAR experiments
on the Bi/Ni bilayer. We have presented the conductance
formula of an arbitrary cross section of the 3D gap of the

ABM state in Appendix C. As shown in Fig. 3, when the
tip is in the B direction, the wave-vector kg of the incident
electron can be decomposed into two components k; and k
which are parallel and perpendicular to the N-S interface,
respectively. Therefore, these two wave-vector components
determine the cross section of w = 0 and ¢y = const.. Then,
the pair potential that quasiparticles experience in this cross
section is given by #A sin 6e6,, according to Eq. (C3).
For example, the case of kj parallel to the Bi/Ni bilayer
surface corresponds to the cross section of @ = 0 and ¢ = 0.
As discussed above, the symmetrical axis of the 3D gap of
the ABM state is almost along the B direction. The charac-
teristics of the cross sections of w = 0 and ¢y = const. are
the same as that of the cross section of @ = 0 and ¢y = 0, on
account of the rotational symmetry of the 3D gap along the B
direction.

As shown in Fig. 3, for the case of measuring in the C
direction, we can obtain the AR cross section of w = 7 /2 and
¢o = const. in the same way. When the K| is parallel to the
surface of the Bi/Ni bilayer, the corresponding cross section is
determined by w = /2 and ¢y = 0, namely, A cos 66,
according to Eq. (C3). However, there is no rotational sym-
metry of the 3D gap along the C direction. Therefore, the
characteristics of other cross sections of the 3D gap in the
C direction are different from that of the cross section of
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kyt

FIG. 5. The red circle represents the cross section of the 3D gap
of the ABM state in the case of @ = /2 and ¢y = /2, and this
cross section is the same as the chiral p wave.

w = 1 /2 and ¢y = 0. Particularly, when the Kk is perpendic-
ular to the B direction, namely, the cross section of w = 7 /2
and ¢y = 7 /2, the corresponding cross section of the 3D gap
is given by Ae*4_, according to Eq. (C3). As shown in
Fig. 5, this cross section is the same as the chiral p wave.
The AR spectra of the chiral p wave are shown in Fig. 7, and
they are still of a single peak, similar to those of the cross
section of w = 7 /2 and ¢9 = 0. However, they are isotropic.
In the cross section of w = 7w /2 and ¢y = const., the corre-
sponding conductance spectra are always of a single peak, and
the height of the conductance peak decreases with the value of
the parameter ¢ increasing from O to 7 /2. The explanation
of this behavior can be found in Appendix C. This important
single peak characteristic guarantees that one will almost al-
ways obtain a single peak signal in the A or C direction in the
experiment as shown in Fig. 3. For convenience, we utilize
the cross section of w = 7 /2 and ¢y = 0 to describe the main
characteristics of AR in the C direction. The analysis of the A
direction is identical to that of the C direction.

The chiral cross section (namely, the cross section of
w=m/2 and ¢y = m/2) is critical. We propose that the
chiral cross section of the ABM state might explain the bro-
ken time-reversal symmetry (TRS) determined by the polar
Kerr effect measurements in the Bi/Ni bilayer [26] and the
time-domain THz spectroscopy (TDTS) where fully gapped
superconductivity in the bulk of the system is proposed [27].
The Bi layer of the Bi/Ni bilayer has a finite thickness, and
the PCAR experimental data [23] are obtained from three
mutually perpendicular directions of the Bi/Ni bilayer. These
indicate the ABM state’s gap in the Bi/Ni bilayer should
be understood from a three-dimensional perspective rather
than a two-dimensional perspective. When the measurement
is performed on the chiral cross section of the ABM state,
the characteristics of the chiral p wave will be detected, in-
cluding the broken TRS and fully gapped superconductivity.
Here the chiral p wave (i.e., p + ip) naturally has two p-wave
components with equal magnitudes. This can explain well
the TDTS of the Bi/Ni bilayer [27] where the gap struc-
ture with approximately equal magnitudes for two p-wave
components of the chiral p wave is proposed. The charac-
teristics of the chiral p wave will manifest as long as the

measurement is not perpendicular to the symmetrical axis of
the 3D gap of the ABM state in Bi/Ni bilayers. Furthermore,
due to the inhomogeneity of the Bi/Ni bilayer sample, the
axes of symmetry of the ABM state’s gap in different lo-
calities of a sample may only be roughly parallel to each
other rather than completely parallel. Therefore, the char-
acteristics of the chiral p wave always manifest in various
measurements.

VI. DISCUSSION AND CONCLUSION

Our theoretical formalism by quantitatively describing the
effects of spin polarization demonstrates that the PCAR exper-
iments can be used to distinguish between the singlet pairing
and the triplet pairing. The superconducting state of the Bi/Ni
bilayers belongs to the triplet pairing rather than the singlet
pairing since the PCAR spectroscopy results are independent
of spin polarization. This critical feature can rule out the
possibility of the s wave and the d wave.

As said above, the zero-bias conductance peak of the
PCAR spectra originates from the w-phase difference in the
cross section of the gap. According to this simple physical
picture, the zero-bias conductance peak signal of the Bi/Ni
bilayer in the A and C directions indicates the existence of
the m-phase difference in the cross section of the gap. Note
that the zero-bias conductance peak is robust for the Bi/Ni
bilayers [23]. We should also emphasize that the values of the
height of the normalized zero-bias conductance peak of the
Bi/Ni bilayer are substantially higher than two as shown in
Figs. 4(a), 4(b), and 4(e). This important feature also rules out
the possibility of the s wave since the corresponding values
of the height of conductance within the gap (eV < A) are not
more than two [2,29]. In addition, the zero-bias conductance
peak of the Bi/Ni bilayer does not originate from the effect of
the thermal smearing on the normalized conductance, accord-
ing to this feature.

We also rule out the Balian-Werthamer (BW) state of the p
wave because the anisotropic PCAR spectra of the Bi/Ni bi-
layer are not consistent with the isotropic conductance spectra
of the BW state (see Appendix D). We propose that the ABM
state of the triplet p wave seizes the essential features of the
superconducting state of the Bi/Ni bilayers, according to our
theoretical fitting curves. The mechanism of the ABM state in
the Bi/Ni bilayers might be complex. The external perturba-
tion to this system during probing might slightly change the
gap values of the ABM state. The qualitative features of
the ABM state in the Bi/Ni bilayers are robust, which makes
the fitting curves satisfy the PCAR data. We think the ABM
state is a simple and elegant description of the superconduct-
ing state in the Bi/Ni bilayers.

The features of the PCAR data of the Bi/Ni bilayers in-
dicate the unconventional pairing in this system. However,
to provide more evidence in favor of the ABM state, other
experimental works in the Bi/Ni bilayers are expected in
the future, including phase-sensitive symmetry tests and non-
phase-sensitive techniques. To further ensure the ABM state
in the Bi/Ni bilayers is meaningful. This material will become
the first discovered solid material where the ABM state exists
if more experiments confirm this.
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In conclusion, we utilize the theoretical formalism to
demonstrate that the AR of triplet pairing superconductivity
is independent of spin polarization, contrary to the singlet
pairing case. Our theoretical conductance spectra of the ABM
state can explain the main features of the PCAR spectroscopy
results of the epitaxial Bi/Ni bilayers. In addition, the candi-
date ABM state demonstrates the exact conductance formula
for an arbitrary cross section of the 3D gap.
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APPENDIX A: THE UNITARY SOLUTION
AND THE CONSTRUCTION OF THE WAVE FUNCTION
AT THE SUPERCONDUCTOR SIDE

We can utilize the four-component notations ayx =
Tt T _ i TONT
(akp, axy, a_yy,aly )" and o = (O‘!‘T’ Oy, @ gp, 0y )" to
make Eq. (3) compact: ay = Uxog with
_ i Dk P
U = (f)ik ﬁik> and UyU, =1, (A1)

where iy and 7y are 2x2 matrices, i.e.,

ik = Ugrr  Ukpy and D = Ukt Ukt . (A2)
Ukl Uk Ukt Ukl

According to Eq. (A1), we can obtain

ax = U a. (A3)
By Eq. (A3), we can construct Eq. (2). ¥s(r) is combined
by the transmitted quasiparticle of the same side of the
Fermi surface (i.e., the electronlike quasiparticle) and the
transmitted quasiparticle crossing through the Fermi surface
(i.e., the holelike quasiparticle) [2]. The electronlike quasipar-

ticle wave function is eI ei‘”x(u::%, MI(J)T vf(]:})T, ”i(l:l)ﬁT

which corresponds to the quasiparticle’s creation operator O‘l’m
[41]. Apd we have the relation gy = ui’;MaM + ”ﬁm“ki +
Vokprdl gy + v_kHaT_kl. It is the same way to obtain the
holelike quasiparticle wave function. Thus, we can construct
Eq. (2) using the elements of the matrix Ux. The wave-
function components corresponding to the other quasiparticle
ax, can be neglected in the case of the unitary A(K) as ex-
plained below. For the unitary solution [28],

— [Ex + €(k)]60
= 1 N 1/2°
{[Ex + e(®)]? + 1tr AAT(K)}
~AK)
{[Ex + ()P + jtr AAT(k)}l/Z’

(A4)

bk = (AS5)

where Ey = [€*(k) + tr AAT(k)]"/? is the energy spectrum
of the superconducting quasiparticles, and the gap function

A(K) is a matrix. For the singlet pairing case,

0 Iﬂ(k))

Ak) = i6, ¥ (k) = <_ & 0 (A6)

where 1 (k) is an even function. For the triplet pairing case,
A(k) = i[d(k) - 616,

[ —dy(K) + idy(K)
- d;(k)

d;(k)
d (k) + idy(k)>’ (A7)

where d(k) is an odd vectorial function. Since oy, =
i t

ul’;NakT + ”izuaki + vkl Fvkpaly,  we have

thus,

V_k, ¢a+_ki for the unitary solution of superconductivity
according to Eq. (A5). We know from Eq. (1) that the spin
of the incident electron wave is up. Thus, the spin of the
transmitted electron is also up, i.e., the space of altl is
orthogonal to the incident electron. Then, the transmitted
electron with spin up in the superconductor will induce
the quasiparticle corresponding to the annihilation operator
oKy = ”ltmakT + v—kTTaim + ”—kwaim by acting as the
component corresponding to ayy of the quasiparticle .
However, because there is no transmitted electron with spin
down in the superconductor as the inducible factor, the
transmitted electron with spin up is unable to induce the
other quasiparticle corresponding to the annihilation operator
o = “ltuaki + v—leaikT + ”—kwaiky As a result, the
wave-function components associated with the quasiparticle
ay, can be neglected.

”lﬁm =0 and, oy, = ul’:HaH + v—kTiaLkT +

APPENDIX B: THE PROPERTIES OF THE ABM STATE

The d(k) corresponding to the form of the ABM
state’s order parameter [i.e., Eq. (8)] is given by d(k) =
A(e® sin 6y, 0,0) = Ak, + iky, 0, 0), where k, (k,) is a lin-
ear combination of angular-momentum eigenstates Y{"(fi)
(m = 0, £1), according to Eq. (A7). The relation IEX + ilzy x
YlJrl indicates a finite orbital-angular-momentum projection
along the Z axis parallel to the axis of symmetry of the
ABM state’s gap [34]. The ABM state breaks time-reversal
symmetry, i.e., KA(k) # A(k)e!®, where K is the time-
reversal operator and @ is a phase factor related to the
U(1) gauge transformation [28], according to the relation
Kd(k) = —d*(—k).

APPENDIX C: THE CONDUCTANCE FORMULA
FOR ANDREEV REFLECTION OF THE ABM
STATE IN AN ARBITRARY CROSS SECTION

Now let us demonstrate how to get the exact conduc-
tance formula of an arbitrary cross section of the 3D gap
by the example of the ABM state. We need some tricks to
link the gap equation to the wave-vector direction of the
incident electron from the N side since the incident electron
with different wave-vector directions will experience different
phases of the pair potential at the S side. The wave-vector
direction of an incident electron is given by k= (I%x, Igy, IQZ) =
(sin 6k cos ¢k, sin bk sin ¢y, cos O ) expressed in the coordi-
nate system / (the definition of the coordinate system / can
be found in Sec. 111, and Kk is the wave vector of the incident
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electron). We still restrict the axis of symmetry of the ABM
state’s gap to the I, — I, plane and use the parameter w defined
in Sec. III. Then rotate the coordinate system / around the /,
axis to make the I, axis coincide with the axis of symmetry of
the ABM state’s gap, and, in the new coordinate system I, the
wave-vector direction K is rewritten as k7 = R(I —a))kT

Here R([,, —w) is given by
cosw 0 —sinw
Ry, —w) = 0 1 0 (ChH
sinw 0 cosw

Then, we obtain
k' = (sin B cos ¢k cos w — cos G sin w,
sin G sin @y, sin G cos @i sin @ + cos Gy cos w).
(C2)
Thus, the gap equation of the ABM state can be rewritten as
A(k) = —A(k}, + ik})6; = — A(sin 6 cos ¢y cos o

— cos bk sin w + i sin G sin Pk)F,. (C3)

Now, this gap function is linked to the direction of the wave
vector of the incident electron. Therefore, the expressions of
i, and ¥y linked to the wave vector of the incident electron

are given by
" 1 .
iy = 5[1 + €(k)/Ex]60,

B —A(K)
 V2E([Ex + e®)]

The corresponding calculated coefficients a;, az, b, ¢, and d
for the incident electron with the wave-vector k are listed in
Table II. The expressions of these coefficients are almost the
same as that of the 2D case. Thus, we can obtain the corre-
sponding conductance formula by inserting these coefficients
into Eq. (6).

The parameters w and ¢, (the definition of ¢y can be found
in Sec. III) will determine the cross section of the gap of the
ABM state in which the AR process occurs. Moreover, the
AR cross section will be determined by the configuration of
connecting the tip and the sample of the ABM state in the
PCAR experiment.

The orbital part of the ABM state in the cross section of
w = /2 and ¢y = 7 /2 can be rewritten as eT% = cos 6 +
i sin . The first component cos 8 yields the zero-bias con-
ductance peak, which is the same as that of the cross section of
o = m /2 and ¢ = 0. The second component =i sin 6 is the
same as the cross section of w = 0 and ¢y = 0. Both of these
two components contribute to the conductance of the ABM

(C4)

state in the cross section of w = 7 /2 and ¢y = 7 /2, which is
a linear combination of the cases indicated by Figs. 2(c) and
2(d). In the cross section of w = 7 /2 and ¢y = const., the cor-
responding orbital part is given by cos 6k £ i sin ¢y sin 6.
Thus, this case is also a linear combination of the cases in-
dicated by Figs. 2(c) and 2(d). As the value of the parameter
¢o increases from 0 to 7 /2, the weight factor sin ¢y of the
second component increases as well, and, thus, the height of
the zero-bias conductance peak decreases. In addition, the
transmission of electrons becomes weaker and more direc-
tional around the normal to the N-S interface as the value of
Z increases, according to m (i.e., the transparency
of an N-S interface). Thus, as the value of Z increases, the
zero-bias peak becomes sharper due to more contributions
from the component cos 6. In the chiral cross-sectional case,
the zero-bias peak is sharp enough when Z = 0.35, which is
around the minimum value of Z obtained from our fits on the
PCAR spectra of Bi/Ni bilayers as indicated in Fig. 7.

APPENDIX D: CONDUCTANCE SPECTRA FOR THE BW
STATE AND THE CHIRAL P WAVE STATE

The BW state is the second important state of the p-wave
pairing [37,42]. Its odd vectorial function is given by d(k) =
AKk, and the corresponding order parameter is given by

A _ —ky + ik, k,
where k, = sin 6 cos ¢y, Igy = sin 6 sin ¢ and I%Z = cos H.
The BW state is unitary and its time-reversal symmetry re-
mains unbroken [18,28,43]. The corresponding AR in an
arbitrary cross-section of the gap of the BW state is restricted
to the condition:

(Zic — DU [~ 222 + 20 + o)™ v,

+ 2+ o) (Z + DI T = 0.

The corresponding AR coefficients are given by

a) = [—i(Z + ™D 0"+ iz 0™ 1,

D2)

kit Ukt ki V-kit
*(+) H)

a2 = Vg Vo / Ps

b= =2+ D) — ugy v/,

= —i(Z + Z)U_k¢¢/p’

d = iz, /p,

2 () *(=) 2,,() x () —
(Z + Dy v2y s — Zeqv-yy and - Zy =

Z/ cos 0%. Here 6% is the incident angle of the electron. Only

(D3)

with p=

= A6, b, 0)/V2(ES+ DB+ D) £eE5K), p=(Z +

TABLE 1L Here u) = /101 +ex(0/(B] +iD),  v',
D0y = Zu vt e = B+ D2 — [A(0F . x. o).

i sin O sin @y), 6 =6k, 6 =7

A6k, Pk, ) = —A(sin 6 cos ¢y cos w — cos G sin w +

— Ok, Zi = Z/ cos 0%, 0% = 6, and Z = mU [ ik

a ap b c d
) k=) (=) x(+) (+) k()
kiU Zi (Zi+D) (a3 v —ug v ) —i(Z+ip” iZv™
ABM state (3D case) 0 w k1 ;TT ki gy fkﬁ %
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20F (b)

TRT
'S

Normalized Conductance dI/dV
._]
Il

V (mV) V (mV)

FIG. 6. The normalized conductance spectra of the BW state in
the case of Z = o = 0.

two cases satisfy Eq. (D2). The first case is when Z = o = 0.

— ] — — () (+) _ % () (+)
Then, b=d=0, ar = ”—ku/“km and ay = vfkTT/ukTT' In
this case, we can easily obtain

E_JVEE—A?
E+VE?-A?
We can deduce from Eq. (6) that the corresponding nor-
malized conductance is isotropic. Therefore, its conductance
spectra are not related to the angle parameter ¢, as shown
in Fig. 6. Since Eq. (D4) is the same as that of the s-wave
at Z = 0, the conductance spectra are the same as those of
the s-wave at Z = 0, as shown in Fig. 6. The second case
satisfying Eq. (D2) is when the cross-section of the gap of the
BW state is parallel to the x-y plane, i.e., d(k) = Ak, Igy, 0)
with 6y = 7 /2. In this case, its order parameter is given by

" —e itk 0
A(k)=A( 0 ei¢k>’

which indicates vf(l;‘?T = 0and a; = 0, according to Egs. (AS5)

and (D3). The corresponding conductance spectra are
isotropic and of a single peak, and do not depend on spin
polarization, as shown in Fig. 7.

gE)=1+ ‘ . (D4)

(D5)

200 (b) 1
181 A=1 meV —7=0.45 |

T=143K

Normalized Conductance dI/dV

V (mV)

V (mV)

FIG. 7. The normalized conductance spectra of the BW state in
the case of the gap cross-section parallel to the x-y plane and the
chiral p-wave state.

The order parameter of the p + ip state (in two dimensions)
is given by

A(q) = — A6, (D6)

where ¢4 € [0, 2r]. The chiral p wave belongs to the uni-
tary solution, according to A(q)AT(q) = A%6y. Thus, we can
utilize Eq. (AS) to obtain its coherence factors, which are
elements of matrices,

1
g = 5[1 + €(q)/Eql60,

o —~A(q)
4 2B [Eq + (@]

where Eq = \/€2(q) + AZ. Following the same procedure, we
can quickly obtain the coefficients a;, ay, b, ¢, and d, which
are essentially the same as the ABM state case. Its conduc-
tance is also not related to spin polarization. The conductance
spectra of the chiral p-wave state are identical to that of the
BW state in the case of the gap cross section parallel to the
x-y plane [43] as shown in Fig. 7.
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