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Quantum dynamics of a 4π kink in Josephson junction parallel arrays with large kinetic inductance
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We present a theoretical study of the quantum dynamics of two magnetic fluxons trapped in Josephson junction
parallel arrays (JJPAs) with large kinetic inductances. The Josephson phase distribution of two trapped magnetic
fluxons satisfies a topological constraint, i.e., the total variation of Josephson phases along a JJPA is 4π . In such
JJPAs the characteristic length of the Josephson phase distribution (“the size” of magnetic fluxon) is drastically
reduced to be less than a single cell size. Two extreme dynamic patterns will be distinguished: two weakly
interacting and two merged magnetic fluxons, i.e., a 4π kink. Taking into account the repulsive interaction
between two magnetic fluxons located in the same or adjacent cells, we obtain the energy band spectrum E4π (p)
for a quantum 4π kink. The coherent quantum dynamics of 4π kinks demonstrates the quantum beats with the
frequency and amplitude strongly deviating from those observed for two independent magnetic fluxons. In the
presence of applied dc and ac bias currents of frequency f a weakly incoherent quantum dynamics of a 4π kink
results in the Bloch oscillations and the seminal current steps with values I (n)

4π = en f which are two times less
than those for two independent magnetic fluxons.

DOI: 10.1103/PhysRevB.106.224507

I. INTRODUCTION

Magnetic fluxons (MFs) are topological solitons [1–4]
studied intensively in various low-dimensional superconduct-
ing systems, e.g., in Josephson junction parallel arrays (JJPAs)
[5–8]. Each MF is a vortex of superconducting current car-
rying one magnetic flux quantum, �0. The JJPAs composed
of a large number of superconducting cells with embedded
Josephson junctions, have provided a well established exper-
imental platform for studying the MFs dynamics. A variety
of fascinating physical phenomena in the classical nonlinear
dynamics of MFs have been observed experimentally, e.g.,
dc/ac current induced resonances [5], the relativistic dynam-
ics of MF [6], bunching of MFs [9], the Cherenkov radiation
of plasma modes by moving MF [10], ac current induced
dynamic metastable states [11], and the dynamics of MFs in a
specially prepared ratchet potential [12]. The MF itself is a 2π

kink in the spatial distribution of Josephson phases [5,6]. The
effective methods have been elaborated to trap, manipulate,
and to measure MFs in JJPAs.

Even more complex macroscopic objects, e.g., breathers,
i.e., (anti)MF-MF pairs, observed in long Josephson junctions
[6,7], discrete breathers trapped in Josephson junction ladders
[13,14], or high-order kink states in JJPAs [9,15–18], have
been theoretically and experimentally studied. The latter have
been predicted a long time ago [15,16] and, in spite of the re-
pulsion of two MFs approaching each other, moving 4π kinks
have been experimentally observed in Ref. [18]. The finger-
print of the 4π kink nonlinear classical dynamics is a specific
branch of the current-voltage characteristics (I-V curve) sub-
stantially deviating from the one related to the motion of two
independent MFs. The effective numerical procedures have

been developed in order to quantitatively analyze the classical
dynamics of MFs and high-order kinks in JJPAs governed by
a large set of coupled nonlinear differential equations with
topological constraints [6,7].

A new twist in this field, namely, a study of the
quantum dynamics of macroscopic topological objects, has
attracted great interest. Initial studies have demonstrated a
large number of incoherent quantum phenomena such as
the macroscopic quantum tunneling of a bunch of MFs
in two-dimensional Josephson junction arrays [19,20], the
macroscopic quantum tunneling and energy level quantization
of a single MF [21–25] in specially prepared potential, and
the quantum dissociation of a vortex-antivortex pair [26] in
long annular Josephson junctions. It was realized that the
main obstacle on the way to observe the coherent quantum-
mechanical effects in the dynamics of MFs is a large spatial
extent (the MFs “size”) of a 2π kink greatly exceeding the size
of a single cell. The quantum dynamics of various excitations
in such JJPAs have been successfully described by the semi-
nal sine-Gordon equation [27–29]. However, the sine-Gordon
equation being an integrable one, does not allow the formation
of 4π kinks and an intrinsic Peierls-Nabarro potential, and
various nontopological macroscopic objects, e.g., the plasma
oscillations or vortex-antivortex pairs, can easily be excited
leading to an additional dissipation and decoherence in the
dynamics of MFs.

In order to drastically decrease the MFs size one needs to
replace low geometrical inductances by large kinetic ones.
Implementation of large kinetic inductances in JJPAs or
long Josephson junctions can be provided by two effective
methods: an embedding of series arrays of large Josephson
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junctions in each cell of JJPAs [30,31], or using disordered
superconducting materials [32–35].

The coherent quantum dynamics of a single MF trapped
in a JJPA with large kinetic inductances have been theoreti-
cally studied in [31,36,37]. In such JJAs the Josephson phases
strongly vary from one cell to adjacent cells, and therefore,
the discrete sine-Gordon equation in an almost anticontinuous
limit [4,36,38] can be used to describe the quantum dynamics
of MFs. Such coherent quantum-mechanical effects as the
quantum beats of a single MF in JJAs composed of a few
cells [31], the MF energy band [36,37], complex quantum
oscillations controlled by the Aharonov-Casher phase, and
weakly incoherent dynamics of quantum MF leading to the
macroscopic Bloch oscillations [36] have been studied in
detail. Moreover, the discrete sine-Gordon equation ceases
to be an integrable one, and therefore, it is a good starting
point to theoretically study the coherent quantum dynamics of
high-order kinks trapped in JJAs.

In this paper a previously elaborated analysis of the quan-
tum dynamics of a single MF [36] will be extended to the case
of two MFs trapped in a JJPA with high kinetic inductances.
The Josephson phase distribution of two MFs monotonically
increases along the JJPA, and the total variation of Josephson
phases is equal to 4π . In an almost anticontinuous limit each
MF is characterized by Josephson phases of three consecutive
Josephson junctions [36], and using this approximation we
derive the repulsive interaction potential of two MFs and
present the detailed study of the coherent quantum dynamics
of two interacting MFs. In the analysis we distinguish two
extreme dynamical patterns: the quantum dynamics of two
independent MFs and a 4π kink, i.e., two merged MFs. For
both cases we obtain the energy bands determining the coher-
ent motion of two MFs along the JJPA, the time-dependent
probability to find both MFs in a fixed cell of the JJPA, and
macroscopic Bloch oscillations occurring in the presence of a
weak dissipation. A quantitative comparison of these dynamic
patterns allows one to obtain distinguished features of the
4π -kink coherent quantum dynamics.

The paper is organized as follows: In Sec. II we present
our model for JJPAs with large kinetic inductances, and pro-
vide the generic expression for the potential energy U ({ϕi}),
where {ϕi} are the Josephson phases of individual Josephson
junctions. In Sec. III we study the effective potential energy
of two magnetic fluxons trapped in a JJPA. For that we use a
special approximation where a single fluxon is characterized
by Josephson phases of three consecutive Josephson junctions
[36]. In Sec. IV we elaborate a two-dimensional tight-binding
model allowing one to study the coherent quantum dynamics
of two interacting magnetic fluxons. The quantum-mechanical
dispersion relation of a 4π kink will be obtained. In Secs. V
and VI we discuss the specific quantum properties of a 4π

kink and compare that with two independent MFs. Section VII
provides conclusions.

II. JJPAs WITH LARGE KINETIC INDUCTANCES:
MODEL AND POTENTIAL ENERGY

Let us consider a JJPA composed of M small (quantum)
Josephson junctions incorporated in superconducting cells of
large kinetic inductances. The cell size is d . The dynamics of

(a)

(b)

FIG. 1. (a) Schematic of a JJPA with large kinetic inductances.
Small Josephson junctions with Josephson phases ϕi are shown by
crosses. Large kinetic inductances are provided by series arrays of
large Josephson junctions (shown by red boxes). (b) The typical
Josephson phase distribution of two well separated MFs trapped in a
JJPA. Red dots represent values of Josephson phases in the centers
of the MFs and open circles represent “positions” of the MFs.

small Josephson junctions is determined by time-dependent
Josephson phases, ϕi(t ), and these Josephson junctions can
demonstrate the quantum-mechanical behavior on a macro-
scopic scale. Small Josephson junctions are characterized by
two important physical parameters: the Josephson coupling
energy, EJ , and the charging energy, Ec. Large kinetic in-
ductances of superconducting cells are provided by series
arrays of large (classical) Josephson junctions, δi. These series
arrays of Josephson junctions allow one to effectively block
the undesirable penetration of magnetic fluxes into JJAs. An
external magnetic field piercing JJPA cells is characterized by
the magnetic fluxes, �i. The schematic of such setup is shown
in Fig. 1(a).

A general expression for the JJPA potential energy with the
Josephson phase distribution {ϕi} is given by

U ({ϕi}) = EJ

M∑
i=1

(1 − cos ϕi ) + EL

M∑
i=1

×
(

ϕi − ϕi+1 + 2π
(ni�0 + �i )

�0

)2

, (1)

where ni is number of magnetic flux quantum �0 penetrating
an ith cell. Here EL is the kinetic inductance energy that is
supposed to be small with respect to the Josephson coupling
energy of individual Josephson junctions, EJ , i.e., EL � EJ .
Next we consider a simplest case as all �i, ni are set to zero.
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III. JJPAs WITH TWO TRAPPED MAGNETIC FLUXONS

Next, we consider a particular case as two MFs are trapped
in the JJPA. A single MF bearing the magnetic flux quantum
�0 is the 2π kink in the Josephson phase distribution {ϕi},
and correspondingly, in the presence of two MFs the {ϕi}
has to be a monotonic function and satisfy the following
topological constraint: the total variation of ϕi along the JJPA
is 4π .

To obtain the potential energy of two interacting MFs
trapped in the JJPA with large kinetic inductances (EJ � EL)
we use the method elaborated previously to study the classical
[38] and quantum [36] dynamics of a single MF in the anti-
continuous limit, where a single MF is characterized by three
consecutive Josephson phases, and other Josephson phases are
set to 0 or 2π . To apply this method for the JJPA with two
trapped MFs we fix the centers of MFs in cells k and �. The
Josephson phases of MF centers are ϕk varying in the region
between 0 and 2π , and ϕl varying in the region between 2π

and 4π , accordingly. The typical Josephson phase distribution
of two well separated MFs is presented in Fig. 1(b).

A. Well separated MFs: l − k � 3

As the centers of MFs are located at large distances, e.g.,
l − k = 3 [see the Josephson phase distribution in Fig. 1(b)],
the Josephson phase distribution is written in the following
form:

{ϕi} = {0, . . . , 0, ϕk−1, ϕk, 2π + ϕ̃k+1, 2π + ϕ̃l−1,

2π + ϕ̃l , 4π − (2π − ϕ̃l+1), 4π, . . . , 4π}, (2)

where we introduce the renormalized Josephson phase as
ϕ̃n = ϕn − 2π . Substituting (2) in (1) and taking into account
that the Josephson phases ϕk−1, |ϕ̃k+1|, ϕ̃l−1, and |ϕ̃l+1 − 2π |
are small, we expand the potential energy (1) up to the second
order with respect to these phases and minimize. Following
this procedure and taking into account the terms up to the sec-
ond order in EL/EJ , we obtain the effective potential energy
of two noninteracting MFs:

Ueff(ϕk, ϕ̃l=k+3) = 2EL

(
1 − 2EL

EJ

)(
ϕ2

k + ϕ̃2
l

)

− 4πEL

(
1 − 2EL

EJ

)
(ϕk + ϕ̃l )

+ EJ (2 − cos ϕk − cos ϕ̃l ) + U0, (3)

where U0 is obtained explicitly as

U0 = 8ELπ2 − 16π2 E2
L

EJ
. (4)

Thus, one can see that the minimum of the effective potential
energy occurs for small values of ϕk and ϕ̃l , and the minimal
value of (3) is E0 = U0 − 16π2E2

L/EJ . Notice here that in the
limit of EJ � EL, Eq. (3) is valid also for MFs located at the
distance l − k � 3.

(a) (b)

(c) (d)

FIG. 2. The configurations of Josephson phases [(a), (b), and
(c)] in the minima of Ueff(l − k = 2), and the contour plot (d) of
the dependence of the effective potential energy on the Josephson
phases, ϕk and ϕ̃l , i.e., Eq. (6). The parameters were chosen as
EJ = 1, EL = 0.1.

B. Two MFs located at the distance l − k = 2

Now we bring the MFs closer and the configuration of
Josephson phases is

{ϕi} = {0, . . . , 0, ϕk−1, ϕk, 2π + ϕ̃k+1, ϕl ,

4π − (2π − ϕ̃l+1), 4π, . . . , 4π}. (5)

By making use of the procedure analogous to the previous
section we obtain the effective potential energy as

Ueff(ϕk, ϕ̃l=k+2) = 2EL

(
1 − 2EL

EJ

)(
ϕ2

k + ϕ̃2
l

) − 4πEL

×
(

1 − 2EL

EJ

)
(ϕk + ϕ̃l ) − 4E2

L

EJ

× (2π − ϕk )ϕ̃l + EJ (2 − cos ϕk

− cos ϕ̃l ) + U0. (6)

In the limit of EL � EJ the effective potential energy
has three minima located near the points: {ϕk, ϕ̃l} =
{0, 0}, {2π, 0}, {2π, 2π}. Minimizing Eq. (6) over the Joseph-
son phases ϕk and ϕ̃l we obtain explicit locations of the
minima (we mark it with letters a, b, and c in Fig. 2) and
the minimal energy, Umin. The potential energy Umin at each
minimum is the same up to the second order in EL/EJ :

Umin(|l − k| = 2) = 8ELπ2 − 32π2 E2
L

EJ
= E0. (7)

Therefore, two MFs located at the distance |l − k| = 2 do
not interact with each other. In Fig. 2 the configurations of
the Josephson phases in minima of Ueff(l − k = 2) and the
contour plot of the effective potential energy are presented.

In the quantum-mechanical regime the MFs can “hop”
between the minima due to the macroscopic tunneling of the
Josephson phases. Thus, the hopping amplitude is determined
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(a) (b)

(c) (d)

FIG. 3. The configurations of Josephson phases [(a), (b), and
(c)] in the minima of Ueff(l − k = 1), and the contour plot (d) of
the dependence of the effective potential energy on the Josephson
phases, ϕk and ϕ̃l , i.e., Eq. (10). The parameters were chosen as
EJ = 1, EL = 0.1.

by the potential energy profile between points a and b in the
direction of ϕk = const (see the dashed line in the contour
plot of Fig. 2). We stress here that this profile is identical to
the Josephson phase dependence of the potential energy of a
single MF, i.e., the 2π kink, U 2π

eff , obtained in [36] as

U 2π
eff (ϕ̃l ) = 2EL

(
1 − 2EL

EJ

)
ϕ̃2

l − 4πEL

(
1 − 2EL

EJ

)
ϕl

+ EJ (1 − cos ϕ̃l ) + const. (8)

C. Two MFs located at the distance l − k = 1

As the centers of two MFs are located in adjacent cells the
Josephson phase configuration is written as

{ϕi} = {0, . . . , 0, ϕk−1, ϕk, ϕl , 4π − (2π − ϕ̃l+1),

4π, . . . , 4π}. (9)

Using the procedure elaborated in Secs. III A and III B we
obtain the effective potential energy as

Ueff(ϕk, ϕ̃l=k+1) = 2EL

(
1 − 2EL

EJ

)(
ϕ2

k + ϕ̃2
l

) − 4πEL

×
(

1 − EL

EJ

)
(ϕk + ϕ̃l ) + 4E2

L

EJ
π (ϕ̃l − ϕk )

+ 2EL(2π − ϕk )ϕ̃ + EJ (2 − cos ϕk

− cos ϕ̃l ) + U0 − 8π2 E2
L

EJ
. (10)

The expression (10) demonstrates the interaction between two
MFs. Since 2π − ϕk � 0 the interaction term is a positive one,
and the MFs repel each other. The effective potential energy
has three minima marked as a, b, and c in Fig. 3, and the values

FIG. 4. Dependencies of the effective potential energies on the
Josephson phase in the center of the 4π kink (red line) and two
independent 2π kinks located on the same position (green line). The
Josephson phase configuration of a stable 4π kink is shown in the
inset. The parameters were chosen as EJ = 1, EL = 0.1.

of Ueff(l − k = 1) in these minima are given by

Umin(|l − k| = 1)

∣∣∣∣∣
a

≈ 8ELπ2 − 32π2 E2
L

EJ
= E0,

Umin(|l − k| = 1)

∣∣∣∣∣
b,c

≈ 8ELπ2 − 16π2 E2
L

EJ
= U0 = E1.

(11)
Here we denote the energy of higher minimum as E1.

The tunneling amplitude from the state a to the state b is
determined by the potential energy profile in the a-b direction
that in the limit of EJ � EL is equal to U 2π

eff (ϕ) [see Eq. (8)].

D. Two MFs located in the same cell: 4π kink

Here, we consider two MFs located in the same cell, i.e.,
4π kink:

{ϕi} = {0, . . . , 0, ϕk−1, ϕk, 4π − (2π − ϕ̃k+1), 4π, . . . , 4π}.
(12)

For this Josephson phase configuration the potential energy is

U 4π
eff (ϕk ) = 2EL

(
1 − 2EL

EJ

)
ϕ2

k − 8πEL

(
1 − 2EL

EJ

)
ϕk

+ EJ (1 − cos ϕk ) + 2U0. (13)

The dependence of U 4π
eff (ϕk ) on the Josephson phase ϕk in the

center of the 4π kink, is shown in Fig. 4. For comparison, the
potential energy of two independent MFs located in the same
cell, i.e., two 2π kinks, is also presented in Fig. 4.

The effective potential energy U 4π
eff (ϕk ) has a global mini-

mum exactly at ϕk = 2π and its value at the minimum is E1 =
U0. As one can see, the 4π kink potential energy minimum is
slightly higher than the potential energy of two independent
MFs, and it coincides with the potential energy of two MFs in
the configurations b, c presented in Fig. 3.
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IV. ENERGY SPECTRUM OF TWO INTERACTING MFs:
TIGHT-BINDING MODEL WITH INTERACTION

To quantitatively analyze the macroscopic quantum-
mechanical phenomena we derive the energy spectrum of
two interacting MFs. The kinetic energy of two MFs is ex-
pressed as K{ϕ̇k, ϕ̇l} = EJ/(2ω2

p)[ϕ̇2
k + ϕ̇2

l ], where the plasma
frequency ωp = √

8EJEC/h̄ was introduced. The effective
Hamiltonian depending on two variables, ϕk and ϕl , is written
as

Ĥ = K{ϕ̇k, ϕ̇l} + Ueff(ϕk, ϕl ), (14)

where the dependence of the potential energy Ueff on the
distance |l − k| between the cells k and l was obtained in
Sec. III. As one can see from Figs. 2(d)–4(d) the centers of
MFs are strongly localized in the minima of Ueff, and in the
quantum regime the MF tunneling between adjacent cells is
just allowed. With these assumptions and using a standard
procedure elaborated, e.g., in [39], the Hamiltonian (14) is re-
duced to the tight-binding model for two interacting quantum
particles. In this model the wave function of two interacting
MFs, |�〉, is presented as the superposition of localized wave
functions defined on the two-dimensional grid, i.e.,

|�〉 =
∑

kl

ck,l |k, l〉. (15)

Here, the positive integers k and l , determining the co-
ordinates of the grid’s nodes, indicate the numbers of
cells where the centers of MFs are located; ck,l are the
quantum-mechanical amplitudes. Substituting (15) for (14)
and taking into account the matrix elements 〈k, l|Ĥ |k, l〉
and 〈k ± 1, l|Ĥ |k, l〉 (〈k, l ± 1|Ĥ |k, l〉) only, we catch the
tight-binding Hamiltonian of two interacting particles in the
following form:

Ĥ =
∑

kl

Ekl |k, l〉〈k, l| − 	

2

∑
kl

′
(|k, l〉〈k + 1, l|

+ 〈k, l〉〈k, l + 1| + H.c.),

Ekl = E0 + (E1 − E0)(δk,l + δk,l+1 + δk,l−1). (16)

Here, the matrix elements 〈k, l|Ĥ |k, l〉 determine the lo-
calized state energies as E0 if |l − k| > 1 and E1 for
l = k and l = k ± 1. The matrix elements 〈k ± 1, l|Ĥ |k, l〉
(〈k, l ± 1|Ĥ |k, l〉) determine the amplitude of tunneling be-
tween the minima of the potential Ueff and provide the hopping
amplitude 	 between the localized states on the adjacent
grid’s nodes. The explicit expression for the hopping am-
plitude 	 	 (h̄ωp) exp[−8EJ/(h̄ωp)] has been obtained in
[31,36,37]. Notice here, that the

∑′ indicates the absence of
tunneling between the states with the energy E1, i.e., between
the grid’s nodes k = l and l = k ± 1.

The schematic of such tight-binding model is presented
in Fig. 5. This procedure resembles the one elaborated pre-
viously for the analysis of two interacting quantum particles
(e.g., bosons) moving on a one-dimensional periodic lattice
[40,41].

For an explicit calculation of the energy spectrum of two
interacting MFs it is convenient to align one of the coordinate
axes in the k = l direction and to use other integers n = k −
l and m = k + l with the corresponding modification of the

FIG. 5. The two-dimensional grid for the tight-binding model of
two interacting quantum MFs. Such tight-binding model has a defect
extended along the k = l, l ± 1 directions (indicated by red dots).
Red dots have the higher energy E1 and green dots have the lower
energy E0. Vectors 
k, 
l and 
m = 
k + 
l and 
n = 
k − 
l are shown.

grids, (k, l ) → (m, n). In this representation we rewrite the
Hamiltonian as

Ĥ=
∑

kl
m=k+l
n=k−l

Emn|m, n〉〈m, n|−	

2

∑
kl

m=k+l
n=k−l

′
(|m, n〉〈m + 1, n + 1|

+ |m, n〉〈m + 1, n − 1| + H.c.),

Emn = E0 + (E1 − E0)(δn,0 + δn,1 + δn,−1), (17)

and the wave function has the following form: |ψ〉 =∑
k,l cm,n|m, n〉. To obtain the energy spectrum E and wave

functions ψ of two interacting quantum MFs, the stationary
Schrödinger equation for amplitudes cm,n has to be written.
The stationary Schrödinger equation presents a set of dif-
ference equations with the lattice defect extended along the
n = 0,±1 directions: the energy of cites n = 0,±1 is E1 >

E0. We treat cites with indices n = −1, 0, 1 as a single cite
because they correspond to the same MFs configuration. Thus,
the direct tunneling from the cites n = −1, 0, 1 to the cites
n = ±2 is allowed. The difference equations for coefficients
cm,n on a whole grid are

(E0 − E )cm,n − 	

2
(cm+1,n+1 + cm+1,n−1 + cm−1,n+1

+ cm−1,n−1) = 0, |n| > 1;

(E1 − E )cm,1 − 	

2
(cm+1,2

+ cm+1,−2 + cm−1,2 + cm−1,−2) = 0;

cm,−1 = cm,0 = cm,1. (18)
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A. Scattering states of two interacting quantum MFs

First, we describe the scattering states of two interacting
MFs. Far away from the defect (|n| > 1) we search the solu-
tion cm,n for such states in the form of plane waves

cm,n = exp

{
i
p1kd + p2ld

h̄

}

= exp

{
i
p(md/2) + qnd

h̄

}
, (19)

where p1 and p2 are quasimomenta of first and second MFs.
The p = (p1 + p2) and q = (p1 − p2)/2 are the center of
mass and relative quasimomenta of two MFs, accordingly.

Substituting this expression in the first equation of (18) we
obtain the two-dimensional energy band spectrum E (p, q) as

E2×2π (p, q) = E0 − 2	 cos

[
pd

2h̄

]
cos

[
qd

h̄

]
. (20)

Thus, one can see that the quantum dynamics of two MFs with
the energy spectrum (20) is determined by a weak scattering
as the centers of two MFs approach each other at the distance
of d . The energy band spectrum E2×2π (p, q) is just a sum of
energies of independent MFs.

B. The bound states of two interacting MFs:
4π-kink quantum dynamics

In spite of the presence of a short range repulsive in-
teraction between two MFs, the tight-binding Hamiltonian
(17) supports also a one-dimensional band of bound states
solutions. These states are strongly localized on grid nodes,
k = l , and therefore correspond to the quantum 4π kinks.
Since the energy spectrum of bound states is separated from
the scattering states considered in Sec. IV A by the energy
gap, the quantum dynamics of 4π kinks can be destroyed by
interband relaxation processes only.

The quantitative analysis of the energy spectrum of quan-
tum 4π kinks is provided as follows. The bound state
amplitudes cm,n are caught in the form

cm,n = eipmd/(2h̄)[−sgn(η)]ne−|n|d/λ, (21)

where λ is the characteristic length of the bound state of
two MFs, and η = cos[pd/(2h̄)]. Substituting (21) in the first
equation of (18) we obtain the energy E4π as follows:

E4π = E0 + 2	| cos[pd/(2h̄)]| cosh(d/λ). (22)

Substituting (22) in the second equation of (18) we obtain λ,
and finally, the energy spectrum E4π (p) as

E4π (p) = E0 +
√

4	2 cos2[pd/(2h̄)] + (E1 − E0)2. (23)

Thus, one can see that the bound states of two MFs are charac-
terized by a one-dimensional energy band spectrum, E4π (p),
determining the quantum dynamics of a 4π kink trapped in
the JJPA.

V. THE COHERENT QUANTUM OSCILLATIONS
OF TWO INTERACTING MFs

In the previous section we obtain that the quantum dynam-
ics of two MFs trapped in a one-dimensional JJPA can be

FIG. 6. Probabilities of finding 4π kink (green solid line), two
independent fluxons (black solid line), and a single fluxon (black
dashed line) in cell number 0 at time t . Here, we chose the parameter
	/(E0 − E1) = 1/

√
2.

realized in two forms: two weakly interacting moving MFs
(the scattering states) or moving 4π kinks (the bound states).
The coherent quantum dynamics of two MFs is determined by
the probability P(k, l; t ) to find the MFs in cells k and l at the
time t if initially both MFs were in cell 0. For the 4π kink we
obtain

P4π (k = l, t ) =
∣∣∣∣∣d

∫ π h̄/d

−π h̄/d

d p

2π h̄
exp

{
− iE4π (p)t

h̄
− ipkd

h̄

}∣∣∣∣∣
2

.

(24)

Taking into account the energy band spectrum of a 4π kink,
i.e., (23), one can calculate numerically P4π (k = l, t ) for
different values of 	 and (E1 − E0). The typical time de-
pendence of P4π (0, t ) = P4π (t ), i.e., the return probability, is
presented in Fig. 6. Moreover, in the limit of (E1 − E0) � 	

one can obtain an explicit expression P4π (t ) = J2
0 [ 	2

(E1−E0 )h̄ t],
where J0(x) is the Bessel function [42]. Similarly, for scat-
tering states of two weakly interacting MFs we obtain the
P2×2π (k, l; t ) as follows:

P2×2π (k, l; t ) =
∣∣∣∣d2

∫∫
d p dq

(2π h̄)2
exp

{
−2i	

h̄
t cos

pd

2h̄

× cos
qd

h̄
− iq(k − l )d

h̄
− ip(k + l )d

2h̄

}∣∣∣∣
2

.

(25)

The probability P2×2π (0, 0; t ) = P2×2π (t ) is calculated explic-
itly as P2×2π (t ) = J4

0 [	t/h̄] [42]. Both time dependencies of
P4π (t ) and P2×2π (t ) are presented in Fig. 6. For comparison
the time dependence of the return probability for a single MF,
P2π (0, t ) = P2π (t ) = J2

0 (	t/h̄), is also shown in Fig. 6.
To conclude this section we note that the applied gate

voltage Vg provides the macroscopic Aharonov-Casher phase
χ ∝ Vg allowing one to vary the return probability P4π (t ) in
short annular JJPAs [36].
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VI. WEAKLY DISSIPATIVE QUANTUM DYNAMICS OF A
4π KINK: BLOCH OSCILLATIONS AND CURRENT STEPS

In order to quantitatively characterize a weakly dissipative
quantum dynamics of a 4π kink we introduce the coordinate
(“position”) x4π of the 4π kink in the JJPA as x4π = kd +
d (4π − ϕk )/4π , where ϕk is the Josephson phase in the center
of the 4π kink located in the kth cell. The velocity operator ˙̂x
is defined in a standard way as

˙̂x4π = dE4π (p)

d p
, (26)

where E4π (p) is the dispersion law of the 4π kink [see
Eq. (23)]. Taking into account the Josephson relation 2eV =
h̄ϕ̇ one can obtain the voltage operator for the 4π kink as
2eV̂4π = 4π h̄ ˙̂x4π/d .

An applied external current bias I (t ) results in an addi-
tional term in the effective Hamiltonian [4π/(2ed )]I (t )x̂, and
weakly dissipative effects are taken into account by tracing out
the bath degrees of freedom [43–45]. We notice that this ap-
proach is suitable to describe the intraband dissipation arising
from a weak interaction of MFs with a general type of envi-
ronment, e.g., an external impedance circuit [45]. Moreover,
such dissipation can be characterized by a single phenomeno-
logical parameter γ , i.e., the intraband inverse relaxation time.

Summarizing, we obtain the equation describing the 4π -
kink dissipative quantum dynamics as follows:

ṗ4π = 4π h̄

2ed
I (t ) − γμ

dE4π (p)

d p
, (27)

where μ = (4π )2EJ/(ωpd )2 is the effective mass.
Next, we consider the case of dc current bias I (t ) = I

and obtain the I-V curve of a JJPA with a trapped 4π kink.
Substituting (23) in (27) we rewrite the dynamic equation (27)
as

ṗ = 4π h̄I

2ed
+ γμd	2 sin(d p/h̄)

h̄
√

(E0 − E1)2 + 4	2 cos2(pd/(2h̄))
. (28)

As the dc bias current I is smaller than the critical value It ,
the dynamic equation (28) supports a steady solution ṗ = 0
resulting in the linear part of the current-voltage characteris-
tics, V ∝ I . The expression for It is obtained explicitly as

It = I0

√
1 + λ2

2
+ λ

√
1 + λ2

4
,

I0 = ed2γμ

8	π h̄2 ,

λ = E1 − E0

	
.

(29)

For I > It the quasimomentum p(t ) depends periodically
on time resulting in the nonlinear part of the I-V curve. The
numerical procedure to obtain the I-V curve is the following:
we fix the dc bias I , solve Eq. (28) numerically, and cal-
culate the time averaging of the voltage 〈V4π (t )〉. After that
we increase the dc bias current I and repeat the procedure.
Obtained in this way, the I-V curves are presented in Fig. 7.
Thus, one can see the Bloch nose type of the current-voltage
characteristics also for the 4π -kink dynamics. The I-V curve

FIG. 7. The current-voltage characteristics of the JJPA with the
trapped 4π kink. The parameters were chosen as (E1 − E0)/	 = 0
(black solid line) and (E1 − E0 )/	 = 3 (green solid line). For com-
parison the I-V curve for two independent MFs trapped in a JJPA is
shown by the dashed line.

of the 4π kink deviates substantially from the one obtained
for two independent MFs. Indeed, for a fixed dc current bias
the average voltage drop 〈V2×2π 〉 is just twice the voltage of a
single MF. The current-voltage characteristics of a JJPA with
two trapped independent MFs is shown in Fig. 7 by the dashed
line.

For I > It the voltage V4π (t ) demonstrates large amplitude
periodic oscillations, i.e., Bloch oscillations. In the limit of
I � It the frequency of 4π kink Bloch oscillations is f Bl

4π =
I/e. In the presence of both dc current I and ac current with
the frequency f , the resonance between the Bloch oscillations
and an external ac current leads to the seminal current steps
[44,46] located at I (n)

4π = en f . It is important to stress here that
the current step values I (n)

4π for the 4π kink are two times less
than those for two independent MFs, i.e., I (n)

4π = (1/2)I (n)
2×2π .

To conclude this section we note that the negative differ-
ential resistance (see Fig. 7) obtained in a weakly dissipative
quantum dynamics of MFs trapped in JJPAs can be used to
realize a stable source of microwave radiation similarly to
the one based on the Josephson vortex dynamics in layered
high-Tc materials [47–49].

VII. CONCLUSION

In conclusion we present a detailed theoretical study of
the quantum dynamics of two magnetic fluxons trapped in
a JJPA with large kinetic inductances. In such JJPAs the
characteristic size of a single MF is less than the cell size,
and a discrete sine-Gordon model close to the anticontinu-
ous limit adequately describes the dynamics of trapped MFs.
Characterizing the Josephson phase distribution of a single
MF by three consecutive Josephson phases, we derive the
effective potential energy of two interacting MFs, and obtain
that the two MFs repel each other as they occupy the same
or neighboring cells. Unexpectedly, in spite of the presence of
a repulsive local interaction between two MFs, the quantum
dynamics of two merged MFs, i.e., a 4π kink, can be realized
in such JJPAs.
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The quantum dynamics of a 4π kink in a JJPA is deter-
mined by the energy band spectrum E4π (p) [see Eq. (23)]. In
the coherent quantum regime such spectrum leads to the quan-
tum beats of the time-dependent return probability to observe
the 4π kink on the initial point after time t . The amplitude
and frequency of these quantum beats differ substantially from
those observed for two independently propagating MFs.

In the presence of a weak intraband dissipation the pe-
riodic dependence of the energy spectrum E4π (p) on the
quasimomentum p results in the 4π -kink Bloch oscillations
with the frequency f Bl

4π determined by an applied dc bias cur-
rent, I , and the nonlinear current-voltage characteristics with
the typical “Bloch nose.” The resonance between the intrinsic
Bloch oscillations and an externally applied ac current pro-
vides current steps with values I (n)

4π = en f that are two times
less than those for two independent MFs. Notice here that an
overall stability of 4π -kink quantum dynamics is determined
by the interband relaxation processes.

A possibility of experimental observations of the quantum
dynamics of interacting MFs crucially depends on a lifetime
of MFs trapped in JJPAs. A most important process leading to
the escape of MFs out of the array through its boundaries is
the phase slips. A great advantage of JJPAs with high kinetic
inductances is that the lifetime of trapped MFs drastically

increases. Indeed, as a high kinetic inductance is achieved
by the addition of a series of N Josephson junctions with
Josephson energy EJ0 � EJ and charging energy Ec0 � Ec

in the cells of the array (see red boxes in Fig. 1), the MF’s
lifetime can be estimated as τ 	 (ωp0)−1N exp[−α

√
EJ0/Ec0]

(the parameter α is the numerical coefficient of order one). On
other hand, the inductive energy EL = EJ0/N has to be smaller
than EJ . Thus by choosing large N ∼ 100 and EJ0 ∼ 10EJ

one can satisfy both conditions of high kinetic inductance and
large lifetime of MFs.

Finally, we would like to stress that our analysis of
the quantum dynamics of interacting MFs is based on
the generic discrete sine-Gordon model close to the an-
ticontinuous limit, and therefore, our results can be ap-
plicable to other solid-state systems, e.g., low-dimensional
antiferromagnets [29].
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