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We study the effects of quasidisorder and Anderson disorder on a two-dimensional topological superconductor
with an applied external magnetic field. The cases of a p-wave superconductor and a noncentrosymmetric
superconductor with mixed p- and s-wave pairings and the Rashba spin-orbit coupling are studied. We show
that, for a perpendicular magnetic field, the introduction of quasidisorder leads to the appearance of topological
phases in new regions, characterized by an integer value of the Chern number. For a parallel magnetic field,
we identify regimes with the appearance of new Majorana flat bands and also new unidirectional Majorana
edge states, as quasidisorder is introduced. We show that the Majorana flat bands have a quantized Berry phase
of π and identify it as a topological invariant. Two topological transitions are identified and the values of the
critical exponents z and ν are obtained. The fractal nature of the eigenstates is discussed both for Anderson and
Aubry-André disorders.
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I. INTRODUCTION

The search and study of topological properties of matter
has proved fruitful in recent years in research in materials
science and condensed matter physics. Superconductors have
long been a focus of interest due to their promising applica-
tions. Superconductors with intrinsic topological properties,
in particular, have recently attracted theoretical and exper-
imental interest due to phenomena associated with surface
or edge Majorana modes, which appear from an interplay
between topology and bulk-boundary correspondence [1–3].
These Majorana zero modes emerge with non-Abelian ex-
change statistics and are sought after due to their promising
expected applications in quantum computing, being candi-
dates for the building blocks of a quantum qubit [4,5].

It has been theoretically predicted that Majorana states
appear as flat dispersion bands in gapless superconducting
phases, such as in the dxy + p-wave pairing noncentrosym-
metric superconductor in two dimensions with preserved
time-reversal symmetry [6,7], or for a p-wave topological
superconductor in two dimensions, with broken time reversal
symmetry by an applied magnetic field parallel to the two-
dimensional plane of the system [8]. Flat bands also emerge
on the surface of three-dimensional noncentrosymmetric su-
perconductors, with spin-orbit coupling and which preserve
time-reversal symmetry [9,10]. It is predicted that flat bands
can increase the critical temperature for superconductivity,
and even give rise to room-temperature superconductivity
[11,12]. Similar behavior has been found when one has finite-
size systems (with increased fluctuations of the density of
states) [13,14], nonhomogeneous order parameters [15–20],
or fractal (critical) states [21–29] with corresponding spatial
fluctuations of the amplitude of the wave functions. The dif-
ference between an isolated flat band and a flat band with band
touchings has also been recently discussed [30]. It was shown

that isolated flat bands are not needed to achieve a higher
superconducting temperature, and that band touchings can
actually increase it. Flat electronic bands can also be found
in some Kagome-type superconductors [31]. A growing inter-
est has been seen in these types of materials, AV3Sb5 (with
A = K, Rb, Cs), which can host exotic quantum properties,
displaying topological phases, an unconventional charge den-
sity wave, and evidence of time-reversal symmetry breaking
[32–35].

The study of perturbations in condensed matter systems,
namely, through the introduction of disorder, is a central issue.
On one hand, introducing disorder can destroy some phases
and their properties, preventing their experimental observa-
tion. In this sense, the study of their robustness becomes
crucial. On the other hand, disorder can by itself lead to new
phenomena or stabilize previously existing phases. One type
of disorder that has been attracting interest in the research
field is quasiperiodic disorder. These systems are somewhat in
between periodic and truly random systems, and exhibit inter-
esting phenomena, in transport [36,37], topological properties
[38–51], and critical behavior [36,52–54]. It is possible to
realize these types of systems in experimental setups of ultra-
cold atoms [55,56], in optical lattices [57,58] or in photonics
systems [59]. In addition to systems subject to quasiperiodic
potentials, as in the Aubry-André model [60], there has been
growing interest in Moiré systems in which two incommen-
surate lattices are connected, or in which layers of lattices
are put in contact and rotated, such as the 2d twisted bilayer
graphene [61–65]. In such systems, a superlattice potential
is created from proximity coupling between the two lattices,
which, depending on the angle of rotation between the two,
may exhibit quasiperiodicity.

An example of the study of coexisting quasidisorder and
superconductivity, which is significant in the context of this
work, is the one-dimensional Kitaev chain with Aubry-André
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modulation [42,66–68]. Without superconductivity the model
has a topological nature revealed by its mapping to a 2d quan-
tum Hall system [69], maintaining a topological nature as we
add superconducting pairing. In general, the mappings involve
a corresponding model in a higher dimension in the form of
some parent Hofstadter generalized Hamiltonian. Topology
in quasicrystals may be understood considering mappings to
higher dimensions, typically of the types 1d to 2d and 2d
to 4d . In 1d with no superconductivity, the model is self-
dual (position and momentum space) and there is a single
transition from an extended state phase to a phase where all
the states are localized. At the transition point, the system
has critical states. Generalized models show the existence of
mobility edges, such that there is a separation as a function of
energy between extended and localized states [70–77] and the
existence of hidden dualities leads to a rich class of systems,
where such edges appear [78]. The introduction of p-wave
pairing in the Aubry-André model leads to the appearance
of a finite extent region of critical (fractal) states, between
the regions of extended and localized states. Remarkably, the
transitions between localized and critical regimes have been
studied and were found to deviate from the known Aubry-
André universality class [67,68].

In this work, we study a model of a two-dimensional su-
perconductor with spin triplet p-wave pairing, or mixed p
and s-wave pairings with the Rashba spin-orbit coupling, in
the presence of a time reversal symmetry breaking magnetic
field. Some materials which are candidates for realizing triplet
pairing superconductivity include Sr2RuO4 [79], UPt3 [80],
and CuxBi2Se3 [81]. In the presence of s-wave pairing and
the Rashba spin orbit coupling, the model describes a noncen-
trosymmetric superconductor, of which are examples CePt3Si
[82], CeIrSi3 [83], and CeRhSi3 [84]. In the noncentrosym-
metric regime, the breaking of inversion symmetry allows
for the mixture of spin-triplet and spin-singlet pairings. This
mixing is expected to lead to novel phenomena such as higher
than usual values of the upper critical field [85,86].

The clean model has been studied, in both the centrosym-
metric and the noncentrosymmetric regimes, and is known to
possess diverse topological properties. If time-reversal sym-
metry is preserved, the model displays gapless Majorana edge
states and is characterized by a Z2 invariant. The observed
properties when time-reversal symmetry is broken by an ex-
ternal magnetic field are found to be very dependent on its
direction in relation to the two-dimensional superconducting
plane. If the magnetic field is such that it is perpendicular to
the plane of the superconductor, the model has a rich phase
diagram indexed by the Chern number [87]. When the mag-
netic field is parallel to the plane of the system, interesting
phenomena, such as Majorana flat bands or Majorana unidi-
rectional states, appear on phases with a gapless bulk [8,88].

The effect of disorder may be considered in different
ways. One possibility is to consider a nonhomogeneous mag-
netic field, achieved by inserting magnetic impurities in the
clean superconductor [89] which may give rise to or change
topological properties in the system. Examples include the
addition of chains of magnetic adatoms [90,91], islands of
magnetic impurities [92], or fully random distributions of
impurities [93]. Another possibility is to consider potential
scattering impurities on the superconductor in the presence

of a constant magnetic field, either perpendicular or parallel
to the system. We are interested in studying the effects of qua-
sidisorder in these regimes. Besides Aubry-André disorder,
we will also consider Anderson disorder as a comparison to
the effects of quasi-periodicity.

Anderson localization does not require full randomness. If
differences in potential between sites are large enough com-
pared to hoppings, one may expect a transition to localized
states. In addition to full randomness, a quasidisordered po-
tential leads to localization if the disorder amplitude is large
enough [94]. One expects that the Aubry-André quasiperiodic
potential should affect the long-range nature of states, and in
particular topological states that are by themselves of long-
range nature. Aubry-André is expected to be naturally of a
multifractal nature. Anderson and Aubry-André are different
and, in particular, critical states due to Anderson appear at the
transition to localization while in the Aubry-André added to
the Kitaev 1d model one finds phases with this behavior (or
in 2d a mixture of critical states in the crossover to localiza-
tion). Multifractality probes long distances and therefore one
expects that it may enhance superconductivity due to Chalker
scaling [95,96], as expected and observed with other inho-
mogeneities. Multifractal wave functions have larger spatial
overlap and stronger state to state correlations for states with
similar energies.

As stated previously, quasiperiodicity may also lead to
topological properties [97,98]. A 2d topological insulator plus
quasiperiodic potential shows a transition from a trivial in-
sulator to a topological insulator. Flat topological bands and
eigenstate criticality have also been shown as a result of a
quasiperiodic perturbation in the context of the Bernevig-
Hughes-Zhang model plus 2d quasiperiodic potential [99].

The presence of gapless states in a system may also be
associated with long-distance behavior. For instance, nodal
points of Weyl semimetals may lead to interesting behavior in
the presence of disorder. It has been shown that they survive
the presence of moderate disorder [100]. On the other hand,
in the case of gapless states of the form of nodal loops, any
amount of disorder mixes states. Disorder-driven multifractal-
ity has been shown in Weyl nodal loops [101]. In the case of
magic angle semimetals quasiperiodicity generically leads to
flat bands in nodal, semi-metallic structures. A transition from
a Weyl semimetal to metal driven by quasiperiodic potential
has been found in 3d [52,102].

While the influence of disorder, either Anderson or qua-
sidisorder has been extensively considered in the case of
one-dimensional systems, including in the presence of su-
perconductivity, it is interesting to consider their effects on
a two-dimensional p-wave superconductor, and in particular
in the presence of a magnetic field. In the clean system, the
topology is influenced by the orientation of the magnetic field
and, in particular, the gapped or gapless nature of the states
may lead to different responses to disorder. As stated before,
the difference of symmetry classes plus disorder gives rise
to new universality classes. Also, topology may be induced
by quasiperiodicity, which leads to the expectation of new
universality classes (beyond the usual classification), as found
in the one-dimensional case. In particular, one may expect
interesting effects with the interplay of quasiperiodicity due
to the presence of critical bulk states, and the existence of
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Majorana flat bands. The long-range nature of the quasiperi-
odic potential and the intrinsic long-range nature of the
gapless states may lead to an interesting competition. A
distinction between Anderson disorder (with moderate inten-
sity) and quasidisorder is therefore interesting to consider,
as shown in nonsuperconducting systems, where for instance
nodal points and nodal loops are affected differently by
Anderson disorder, or on a semimetal where imposing a
quasiperiodic potential leads to flat bands.

The rest of the paper is organized as follows. Section II
introduces the model of the Hamiltonian and the topologi-
cal properties of the clean system are discussed, first under
a perpendicular and second under a parallel magnetic field,
respectively in Secs. II A and II B. In Sec. II B, we derive
the regions where the model is topological, and show that
the topological regions are characterized by a Berry phase
of π . In Sec. III, we present the results for the disordered
model under a perpendicular magnetic field. We show that
the introduction of Aubry-André disorder leads to the appear-
ance of topological phases in new regions. In Sec. IV, we
present the results for the disordered model under a parallel
magnetic field. First we discuss the localization properties of
the system in real space under different types of disorder,
using the inverse participation ratio (IPR). We then turn to
a mixed space description and discuss the evolution of the
system as Anderson or Aubry-André disorder are introduced.
We show that the introduction of Aubry-André disorder leads
to the appearance of new regimes: for the p-wave supercon-
ductor, new gapless regimes with Majorana flat bands appear,
and for the noncentrosymmetric superconductor, new regimes
with unidirectional edge states appear. We then obtain the
Berry phase using twisted boundary conditions and show it
is quantized to a value of π for the quasidisorder-induced
flat bands. Identifying it as a topological invariant, we study
two topological transitions and obtain the critical exponents
z and ν, which we find to deviate from the known univer-
sality classes. Finally, using the IPR we study the nature of
the eigenfunctions distinguishing between localized, single-
fractal and multifractal regimes in the thermodynamic limit
for both Anderson and Aubry-André disorder. We conclude
in Sec. V. Three appendices discuss some further results on
the disorder driven transitions under a perpendicular magnetic
field in Appendix A, the influence of the dimensionality of the
quasidisorder potential in Appendix B and the energy spectra
and density of states for the disordered noncentrosymmetric
superconductor in Appendix C.

II. MODEL HAMILTONIAN

In momentum space, the Bogoliubov-de Gennes (BdG)
Hamiltonian matrix of the two-dimensional model is written
as

H(k) =
(

ξ (k) + B · σ �(k)
�†(k) −ξT (−k) − B · σ∗

)
(1)

in a basis (c†
k, c−k ) = (c†

k↑, c†
k↓, c−k↑, c−k↓) with c†

kσ (ckσ )
the creation (annihilation) operator for an electron with mo-
mentum k = (kx, ky) and spin projection σ . In the BdG
Hamiltonian, ξ (k) = εkσ0 + s · σ, where εk = [−2t (cos kx +
cos ky) − μ]σ0 is the kinetic term, with t the nearest-

neighbour hopping integral and μ the chemical po-
tential, s · σ = −α(− sin ky, sin kx, 0) · σ = −α[− sin kyσx +
sin kxσy] is the Rashba spin-orbit term with s the spin-orbit
vector. The term B · σ describes the Zeeman coupling of
the electrons with an external magnetic field B and �̂(k) =
[�s + d(k) · σ](iσy) is the superconducting gap function. The
pairing vector is chosen as d = d (− sin ky, sin kx, 0), so that d
is the p-wave pairing amplitude and �s is the s-wave pairing
amplitude. The simultaneous existence of s and p-wave terms
is possible with a nonzero spin-orbit term, which breaks the
parity symmetry.

The case of study is that of a system with periodic bound-
ary conditions along the x direction and open boundary
conditions in the y direction, such as in a cylinder geometry.
Thus we can also write the Hamiltonian in a mixed space,
(kx, y), where a Fourier transform to the reciprocal space is
only done in the x direction. In this case, for each value of kx

the Hamiltonian matrix has a dimension (4 × Ny) × (4 × Ny),
where Ny is the number of sites in y. It is also of inter-
est to write the Hamiltonian in real space. In this case, the
Hamiltonian matrix has dimension (4 × N ) × (4 × N ) with
N = Nx × Ny the total number of sites and Nx, Ny the number
of sites in the x and y directions, respectively.

When B = 0, the system respects the time-reversal sym-
metry (TRS) T = (σ0 ⊗ iσy) and the particle-hole symmetry
(PHS) P = (σx ⊗ σo) such that

PH(k)P† = −H∗(−k),

T H(k)T † = H∗(−k), (2)

and T 2 = −1, P2 = 1. Therefore the Hamiltonian belongs to
the DIII symmetry class, and if |d| > |�s| the system has a
nontrivial Z2 number, displaying gapless counterpropagating
Majorana edge states [8,87].

For B �= 0, the time-reversal symmetry is broken. The
system exhibits different topological properties whether the
applied magnetic field is perpendicular or parallel to the plane
of the system, as will be now discussed.

A. Perpendicular magnetic field

Let us first consider the case in which the external mag-
netic field is perpendicular to the plane of the system, B =
(0, 0, Bz ). We have a gap closing point if one of the equa-
tions is satisfied [87]:

(−4t − μ)2 + �2
s = B2

z ,

μ2 + �2
s = B2

z ,

(4t − μ)2 + �2
s = B2

z . (3)

Equation (3) defines the boundaries between regions in which
the system has different topological properties. At the gap
closing points, the D class system with broken time reversal
symmetry undergoes topological transitions between gapped
phases with different Chern numbers. The phase diagram of
the system (indexed by the Chern number) is presented in
Fig. 1(a) for t = 1, �s = 0, and d > 0.

The regimes with a Chern number of zero and Bz < 2, 0 <

|μ| < 4t exhibit edge states, besides having C = 0. This can
be explained by one additional topological invariant. It can
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FIG. 1. Phase diagram for (a) Chern number and (b) winding
number I (ky = 0, π ) as a function of μ and Bz, for t = 1, �s = 0,
and d > 0.

be defined noting that the Hamiltonian obeys a particle hole
symmetry P = (σx ⊗ σ0) with

PH(k)P† = −H∗(−k). (4)

For the values ky = 0 and ky = π , the Hamiltonian
obeys H∗(−k) = H(k) and thus anticommutes with P ,
{H(k),P} = 0. Therefore the basis which diagonalizes P an-
tidiagonalizes the Hamiltonian. A winding number I (ky) can
then be defined as [87]

I (ky) = 1

4π i

∫ π

−π

dkx tr
[
q−1(kx )∂kx q(kx )

− q†−1(kx )∂kx q
†(kx )

]
, ky = 0, π, (5)

with

q(kx ) =
(−εk − Bz + id sin kx �s − iα sin kx

−�s + iα sin kx −εk + Bz + id sin kx

)

(6)

the antidiagonal block of the Hamiltonian matrix. The val-
ues of I (0) and I (π ) inside each phase are represented in
Fig. 1(b).

The invariant I (ky) loses its meaning if a finite magnetic
field in the y direction, By, is applied. However, we found that
this is not true for the Chern number. Figure 2 shows phase
diagrams indexed by the Chern number as a function of Bz

FIG. 2. Phase diagrams for (Bz > 0, By), indexed by the Chern
number, obtained numerically for (a) μ = 0, (b) 1, and (c) −3.5 for
�s = 0.

and By for three different values of μ. In this case, the Chern

number depends only on the value of
√

B2
y + B2

z . Also note

that the diagrams only concern values of Bz > 0, excluding
the points where Bz = 0 and By �= 0. In Fig. 3, we present the
phase diagram of the system as a function of μ and Bz for
constant values of By.

B. Parallel magnetic field

Now let us consider the case in which the applied
magnetic field is parallel to the system, B = (Bx, By, 0).
This could be realized, for instance, by threading a wire
through the center of the superconductor in a cylindrical
geometry.

FIG. 3. Phase diagram indexed by the Chern number as a func-
tion of μ and Bz (with Bz > 0), for t = 1, �s = 0, d > 0, and
(a) By = 2 and (b) 4.5.
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Taking first the s-wave term �s and the spin-orbit term α

to be zero, the eigenvalues of the Hamiltonian are given by

E (k) = ±
√

z1 ± 2
√

z2, (7)

with

z1 = d · d + ε2
k + B · B, z2 = ε2

k(B · B) + (B · d)2. (8)

The gap closing points are solutions of the equation z1 =
2
√

z2, which is equivalent to the two equations being simulta-
neously satisfied:

d · d + ε2
k = B · B, (B · B)(d · d) = (B · d)2. (9)

Equation (9) simplify if we consider the magnetic field aligned
with one of the axes. Let us then take the magnetic field
aligned with the y direction, B = (0, By, 0). In this case, the
second equation simplifies to sin ky = 0 which implies the
bulk gap will close at ky,0 = nπ, n ∈ Z, provided there are
values of kx that satisfy the equations

d2 sin2 kx + (−2t (cos kx ± 1) − μ)2 = B2
y . (10)

When the p-wave superconductor is in a gapless phase,
and for a certain range of magnetic field, Majorana flat bands
(MFBs) will appear in the system. This will be discussed next.

When finite spin-orbit α- and s-wave pairing �s terms
are also considered, the flat bands will (for certain values of
the magnetic field) acquire a slope, giving origin to unidirec-
tional Majorana edge states (MESs). The appearance of such
states is only possible with a gapless bulk, where a counter-
propagating bulk current is created to cancel the edge current
[8].

1. Flat bands: winding number and Berry phase quantization

When the system is subject to an applied magnetic field,
it no longer respects time-reversal symmetry. If the applied
field has a generic form B = (Bx, By, 0) we can, however, take
kx as a fixed parameter of the Hamiltonian and find a set of
symmetries that are only satisfied in the y direction. It is found
that the Hamiltonian respects the symmetries:

T −1
ky

H(kx, ky)Tky = H(kx,−ky),

P−1
ky

H(kx, ky)Pky = −H(kx,−ky ), (11)

where Tky = (σz ⊗ σz )K and Pky = (σy ⊗ σy)K are, respec-
tively, defined as a “time-reversal-like” symmetry and a
“particle-hole-like” symmetry [8] with T 2

ky
= P2

ky
= 1 (K is

the complex conjugate operator). From these, we can define
a third chiral-like symmetry Sky = TkyPky :

S−1
ky

H(kx, ky)Sky = −H(kx, ky). (12)

Since we have that T 2
ky

= P2
ky

= 1, the Hamiltonian be-
longs to the BDI symmetry class and, since the problem
is effectively reduced to one dimension, the system can be
characterized by an integer topological invariant. We can then
write the Hamiltonian in the basis where Sky is diagonal, in
which the Hamiltonian takes an antidiagonal form. From here,
it is possible to obtain a winding number W at each value of
kx. It can be shown [8] that the winding number is calculated

FIG. 4. Energy spectrum, absolute value of the winding number
W and Berry phase γ normalized by 2π , as a function of kx/π . The
values of the parameters are t = 1, d = 1/6, μ = −3.5 and (a) By =
d , (b) By = 3.5d .

as

W (kx ) = i

π

[
ln

(
sgn(M(ky = 0))

sgn(M(ky = π ))

)]
(13)

with

M(kx, ky ) = [μ + 2t (cos kx + cos ky)]2

+ d2 sin2 kx − B2
y + B2

x . (14)

In the regimes with |W| = 1 the system has a topological
nature and Majorana flat bands appear, as is shown in Fig. 4.
These are protected by the chiral symmetry Sky as defined
in Eq. (12). The existence of topological flat bands may
also be identified by a nontrivial Berry phase. In general, the
Berry phase can take any real value. In the presence of certain
symmetry constraints, the Berry phase can become quantized
to 0 or π and carry topological information (at the value of
π ). This quantization can happen in the presence of inversion
or chiral symmetries, also leading to the quantization of po-
larization [103]. As the problem is reduced to one dimension,
we can obtain a Berry phase γB at each value of kx, given by

γB(kx ) = i
∫ 2π

0
dky

〈
�(kx, ky) | ∂

∂ky
�(kx, ky)

〉
(15)

with � the ground-state wave function. The calculation
is done numerically by discretizing the Brillouin zone
[103–106] in the y direction. As is shown in Fig. 4, we have
found that in the regimes with |W| = 1, the Berry phase is
also quantized to a value of π .

2. Domain of flat band existence: topological and gapless regions

From Eq. (13), it is found that |W| = 1 in the regimes
where M(kx, ky = 0) and M(kx, ky = π ) have opposite
signs. This is only possible if |By| > |Bx|, thus this is a nec-
essary condition for the appearance of MFBs. The flat band
regions can be summarized in (with B̃2 = B2

y − B2
x):

(1) μ � 2t ,

D+ > B̃2 > D−; (16)
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FIG. 5. (a) Domain of existence of Majorana flat bands (shaded
region) for By vs kx for the parameters t = 1, d = 1/6, μ = −3.5.
(b) Closeup of (a) in the region By ∈ [−1, 1] and kx ∈ [−1.5, 1.5].

(2) μ � −2t ,

D− > B̃2 > D+; (17)

(3) −2t < μ < 2t ,

(D+ > B̃2 > D−) ∨ (D− > B̃2 > D+); (18)

where

D± = [μ + 2t (cos kx ± 1)]2 + d2 sin2 kx. (19)

Equations (16)–(18) define the regions where the supercon-
ductor is in a nontrivial regime with |W| = 1, for a certain
value of kx. The domain of existence of flatbands is illustrated
in Fig. 5. Furthermore, since MFBs can only appear in a
gapless phase, the equations also define the regions where the
bulk is gapless, as a function of the in-plane magnetic field.

Note that the chiral-like symmetry that protects the flat
bands is broken by either a nonzero s-wave pairing term �s

or a nonzero spin-orbit term α. A finite perpendicular mag-
netic field Bz is also found to break the chiral-like symmetry,
leading to the absence of flat bands. If the flat band includes
the point kx = 0, the addition of a finite Bz will lead to the
appearance of bands with a finite slope that cross at zero
energy at kx = 0. Otherwise, the bands will be lifted to finite
energy.

III. DISORDERED MODEL UNDER A PERPENDICULAR
MAGNETIC FIELD

We first want to investigate the effects of quasidisorder and
disorder on the system subject to an applied magnetic field
in the perpendicular direction, B = (0, 0, Bz ). Here we limit
ourselves to the study of the system in real space and, to clas-
sify the topological nature of the system, the Chern number is
obtained numerically [107]. We consider four different types
of disorder potentials.

(1) Anderson disorder (2d), where the disorder term is
random at each site and varies with uniform probability within
an interval:

�(x, y) ∈ [−λ, λ]. (20)

(2) Anderson disorder (1d along y, uniform along x),
where the potential is of the same type as described above

but varies only along the y direction, being uniform along the
x direction:

�(x, y) = �(y) ∈ [−λ, λ]. (21)

(3) Aubry-André disorder (1d along y, uniform along x),
where the disorder term is a quasiperiodic potential of the
form:

�(x, y) = �(y) = λ cos(2πβ f (x, y) + φ) (22)

with f (x, y) a function of the lattice sites, β =
√

5−1
2 the in-

verse golden ratio, and φ a phase between 0 and 2π . Here we
take f (x, y) = y, so that the considered quasiperiodic poten-
tial is uniform in the x direction.

(4) Aubry-André disorder (2d), where the disorder term is
a sum of two quasiperiodic potentials of the form:

�(x, y) = λ cos(2πβx + φ) + λ cos(2πβy + φ) (23)

so that disorder potentials are introduced in both the x and y
directions.

In Fig. 6, we show the phase diagrams indexed by the
Chern number, for three different values of μ and d (with
t = 1 in all cases) and for a system with size 20 × 20.

When Anderson disorder is introduced in the system (first
row), the topological regimes are destroyed as the disorder
strength is increased. There is, however, some difference in
robustness as a function of the magnetic field. This is notice-
able in Figs. 6(a) and 6(b), where we see that the robustness
of the topological phases increases with the increase of Bz. In
Fig. 6(a) and for a small region of magnetic field (for Bz > 4),
we observe reentrant topology as disorder is increased, as in
Fig. 6(b), for lower values of magnetic field (Bz < 1).

The second row of the figure is obtained when disorder is
considered with uniformity in the x direction. Unexpectedly,
the topological regions are to be less robust if compared with
the previous case where Anderson disorder was considered
with no modulation. Small traces of induced topology are
observed for Bz < 1 in Fig. 6(e) and Bz < 0.5 in Fig. 6(f).

For Aubry-André disorder uniform in the x direction (third
row), we obtain phase diagrams with well defined boundaries,
and with induced topological regions. Here, the topological
phases show an interesting and unexpected response to the
increase of quasidisorder. There is a clear difference in robust-
ness for different values of Bz, which originates the seemingly
effect of peaks and valleys in the phase diagram, respectively
at more robust and more vulnerable values of Bz. Induced
topology is visible in panels g)-i), with topological transitions
to finite values of C happening at low and high values of the
magnetic field with the increase of disorder.

The last row of Fig. 6 concerns the case of two-dimensional
Aubry-André disorder. The introduction of disorder leads to
the appearance of new topological regions, where several are
characterized by values of C that are not seen in the clean
system, in the range of [−4, 4]. Also, some regions appear
where the Chern number oscillates within an interval be-
tween two integer values, without tending clearly to one of
them.

We may argue that by adding disorder, local fluctuations
of μ may lead to changes of the Chern number. This is
particularly seen in the presence of quasidisorder. This sug-
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FIG. 6. Phase diagrams indexed by the Chern number C for a system with 20 × 20 sites, for several values of the disorder strength λ and
perpendicular magnetic field Bz, obtained for an average over 10 disorder configurations. For Aubry-André disorder, each random disorder
configuration is obtained by selecting a random value of φ. The first row with (a)–(c) concerns the case of Anderson disorder (2d), the second
row with (d)–(f) concerns the case of Anderson disorder (1d along y, uniform along x), the third row with (g)–(i) concerns Aubry-André
disorder (1d along y, uniform along x), and the fourth row with (j)–(l) concerns Aubry-André disorder (2d). The values of the parameters are
t = 1, d = 0.6 and μ = 0 (left), d = 0.6 and μ = 1 (middle), d = 1/6 and μ = 3d − 4t = −3.5 (right).

gests that the long-range quasiperiodicity resonates more with
the calculation of the Chern number, that reflects the global
structure of the states. Further details on the effect of disorder
are shown in Appendix A.

IV. DISORDERED MODEL UNDER A PARALLEL
MAGNETIC FIELD

We now introduce disorder on the system with an applied
parallel magnetic field in the y direction, B = (0, By, 0). In
Sec. A, we consider the system in real space, where the
disorder term takes the same form as in the previous sec-
tion [Eq. (20)–(23)].

From Sec. B onwards, we study the system in a mixed
(kx, y) space. In this case the disorder term is either of the
form of Eq. (21) or Eq. (22), with the potential varying in the
y direction and being the same for all kx, as

(1) Anderson disorder:

�(y) ∈ [−λ, λ], (24)

(2) Aubry-André disorder:

�(y) = λ cos(2πβy + φ), (25)

where, as before, β =
√

5−1
2 is the inverse golden ratio and φ

is a phase between 0 and 2π .

A. Localization properties in real space

Here we briefly consider the system in real space and study
its localization properties in three different regimes. We fix the
parameter values as t = 1, d = 1/6, μ = −3.5 and consider
three different cases: the case of a p-wave superconductor
for which a magnetic field By = 0.5d is added, such that the
system is in a phase with a gapped bulk but gapless edge
states; a p-wave superconductor with an added magnetic field
of By = 3.5d , where the system has a gapless bulk and is
in the MFB regime; and a case of the noncentrosymmetric
superconductor, with By = 4d and added s-wave pairing and
spin-orbit terms, �s = 0.3d and α = 0.2d , where the system
has a gapless bulk and unidirectional MESs.

To quantify the effects of disorder on the system’s local-
ization we use the inverse participation ratio, IPR. For a given
eigenstate labeled by m, the IPR is defined as

IPRm =
∑

i

∣∣ψm
i

∣∣4
, (26)

224505-7



M. F. MADEIRA AND P. D. SACRAMENTO PHYSICAL REVIEW B 106, 224505 (2022)

FIG. 7. Average IPR of the whole system as a function of disor-
der strength, for (a) Anderson disorder (2d), (b) Anderson disorder
(1d along y, uniform along x), (c) Aubry-André disorder (1d along
y, uniform along x), and (d) Aubry-André disorder (2d). The IPR
is averaged over all eigenstates of the system in a given disorder
configuration, and averaged over ten disorder configurations. In (a),
fits are done to functions of the form IPR = C1 expC2λ in the
range λ ∈ [1.5, 3], giving the values (C1,C2) = (5.6 × 10−4, 1.13)
for By = 0.5d and By = 3.5d , and (C1,C2) = (3.6 × 10−4, 1.22) for
By = 4d , α = 0.2d , �s = 0.5d . In (b), fits are done to functions
of the form IPR = C1λ + C2 in the range λ ∈ [0.5, 3], giving the
values (C1,C2) = (4.4 × 10−3, 5 × 10−5) for By = 0.5d and By =
3.5d , and (C1,C2) = (2.8 × 10−3, 1.4 × 10−4) for By = 4d , α =
0.2d , �s = 0.5d .

with ψm
i the wave function of the eigenstate m at a site i.

For perfectly localized states we have that IPRm ∼ 1 and for
delocalized states IPRm ∼ 1/N . In Fig. 7, we present results
for the average IPR as a function of disorder for a system of
size N = Nx × Ny = 41 × 41 [108] and for the same types of
disorder as before: Fig. 7(a) Anderson disorder (2d), Fig. 7(b)
Anderson disorder (1d along y, uniform along x), Fig. 7(c)
Aubry-André disorder (1d along y, uniform along x), and
Fig. 7(d) Aubry-André disorder (2d).

From observation of Figs. 7(a)–7(d), we find four qualita-
tively different behaviours. In Fig. 7(a) (Anderson disorder),
we see that the IPR shows an exponential-like behavior
for λ > 1.5. A fit of the form IPR = C1 expC2λ is done
in the range λ ∈ [1.5, 3], and is presented in Fig. 7(a) in
dashed lines. We find that for λ > 1.5 the IPR follows an
exponential behavior closely, while for λ < 1.5 there is a
deviation from it. As disorder is increased, the low energy
states become increasingly localized inside the bulk. From
inspection of the wave functions, we observed that the edge
states quickly lose their structure for low values of disor-
der, although they do not become as quickly localized as
the remaining bulk states. Accordingly, the IPR of these low
energy states shows a slower increase than what is observed in
Fig. 7(a).

For Anderson disorder along y and with x uniformity, we
find a different localization behavior. The IPR grows linearly

with the increase of disorder, although with some fluctuations
and a deviation for λ < 0.5. A fit of the form IPR = C1λ + C2

is done to the range λ ∈ [0.5, 3] and presented in red dashed
lines. The change in behavior in relation to Fig. 7(a) is a result
of imposing periodicity in the x direction on the disorder term,
which unexpectedly causes the behavior of the IPR to become
linear. The IPR of the low energy states follows a similar
behavior to what is seen for the average IPR. By increasing
disorder the low energy edge states are removed from the
edges and localize inside the bulk, while remaining periodic
in the x direction.

In Fig. 7(c) (Aubry-André disorder with x uniformity), we
see a threshold behavior where a transition happens around
λ = 2. For λ < 2 (approximately), there is a slow increase
of the IPR, while for λ > 2 the IPR greatly increases. This
resembles some known results: in the one-dimensional Aubry-
André model, where the system undergoes an extended-
localized transition at λ = 2t , after which the average IPR
shows a marked increase; for a one-dimensional p-wave su-
perconductor with an Aubry-André potential this transition
point changes to λ = 2(t+d) with d the p-wave pairing am-
plitude (when the chemical potential is taken as zero) [41,42].
For values of λ before the transition, we observed that some
bulk states acquire a critical like behavior in the y direction,
while remaining periodic in the x direction. The low energy
states are more robust to disorder if compared with the Ander-
son disorder cases, and are only removed from the system at
the transition: after the threshold value of λ there are no edge
states in the system.

Figure 7(d) concerns the case of two-dimensional Aubry-
André disorder. The IPR shows again a threshold behavior,
and as in (c) a transition is seen slightly below λ = 2. How-
ever, the transition between two different regimes is abrupt
in the IPR, and more closely resembles that of the one-
dimensional Aubry-André chain. Also, unlike cases (a)–(c),
the IPR follows the same behavior for the three regimes
considered. By a closer inspection of the IPR, we see that
this is only true for values of disorder over λ = 0.7, as for
λ < 0.7, the noncentrosymmetric regime shows a consistently
lower IPR, as before. As disorder is increased for λ > 2, states
localize along both the x and y directions.

The comparison between 1d Aubry-André disorder and
2d Aubry-André disorder, as well as a comparison between
a perpendicular and a parallel magnetic field, is detailed in
Appendix B, with particular emphasis on the existence of
critical states and the apparent absence of a transition between
extended and critical states, in contrast to what is found in the
one-dimensional case.

Although results are not explicitly shown, the effect of
edge disorder was also briefly studied, extending previous
results obtained for a time-reversal invariant system [109].
We considered both Anderson and Aubry-André disorder po-
tentials which were introduced locally at the edges at y = 0
and y = Ny, varying along the x direction (along the edge)
also for a system of size N = 41 × 41. We found that the
bulk states and the system as a whole are almost unaffected
by edge disorder, and the average IPR of the system re-
mains nearly constant. However, the edge states are affected,
and their behavior depends on the type of disorder intro-
duced. For Anderson disorder, the states localize continuously
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FIG. 8. Energy spectra evolution with (a) Anderson and
(b) Aubry-André disorders, for By = 0.5d .

along the edges, while for Aubry-André disorder there is
also a threshold behavior, similarly to what is presented in
Fig. 7(c).

B. Energy spectra evolution and density of states

We now consider the system in a mixed (kx, y) space, with
finite width along y and OBC. We fix the parameter values
as t = 1, d = 1/6, μ = −3.5, and By = 0.5d or By = d (such
that the system describes a p-wave superconductor) and obtain
the evolution of the energy spectra for several values of disor-
der strength λ for both Anderson and Aubry-André disorder.
Since the values of t , d and μ will be kept constant we will
now omit them.

In Fig. 8, we show the energy spectra for By = 0.5d with
(a) Anderson and (b) Aubry-André disorders. The clean sys-
tem has gapless edge states and the bulk gap is not closed by

FIG. 9. Density of states evolution with (a) Anderson and
(b) Aubry-André (AA) disorders, for By = 0.5d and with (c) An-
derson and (d) Aubry-André disorders for By = d .

By. As Anderson disorder is increased, the edge states lose
their structure and the bulk gap is closed. Accordingly, there
is an increase in the density of states at E = 0 and around zero
energy as it can be seen in Fig. 9(a).

Introducing quasidisorder, as seen in panel (b), leads to a
closing of the bulk gap with the appearance of new Majo-
rana flat bands. As disorder is increased, the flat band then
splits in two and disappears as a gap opens in the system
for around λ = 1.8. The appearance of MFBs leads to an
increase of the density of states at zero energy, as can be
seen in Fig. 9(b) for the value of λ = 1.4. At higher values
of disorder, the system is gapped and the DOS at E = 0 goes
to zero. The reopening of the gap contrasts with what was
found for Anderson disorder, where the bulk remains gapless
as disorder is increased. We observed that the edge states
inside the quasidisorder-induced flat bands appear localized
at both edges simultaneously. While the edge states of the
clean system are localized symmetrically on both edges, the
flat band states lose this symmetry and localize more near
one of the edges if quasidisorder is present. Near the edge
on which a given state appears less localized, there is also a
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FIG. 10. Energy spectra evolution with (a) Anderson and
(b) Aubry-André disorders, for By = d .

deviation from the edge, and the state mostly localizes on the
subsequent sites in y.

In Fig. 10, the clean system with By = d is in a gapless
phase with both edge states and a range of kx supporting
Majorana flat bands. As Anderson disorder is increased, the
bulk remains gapless and there is a sharp increase in the
density of states at zero energy, as the bulk states come from
finite energies to lower energies. The sharp peak in the DOS
observed at E = 0 is reminiscent of the characteristic behavior
of a two-dimensional disordered superconductor with broken
time-reversal invariance in the thermal metal regime [110] in
which the density of states displays a logarithmic divergence
at zero energy.

In Fig. 10(b) when Aubry-André disorder is introduced,
the edge states appear to be robust up until around λ ≈ 0.8.
However, the MFBs which are present at λ = 0 are more
robust if compared with the edge states, with the band staying
at zero energy but the initial range of kx hosting flat bands
decreasing as λ increases. Simultaneously, flat bands appear
for new values of kx, as is can be seen in the figure for λ = 1.4,
and accordingly, the density of states at zero energy increases.
At higher values of disorder there is a collapse of states to
lower energies and the density of states exhibits a peak at
E = 0 which is reminiscent of the behavior found for Ander-
son disorder for the same parameter values. Contrary to what
is observed in for a lower magnetic field, there is no opening
of the bulk gap for larger values of λ. When quasiperiodic

FIG. 11. Energy spectra evolution with Aubry-André disorder
for By = 4d , α = 0.2d , �s = 0.3d and (a) λ = 0, (b) λ = 1.4.

disorder is introduced, a gap will only open for larger values
of λ if the bulk was gapped prior to introducing disorder, as in
Fig. 8, otherwise the bulk will remain gapless.

Let us now consider the addition of finite values of α and
�s. The addition of finite values of spin-orbit coupling and
s-wave pairing potential breaks the chiral-like symmetry Sky

[defined in Eq. (12)] that protects the flat bands. As a result,
the latter are lifted to a finite energy and the spectrum acquires
a tilt. For certain regimes of By, the noncentrosymmetric su-
perconductor in the clean system shows unidirectional edge
states. In such regimes, the addition of Aubry-André disorder
leads to the appearance of “flipped” unidirectional states in
the system. This can be seen in Fig. 11 for λ = 1.4.

C. Topological nature of quasidisorder-induced flat bands

We want to investigate if the Majorana flat bands that arise
in the presence of a quasiperiodic potential have a topological
nature, such as is the case of the flat bands in the ordered
system. Since the Berry phase was found to be quantized to
a value of π in the clean system in the region of flat bands, we
calculate it here for the disordered case. The Berry phase γB

is obtained in real space using twisted boundary conditions.
Considering a twisted boundary phase θy, we have

γB(kx ) = i
∫ 2π

0
dθy

〈
�(kx, θy) | ∂

∂θy
�(kx, θy)

〉
(27)

where � denotes the ground-state many body wave function,
which is given by the Slater determinant of the single parti-
cle wave functions. We can represent the ground state wave
function by an M × N matrix �θy where N is the number of
sites in y and M is the number of occupied states (negative
energy states). Numerically, the twist variable is discretized
into L points between 0 and 2π , such that θy is constrained to
take the values θy,n = 2π

L n, with n an integer that goes from
0 to L − 1. A link variable can then be defined as U (θy,n) =
det[�†

θy,n�θy,n+1 ], and the Berry phase is obtained as

γB = −i
L∑

n=1

ln U (θy,n). (28)

We find that at the values of kx where Majorana flat bands
appear the Berry phase is quantized to π , as shown in Fig. 12.
We have also found that, for the considered system sizes, the
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FIG. 12. Energy spectrum and Berry phase γ normalized by 2π ,
as a function of kx . The values of the parameters are t = 1, d = t/6,
μ = 3d − 4t and (a) By = 0.5d , λ = 1.4 (b) By = d , λ = 1.6, with
λ the strength of the quasiperiodic Aubry-André potential.

values of kx at which the Berry phase is quantized to π are
independent of the phase φ in the Aubry-André potential.

To quantify the induced bands at zero energy and study the
transition to a π -quantized Berry phase, we use the concept of
Majorana pair density, defined as [111]

ργ = Nγ

Nk
, (29)

where Nk is the number of discrete points of kx taken inside
the interval [−π, π ], and Nγ is the number of such points
which support MFBs at the edges. Numerically it is more
convenient to consider the number of kx points for which the
Berry phase is quantized to π , Nπ , since it was found that
Nπ = Nγ . A transition from ργ = 0 to ργ �= 0 then signals a
transition from a trivial to a topological regime (π -quantized
Berry phase). Figure 13(a) shows the evolution of ργ as a
function of quasidisorder strength for the case t = 1, d = t/6,
μ = −3.5 and By = 0.5d , and for the range λ ∈ [1, 2]. A
transition ργ = 0 → ργ �= 0 occurs between λ = 1.22 and
λ = 1.23 at a certain critical value λC,1. The value of ργ grows
until 1.49 ± 0.01 when the flat band splits in two and the
behavior of ργ changes, with an abrupt change in the sign
of the second derivative. A second transition occurs between
1.79 and 1.8, at a critical value λC,2, where ργ becomes zero.

In Fig. 13(b), the density of states at zero energy ρ(E = 0)
(normalized by the system size) is shown, for the same pa-
rameters as in Fig. 13(a) and for Ny = 76, along with the
corresponding contribution for the zero energy density of
states which comes from the MFB, ρ(E = 0)γ . Inside the
topological phase, which is highlighted, we can see that the
finite value of ρ(E = 0) observed in the system with OBC
comes almost entirely from the presence of flat bands.

Table I shows the values of λC,1 and λC,2 for several sys-
tem sizes, obtained for random values of the phase φ in the
Aubry-André potential, where the uncertainty is taken as the
minimum interval considered between values of λ. Is is found
that the values of the critical points show little variation with
the system size, and we also found that the critical points are
independent of φ for the system sizes considered.

FIG. 13. (a) Values of ργ for the case t = 1, d = t/6, μ = −3.5,
and By = 0.5d vs quasidisorder strength λ. Obtained for a system
with 76 sites in y. (b) Value of the DOS at E = 0 for the same
parameter values as in (a) vs quasidisorder strength λ, and the con-
tribution for ρ(E = 0) which comes from the Majorana flat bands in
the corresponding regime.

D. Scaling of the density of states: critical exponents

1. A detour to the clean system

Let us first briefly consider the clean system, without dis-
order. For the clean case, it is possible to obtain the values
of the dynamical exponent z and of the critical exponent ν

analytically, for the transition that occurs as By is increased,
corresponding to a transition from a winding number of 0

TABLE I. Values of the critical points λC,1 and λC,2, for the
parameter values t = 1, d = t/6, μ = −3.5, and By = 0.5d and for
the system sizes {76, 100, 175, 200, 400, 800}.

Ny λC,1 λC,2

76 1.225 ± 0.005 1.800 ± 0.005
100 1.215 ± 0.005 1.775 ± 0.005
175 1.230 ± 0.005 1.805 ± 0.005
200 1.220 ± 0.005 1.800 ± 0.005
400 1.230 ± 0.005 1.805 ± 0.005
800 1.225 ± 0.005 1.805 ± 0.005
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to 1 or a Berry phase of 0 to π . Here we consider the case
of μ < −2t [such that the topological phase is within the
region described by Eq. (17)]. At the topological transition
to a gapless phase, the gap closing points in kx, kx,0 are given
by

kx,0 = ± arccos

[
− 2(tμ + 2t2)

−d2 + 4t2

]
+ 2nπ, n ∈ Z. (30)

The values of ky for which the gap closes are given by ky,0 =
nπ , n ∈ Z (general solution). In this case the transition hap-
pens at ky,0 = 2nπ , n ∈ Z. The gap closes at a critical value
of the magnetic field, ByC , which, fixing ky = ky,0, is defined
from the value of kx,0 as

B2
yC

= [μ + 2t (cos kx,0 + 1)]2 + d2 sin2 kx,0. (31)

We can now first expand the expressions for the bulk energy
around kx,0 to find the dependence of the energy on kx. We
only need to consider the first positive energy band, E+(kx ).
Taking ky = ky,0 and expanding around kx = kx,0 we find

E+(kx ) ∝ (kx − kx,0), (32)

implying a value of the dynamical exponent z = 1 for the
transition. We can now take kx = kx,0 and see how the gap
closes as a function of By. We find

E+(kx = kx,0) = ||ByC | − |By||. (33)

Near a quantum phase transition as a critical point λC is
approached, the gap behaves as � ∼ |λ − λC |zν , therefore at
kx = kx,0 the gap vanishes linearly, with an exponent zν = 1.
Since z = 1, this implies ν = 1, and

z = 1, ν = 1. (34)

2. Quasidisorder: numerical calculation of the critical exponents

Around a critical point, the density of states ρ(E ) follows
[112]

ρ(E ) = δ(D−z)ν f (|E |δ−zν ), (35)

with D the dimension of the system (here D = 2), δ = |λ−λC |
λC

the normalized distance to the critical point λC , and f a scaling
function. Right at the critical point, when δ = 0, the DOS
behaves as

ρ(E ) ∼ |E | D
z −1. (36)

From the behavior of the density of states near the phase
transition and using Eq. (35) and (36), it is possible to obtain
the values of the critical exponents numerically.

Here we study a system with Ny = 800 sites in y and
consider the obtained critical values λC,1 = 1.225 and λC,2 =
1.805 (as shown in Table I for this system size). A fit of the
form of Eq. (36) for the density of states at the critical points,
done in the interval E ∈ [0.005, 0.025], gives the values of the
critical exponents z = 1.27 ± 0.04 for the first transition and
z = 1.23 ± 0.03 for the second transition. To determine the
value of ν we take values of λ inside the topological (gapless)
phase, λ > 1.225 and λ < 1.805, and obtain the density of
states close to zero energy. For small values of δ and close to
zero energy a collapse of the scaled values of the density of
states according to Eq. (35) is expected.

FIG. 14. Density of states for E ∈ [0.005, 0.025] and several
values of λ close to the critical values, for (a) λC,1 = 1.225 and
(b) λC,2 = 1.805, scaled according to Eq. (35) for (a) z = 1.27 and
ν = 0.95 and (b) z = 1.23 and ν = 1.00.

In Fig. 14, we show the results for the scaled density of
states for (a) values close to the first transition at λC,1 = 1.225
and (b) values close to the second transition at λC,2 = 1.805.
The density of states shows a collapse for (a) z = 1.27 and
ν = 0.95 and (b) z = 1.23 and ν = 1.00. The obtained values
for the critical exponents at each critical point are presented
in Table II.

The quantum phase transitions in the disordered regime
are therefore in a different universality class than that of
the clean case, which was found to behave with z = ν = 1.
The obtained values also differ significantly from the known
results for the Anderson or the Aubry-André transitions in one
dimension, the first belonging to an universality class with
with ν = 2 and z = 2/3, and the second case with critical ex-
ponents ν = 1 and z = 2.375 [113]. Recent results show that
for a one-dimensional system with p-wave superconductivity
subject to an Aubry-André potential the quasidisorder driven
transitions also deviate from the normal Aubry-André class.
For the localized-critical transition line and when the p-wave
pairing term is finite, the correlation length exponent has been
obtained as ν = 0.997 and the dynamical exponent as z =
1.373 in Ref. [67], and as ν = 1.000, z = 1.388 in Ref. [68].
Note, however, that the referred results are for D = 1 while we
are studying a two-dimensional system, and concern systems
with no applied magnetic field. Nevertheless, one could say
that the aforementioned results make it so that deviations
from the known universality classes are also expected for
transitions in the system at study. Up to numerical errors,
the values of ν obtained for the disordered driven transitions
coincide with that of the Aubry-André transition; nevertheless
the value of z deviates from that of the known classes, which
suggests these transitions belong to new universality classes.

TABLE II. Values of z and ν obtained numerically for the topo-
logical transitions for Ny = 800.

λC z ν

1.225 1.27 ± 0.04 0.95 ± 0.05
1.805 1.23 ± 0.03 1.00 ± 0.05
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FIG. 15. Results of τ vs q, for several values of disorder strength, λ, for kx = 0.02π and kx = 0.2π , for (a) Anderson and (b) Aubry-André
disorders. In all cases, the IPR is averaged for the states within the energy range E ∈ [0.05, 1].

The identified transitions, where Marojana flat bands appear
as a result of a quasidisorder-induced gap closing, and the sub-
sequent opening of the bulk gap, are found to happen for other
values of the imposed parameters. Considering the values of
the parameters μ, t , and d are such that the topological regions
of the superconductor are described by Eq. (17), then as long
as By < By,C (when the bulk is gapless) with By,C defined as in
Eq. (31), the same type of transitions will take place with the
increase of λ.

E. Fractal analysis

One of the effects of Anderson transitions is the emergence
of multifractality, which is characterized by fluctuations of
eigenstates. These fluctuations are manifested in the general-
ized inverse participation ratio. For a given eigenstate labeled
by m, the generalized IPR is defined as

IPR(q)m =
∑

i

∣∣ψm
i

∣∣2q
, (37)

where, as before, ψm
i is the wave function of the eigenstate m

at a site i. At criticality, the generalized IPR behaves as [114]

IPR(q) ∼ Lτ (q), (38)

where L is the system size and the exponent τ (q) is defined in
terms of a generalized dimension D(q) as τ (q) = D(q)(q −
1). In a metallic phase, D(q) = d and for an insulating phase
D(q) = 0. Wave-function multifractality is characterized by a
q dependent value of D(q), whereas the cases of a constant
D(q) are single fractals [115].

Here we want to make a simple fractal analysis of the
system both for disorder and quasidisorder. We take kx at
fixed values, such that system is reduced to an effective
one dimension. The IPR as a function of q is calculated
and averaged within the energy range E ∈ [0.05, 1]. We fix
the parameters t = 1, d = t/6, μ = 3d − 4t , and By = 0.5d
and consider both the cases of Aubry-André disorder and
Anderson disorder. The following subintervals of L are con-
sidered, to which a fit of an equation of the form of Eq. (38)

is done:

L1 = {75, 100, 150, 175, 200, 255, 275, 400, 475, 600, 675,

× 800},
L2 = {150, 175, 200, 255, 275, 400, 475, 600, 675, 800},
L3 = {200, 255, 275, 400, 475, 600, 675, 800},
L4 = {275, 400, 475, 600, 675, 800}. (39)

The obtained results are presented in Figs. 15 and 16.

1. Anderson disorder

Figure 15(a) shows the values of τ (q) for kx = 0.02π

and kx = 0.2π , for several values of λ and considering the
system size interval L1. One thing that can be immediately
noticed is that for the clean system, λ = 0, the values of
τ (q) closely follow the line τ (q) = (q − 1), indicating that
D(q) is q-independent and equal to 1. This is the expected
behavior of the clean system (taking a fixed kx where the
system is reduced to one dimension) and reveals that the bulk
states are extended in the y direction. For higher values of
disorder, τ (q) approaches the line τ (q) = 0, where D(q) = 0,
suggesting the states are localized. For other values of disorder
strength, starting at λ = 0.1, τ (q) does not follow a behav-
ior characteristic either of D(q) = 1 or D(q) = 0. In order
to take a conclusion, it is necessary to evaluate τ (q) as the
system size tends to infinity. To do this, the subintervals of
L in Eq. (39) are considered, to which a fit of equation of
the form of Eq. (38) is done. The results are presented in
Fig. 16(a). We find that for the values λ = 0.1 and above, as
larger values of L are considered, the curves τ (q) approach
τ (q) = 0. This confirms a localization of the bulk states in the
thermodynamic limit for small values of disorder.

2. Aubry-André disorder

Figure 16(b) shows the values of τ (q) for kx = 0.02π and
kx = 0.2π , for several values of quasidisorder strength λ for
the size interval L1. Unlike the previous case with Anderson
disorder, we see that the results differ for each kx, and that for
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FIG. 16. (a) Values of τ at different values of q and Anderson disorder strength λ, for kx = 0.02π and kx = 0.2π . (b) Values of τ at
different values of q and quasidisorder strength λ, for kx = 0.02π and kx = 0.2π . In all cases, the IPR is averaged for the states within the
energy range E ∈ [0.05, 1].

some values of disorder strength τ (q) follows the line q − 1
closely until some value of q where the behavior suddenly
changes. In Fig. 16(b), we show, as before, values of τ (q)
fitted for the considered size intervals L1, L2, L3, and L4. or
lower values of q, τ remains at the values defined by the
Eq. τ (q) = D(q)(q − 1) with D(q) = 1. However, at higher
values of q, this behavior changes. Contrary to the case with
Anderson disorder, there is no clear tendency of τ (q) at in-
creased system sizes, and the behavior also depends on the
value of q. This deviation from the D(q) = 1 line is verified
as soon as disorder is introduced, and suggests the system is in
a multifractal regime. Accordingly, we see the appearance of
critical bulk states in the system. From inspection of Fig. 15(b)
and of the corresponding values of τ (q) at larger system
sizes, we identify a transition to a localized phase around
λ ∈ [2.0, 2, 1].

V. CONCLUSIONS

In this work, we studied a two-dimensional topological
superconductor in the presence of a magnetic field. We intro-
duced disorder and quasidisorder in the system with the aim
of studying the effects on topological and localization prop-
erties. Considering previous results on other systems such as
insulators, semimetals and one-dimensional superconductors,
and the results we found on the effect of quasidisorder in two-
dimensional superconductors, we may expect that the results
may be general considering gapless systems or topological
systems (gapped or gapless), in which regions displaying sim-
ilar topological and localization properties may be found.

The system was first studied under a perpendicular
magnetic field Bz. Four types of disorder were considered: An-
derson (two-dimensional), Anderson (one-dimensional along
y, uniform along x), Aubry-André (one-dimensional along y,
uniform along x) and Aubry-André (two-dimensional). We
observed that the response of the topological phases of the
system differs depending on the type of disorder, and that
quasidisorder induces topological phases in new regions of
Bz, characterized by integer values of the Chern number C.
The critical points at these phase boundaries were shown to
become sharper as the system size increases, allowing us to
conclude that the obtained phase diagrams apply to bigger
system sizes.

The real space system was also briefly studied when a
parallel magnetic field is applied in the y direction. We studied
the cases of bulk disorder, with the same four different spatial
configurations. For two-dimensional Anderson disorder, we
found that the average IPR of the system increases with an
exponential behavior as a function of λ for λ > 1.5. When
uniformity in the x direction is imposed in the Anderson dis-
order potential, we found that the IPR shows a linear increase
as a function of λ, for λ > 0.5. For Aubry-André disorder,
the behavior of the average IPR of the system reveals the
existence of two different regimes. In the first, the average
IPR shows a slow increase with λ, and in the second the IPR
greatly increases. The transition between the two regimes is
located around λ = 2.

We then studied the system in a mixed (kx, y) space with
an applied parallel magnetic field. The clean superconducting
system is known to possess flat bands in the gapless regime. At
the corresponding values of kx these have a winding number
W of 1, which is defined from reducing the two-dimensional
system to an effective one dimension. We showed that these
are also characterized by a π -quantized Berry phase at the
same values of kx.

FIG. 17. Phase diagrams of a system with 20 × 20 sites indexed
by the Chern number C, for several values of Aubry-André disorder
strength λ and perpendicular magnetic field Bz, obtained for the
average over 20 disorder configurations. The values of the parameters
are t = 1, d = 1/6, and μ = 4.5.
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FIG. 18. Values of the Chern number C vs. one-dimensional
Aubry-André disorder strength λ for the system sizes 20 × 20,
30 × 30 and 41 × 41 and for (a) t = 1, μ = 0, d = 0.6, Bz = 0.4,
(b) μ = 1, d = 0.6, Bz = 1.1, and (c) μ = −3.5, d = 1/6, Bz = 0.3.
The results were averaged over 20 disorder configurations.

We showed that the introduction of quasidisorder induces
new gapless phases in parameter regimes where they were
absent in the clean case. For the p-wave system subject to
a parallel magnetic field, this leads to new regimes with
Majorana flat bands. This is not only true for phases with a
gapless bulk but also for gapped phases, where quasidisorder

FIG. 19. Values of the Chern number C vs. two-dimensional
Aubry-André disorder strength λ for the system sizes 20 × 20,
30 × 30 and 41 × 41 and for (a) t = 1, μ = 0, d = 0.6, Bz = 0.4,
(b) μ = 1, d = 0.6, Bz = 1.1, and (c) μ = −3.5, d = 1/6, Bz = 0.3.
The results were averaged over 10 disorder configurations.

FIG. 20. Average participation ratio, APR, for a p-wave su-
perconductor in the presence of Aubry-André quasidisorder for
(a) one-dimensional and (b) two-dimensional systems, as a function
of the superconducting pairing term d and disorder strength λ.

closes the bulk gap and Majorana flat bands appear. We then
obtained the Berry phase with twisted boundary conditions
and concluded the quasidisorder-induced flat bands also have
a quantized Berry phase of π . For the noncentrosymmetric
superconductor with added s-wave superconducting pairing
and Rashba spin orbit coupling, we showed that new regimes
with unidirectional Majorana edge states appear. In particular,
we showed that for a phase where right-moving unidirectional
edge states were present in the system, the introduction of
quasidisorder leads to the appearance of edge modes in the
opposite moving direction, and for a certain quasidisorder
range these modes coexist in the system.

The identification of the quasidisorder-induced topologi-
cally nontrivial flat bands with a quantized Berry phase of π

allowed us to study in detail two topological transitions, for
the p-wave superconductor with a parallel applied magnetic
field By. The two critical points were identified and studied
by obtaining the density of induced Majorana bound states in
relation to kx points. We found that the values of the critical
points show almost no variation with the system size for sys-
tems bigger than 76 sites along y. The values of the dynamical
critical exponents and correlation length critical exponents
were obtained as z = 1.27 ± 0.04 and ν = 0.95 ± 0.05 for
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FIG. 21. Average participation ratio, APR, for a 2d system with
Anderson or Aubry-André (AA) quasidisorder, for d = t/6, μ =
−3.5, in a (a) perpendicular or (b) parallel magnetic field.
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FIG. 22. Average participation ratio as a function of λ for per-
pendicular magnetic field, Bz, and (a) 1d and (b) 2d quasidisorder
and parallel magnetic field By, and (c) 1d and 2d quasidisorder.

FIG. 23. Participation ratios of the eigenstates for λ = 1, d =
t/6, μ = −3.5, as a function of energy for (a) Bz = 2 and (b) By = 2.

the first critical point and z = 1.23 ± 0.03, ν = 1.00 ± 0.05
for the second critical point, which puts these transitions in
novel universality classes. We then investigated the multifrac-
tal nature of the wave functions by calculating the values of
τ (q) from the IPR values at several values of disorder, at the
same parameter values as those in which the topological tran-
sition was studied. From the behavior as the thermodynamic
limit is approached, we concluded that the introduction of
quasidisorder induces multifractality in the system. A transi-
tion to a localized regime was identified for λAA ∈ [2.0, 2.1].
The same analysis was made for the system with Anderson
disorder. The behavior of τ (q) as the system size tends to in-
finity suggests that the introduction of Anderson disorder will
drive the system to a localized phase (in the thermodynamic
limit).

We have also shown that the average inverse participation
ratio is not very sensitive to the magnitude of Bz or By. Al-
though By leads to gapless behavior and Bz in general leads to
gapped behavior, and although each magnetic field direction
leads to different topological properties and symmetries in
the clean system, the localization properties are similar and
the existence of critical states is also similar. It seems that a
magnetic field in the y direction, By, leads to a more localized
behavior in the presence of a quasidisordered potential. For
both magnetic field directions we found critical states and no
mobility edges were found. We found a crossover as a function
of λ with a mixture of extended and critical states that grow
in number as quasidisorder increases. In this context, Aubry-
André along 1d in the two-dimensional system or along 2d
does not lead to qualitatively different results (in the sense that
the crossover in localization is seen for both cases), besides
the differences in induced topology.

FIG. 24. Wave function amplitudes for the parameters of Fig. 23,
as a function of space location in a 21 × 21 system, for states with
(a) Bz = 2 and participation ratio PR = 0.781, (b) Bz = 2 and PR =
0.186, (c) By = 2 and PR = 0.643, (d) By = 2 and PR = 0.169.
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FIG. 25. Energy spectra evolution with (a) Anderson and
(b) Aubry-André disorders, for By = d , α = 0.2d , and �s = 0.5d .
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APPENDIX A: ADDITIONAL DETAILS ON THE
DISORDERED MODEL UNDER A PERPENDICULAR

MAGNETIC FIELD

In Figs. 6(h) and 6(i), we observe that for low magnetic
fields the increase of quasidisorder induces topological phases
in regions for which the Chern number was zero. In the clean
system, however, these regions correspond to a phase that
is topological and characterized by a finite value of I (ky).
In Fig. 17, we show a phase diagram for the parameters
d = 1/6 and μ = 4.5. In this case, the topological invariant
I (ky = 0, π ) is trivial for low values of magnetic field (Bz <

0.5) when C = 0. Contrarily to what is observed in Fig. 6(i),
there is no induced topological region with C = −1. This thus
suggests that the reentrant regions observed in Figs. 6(h) and
6(i) can possibly be related with the topological nature of the
phases characterized by I (ky) and with C = 0.

To see how the different critical values for quasiperiodic
disorder scale with the system size, three transitions for the
phase diagrams obtained with Aubry-André disorder along y
with uniformity along x (third row in Fig. 6) and Aubry-André
in two dimensions (fourth row in Fig. 6) were considered, at
fixed values of Bz and μ. The results are presented in Figs. 18
and 19 for the system sizes 20 × 20, 30 × 30 and 41 × 41.
We found that within the considered system size range, the
transitions become sharper as the size increases, thus suggest-
ing that the obtained phase diagrams in Fig. 6 should apply to
larger systems.

APPENDIX B: PARTICIPATION RATIO OF 2d
AUBRY-ANDRÉ QUASIDISORDER

In Fig. 7, we considered the average inverse participa-
tion ratio regarding both disorder or quasidisorder along one
spatial direction (the y axis) and disorder or quasidisorder in
the plane, comparing a set of values of parallel magnetic field.
In this Appendix, we carry out a more extensive analysis.
We want to focus our attention on the regime of increasing
disorder strength, from small values to larger values as lo-
calization takes place, in particular on the possible separation
between extended, critical and localized regimes. The inverse
participation ratio is particularly useful to study the transition
to the localized regime, but is not as revealing in the extended-

FIG. 26. Density of states evolution with (a) Anderson and (b) Aubry-André (AA) disorders, for By = d , α = 0.2d , and �s = 0.5d and
with (c) Anderson and (d) Aubry-André disorders for By = 4d , α = 0.2d , and �s = 0.3d .
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critical regimes. In this Appendix, we will consider instead the
participation ratio, which is given by the inverse of Eq. (26). It
is of the order of one for extended states, and becomes of the
order of the inverse of the system size in the localized regime.

In the case of a one-dimensional p-wave superconductor
(Kitaev model) in the presence of an Aubry-André po-
tential and with no magnetic field, it is known that the
three regimes of extended, critical and localized states are
present, as one changes the amplitude of the pairing, d , and
the quasidisorder strength, λ [42]. The average participa-
tion ratio (APR), considering a single disorder configuration,
is shown in Fig. 20(a), where clear transitions are shown
separating the various regimes (here we only consider a dis-
order configuration, but the results are characteristic of a
larger set of disorder configurations). The average participa-
tion ratio has different plateaus as the parameters change.
Considering a two-dimensional p-wave superconductor with
two-dimensional quasidisorder, there is no clear transition
between the regimes and one finds crossovers as λ increases.
The system sizes considered in Fig. 20(b) are small (21 × 21),
but a smooth transition showing the decreasing of the average
participation ratio seems to indicate no clear separation of a
critical regime before the localized phase takes place.

In Fig. 21, we consider the average participation ratio for
the two-dimensional case in the presence of a perpendicular or
parallel magnetic field, for the cases of Anderson disorder and
quasidisorder. These results highlight the extended/critical
regimes at lower values of λ. Anderson disorder behaves sim-
ilarly for the two magnetic field directions, and quasidisorder
leads to higher values of the average participation ratio as
disorder increases, with a sharper transition to the localized
regime, as shown in Fig. 7. In the case of the parallel mag-
netic field, quasidisorder has a stronger localization effect.
A difference with respect to the perpendicular magnetic field
is the existence of gapless states, more sensitive to the long-
range disorder associated with the Aubry-André potential. In
the case of perpendicular magnetic field, the system remains
gapped (except at the transitions between the various topolog-
ical regimes) and therefore is expected to be less sensitive to
the quasidisorder potential.

The crossover behavior is clearly seen in Fig. 22, inde-
pendently of the magnetic field direction (Bz or By). Also,
the consideration of quasidisorder along the y direction and
periodic along x or quasidisorder that is fully two-dimensional
leads to similar results. Some differences are visible for small
magnetic fields or small values of λ. Except for these regions,
the average participation ratio is quite independent of the
amplitude of the magnetic field, but the effect of a parallel
magnetic field is more significant, as discussed.

In order to have a better understanding of the possible
existence of critical states in the regime prior to the tran-
sition to localization, we show a typical case in Fig. 23 of
the participation ratios of the various eigenstates, as a func-
tion of their energies, for perpendicular and parallel magnetic
fields. The parameters are chosen so that we are in an in-
termediate regime, where the average participation ratio is
in the crossover between fully extended and localized states.
There are significant fluctuations between states with high

FIG. 27. Energy spectra evolution with (a) Anderson and
(b) Aubry-André disorders, for By = 4d , α = 0.2d , and �s = 0.3d .

participation ratios (characteristic of extended states) and low
participation ratios (characteristic of intermediate, critical,
states) but still larger than values that correspond to the lo-
calized regime. The results do not show a mobility edge,
and the states mix throughout the energy range. Also, as λ

increases, we have found that the percentage of critical-like
states increases, explaining the crossover behavior. The ex-
tended versus critical character nature of the states is shown
in Fig. 24, where a few wave functions are shown (for the
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system with periodic boundary conditions in both directions),
characteristic of extended and critical states coexisting in the
same energy spectrum.

APPENDIX C: ENERGY SPECTRA EVOLUTION FOR THE
NONCENTROSYMMETRIC SUPERCONDUCTOR WITH

AUBRY-ANDRÉ AND ANDERSON DISORDER
IN (kx, y) SPACE

Here we present results for the evolution of the energy
spectra for the noncentrosymmetric superconductor, with spin
orbit coupling α and mixed p and s-wave pairings, subject to
Anderson and Aubry-André disorder in the (kx, y) space. We
take the same parameter values for t , d , and μ as in Sec. IV B,
and consider two different cases: By = d , α = 0.2d , �s =
0.5d and By = 4d , α = 0.2d, �s = 0.3d .

In Fig. 25, we present the evolution of the energy spec-
trum for (a) Anderson and (b) Aubry-André disorders, for
By = d , α = 0.2d , �s = 0.5d . As Anderson disorder is in-
troduced in the system, the edge states are destroyed and
the considered energy range gets filled with bulk states, but
the tilt of the spectrum is preserved. As a result, the flat
bands which were previously lifted due to the introduction
of finite values of α and �s do not collapse to zero energy.
For high values of λ, the density of states exhibits two peaks
which result from the inclination of the bulk energy spectrum
[Fig. 26(a)].

In Fig. 25(b), as Aubry-André disorder is introduced, we
see an evolution that is similar to Fig. 10(b), but instead of
new flat band regimes, new unidirectional edge states appear.
Unlike what happens for Anderson disorder, at high values
of λ a gap opens for values of kx around kx = 0 (although
the bulk as a whole remains gapless). This is reflected in the

density of states, that drops around E = 0 for higher disorder
values. Similarly to what was observed for Anderson disor-
der, the tilt of the energy spectrum is preserved as disorder
increases.

In Fig. 27, the clean system is in the regime where uni-
directional MESs appear. The values of the p-wave pairing
and spin orbit term are kept constant in relation to the case
of Fig. 25, but the s-wave pairing term is decreased from
�s = 0.5d to 0.3d and the magnetic field is increased from
By = d to 4d . The spectrum acquires a tilt in the opposite
direction if compared to the clean system in Fig. 25, as a
result of the increased magnetic field. With Anderson disor-
der, Fig. 27(a), The unidirectional Majorana edge states are
robust to small values of disorder strength but as disorder
increases the structure of the band is lost, as bulk states fill
the lower energy values. This differs from Fig. 25(a) where
the tilt of the spectrum is preserved even at higher values of
disorder. As disorder is increased, there is at first an increase
in the value of the DOS at zero energy, which then decreases
for higher values of disorder. For λ > 1.8, the density of
states becomes nearly constant in the considered range of
E ∈ [−0.4, 0.4].

In Fig. 27(b), when a certain value of Aubry-André dis-
order is reached, “flipped” unidirectional states appear in the
system. This is seen clearly in Fig. 27(b) for the values of
λ = 1.2 and 1.4, as a band with negative slope appears for val-
ues of kx around kx = 0. At λ = 1.2, there is a coexistence of
unidirectional “flipped” left-moving edge modes (with nega-
tive slope) around kx = 0 and right-moving edge modes (with
positive slope) for higher (absolute) values of kx. A backflow
current that balances the current on the edges is created on the
bulk: extra right or left moving modes will appear depending
on the net current on the edge.
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[20] A. Sĺebarski, M. Fijalkowski, M. M. Maśka, J. Deniszczyk,
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