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Interlayer coherence in superconductor bilayers
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We investigate the possibility and implications of interlayer coherence in electrically isolated superconducting
bilayers. We find that in a mean-field approximation bilayers can have superconducting and excitonic order
simultaneously if repulsive interactions between layers are sufficiently strong. The excitonic order implies
interlayer phase coherence and can be studied in a representation of symmetric and antisymmetric bilayer states.
When both orders are present we find several solutions of the mean-field equations with different values of the
the symmetric and antisymmetric state pair amplitudes. The mixed state necessarily has nonzero pair amplitudes
for electrons in different layers in spite of the repulsive interlayer interactions, and these are responsible for
spatially indirect Andreev reflection processes in which an incoming electron in one layer can be reflected as a
hole in the opposite layer. We evaluate layer diagonal and off-diagonal current-voltage relationships that can be
used to identify this state experimentally.
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I. INTRODUCTION

Superconductivity is a well-explored yet still puzzling
phenomena of the collective behavior of electrons. The
microscopic Bardeen–Cooper–Schrieffer (BCS) [1,2] theory
explains it in terms of bound (Cooper) electron pairs due to
effective attractive interactions. The condensation of Cooper
pairs gives rise to a non-Fermi-liquid state with spontaneously
broken U (1) symmetry characterized by a homogenous com-
plex order parameter �. One signature of superconductivity
is a nonlinear junction resistance with a normal metal. At
subgap values of the bias voltage on the interface, the only
way for a single electron to penetrate inside a superconductor
is to form a Cooper pair. Therefore, by charge conservation,
transmission through the interface should be accompanied by
reflection of a hole, a process known as Andreev [3] reflection.
Studies of Andreev reflection can be used to probe [4,5] a state
of interest and continue to gather both theoretical [6–13] and
experimental [14–17] attention.

In recent years experimentalists uncovered examples of
both electron-electron (Cooper) and electron-hole (excitonic)
pairing in atomically thin two-dimensional materials[18–23].
In general, Cooper pairing is driven by attractive effective
interactions and electron-hole pair formation by repulsive
interactions between electrons in different bands. Exciton
condensates [24–29] are coherent states of electrons and holes
bound into pairs by the Coulomb interaction and are described
by a mean-field theory that is identical to BCS theory apart
from a particle-hole transformation. In bulk materials the con-
cept of exciton condensation is partly ambiguous since the
ordered states are difficult to distinguish from density-wave or
nematic states [30]. Although exciton condensates were pre-
dicted theoretically more than 50 years ago, their experimental
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identification in bulk materials has suffered as a consequence,
although progress was achieved recently [31–33]. Experi-
mental advances with two-dimensional materials solved the
ambiguity problem by making it possible to prepare devices
with strong interactions between subsystems located in dif-
ferent layers that separately have nearly perfectly conserved
particle number. Interlayer coherence is a related yet slightly
different phenomena. It corresponds to the same order pa-
rameter and also breaks the independent gauge invariance of
the individual layers: i.e., when the exciton order parameter
x is nonzero we no longer can perform gauge transformation
in two layers independently. However, interlayer coherence,
unlike the exciton condensation, does not open a gap in the
system and bears more similarity to pseudospin magnetism.
There are still only a few examples of convincing experi-
mental evidence for the excitonic condensation and interlayer
coherence in systems without a strong external magnetic field,
but this situation seems likely to change.

Recently, superconductivity was observed in magic angle
twisted bilayer graphene (tBG) [34,35], a two-dimensional
system with a moiré superlattice that yields extremely flat
conduction and valence bands. The strongest superconductiv-
ity appears when the valence band is doped away from half
filling. Although several models [36–40] for its superconduc-
tivity have been proposed, the mechanism remains unknown.
Twisted bilayers are the simplest examples of a rich variety
of graphene multilayer moiré superlattice systems that have
received experimental attention recently [41–45]. The motiva-
tion for this paper is to consider the possibility of realizing, in
this flexible family of strongly correlated electron systems, an
exotic state in which interlayer coherence and superconduc-
tivity occur simultaneously. Our target system is two twisted
bilayers separated by a hexagonal boron nitride tunnel barrier.
The superconductivity of the individual twisted bilayers is
already established. Here we ask the following questions:
(i) can interlayer coherence occur, in principle, between
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two-dimensional electron systems that are superconducting
and (ii) if so, how would such a state be most unambiguously
detected? So far research on the coexistence of two phases, or,
broadly speaking, multicomponent coupled condensates, has
been scarce [46–48] partially because of the lack of a physical
system with a potential to have both. In this paper, we study
the possibility for a system to have both interlayer coherence
(magnetism in layer-pseudospin label) and superconductiv-
ity within each layer: a state in which two superconducting
states within each layer are coupled through the spontaneously
established interlayer coherence. In Sec. II we describe the
model and study the relationships between its order param-
eters. In Sec. III we describe the phases we identified and
phase diagrams as a function of the strength of the interlayer
repuslive interaction strength gx and the intralayer attractive
interaction strength gs. In Sec. IV we propose an Andreev
drag measurement which can be used to identify states with
both types of order, taking advantage [49] of the possibility
of separate contacting to individual layers. This method of
probing bilayer exciton condensates was very successfully ex-
ploited in quantum Hall excitonic superfluids [50–54] Finally,
in Sec. V, we discuss prospects for observing these states and
the importance of deviations from the highly symmetric point
that we considered in our explicit calculations.

II. MODEL

We consider the simplest possible model that can have
both interlayer coherence and s-wave superconductivity. The
model assumes that both the attractive intralayer and repulsive
interlayer interactions are momentum independent, includes a
layer degree of freedom (l = t, b), and assumes either valley
or spin singlet superconductivity. The Hamiltonian

H =
∑
plσ

ξplc
†
lσ (p)clσ (p)

+ λs

S

∑
pp′q

c†
l↑(p + q)c†

l↓(p′ − q)cl↓(p′)cl↑(p)

+ λx

S

∑
pp′q

c†
tσ (p + q)c†

bσ ′ (p′ − q)cbσ ′ (p′)ctσ (p), (1)

where c†
lσ (clσ ) creates (annihilates) a fermion in layer l = t, b

with pseudospin σ =↑,↓, and S is the area of the sample,
ξplσ = ε(p)lσ − μl where ε(p)lσ is a dispersion relation and
μl is the Fermi energy within the layer. In this work, we
will focus on the case of layer-independent bands, ξpl ≡ ξp

(Fig. 1), and reserve discussion of the deviations from this
symmetric limit to the end of the paper. (As we explain in
Sec. V coexistence does not occur for ξpt ≡ −ξpb.) The pseu-
dospin label refers to the real spin in the case of spin-singlet
superconductors and to the valley in the case of valley-singlet
superconductors. Below we refer to this degree of freedom as
spin for simplicity. Below we characterize the ordered states
by their mean-field Hamiltonians and allow an exciton order
parameter for each spin species

xσ = λx

S

∑
p

〈ctσ (p)c†
bσ (p)〉, (2)

FIG. 1. Sketch of the band alignment and the configuration of
the layers. We take energy dispersion to be the same in both layers
as well as the electron filling. Interactions within the layer (λs < 0)
are attractive while between the layers (λx > 0) is repulsive. We
talk about deviations from the perfectly symmetric scenario in the
discussion section.

and superconducting order parameters both within and be-
tween layers

�ll ′
σσ ′ = −λll ′

S

∑
p

〈clσ (p)cl ′σ ′ (−p)〉, (3)

where λtt = λbb = λs and λtb = λbt = λx. The ordered state
is therefore characterized by six complex self-energies that
vanish if no symmetries are broken.

In single-band superconductors, the pair potential can be
chosen to be real because of global gauge invariance. It fol-
lows that one real number, the gap, fully characterizes the
superconducting phase. In the present two-band system, we
start with four complex pair potentials. If we also allow ex-
citonic particle-hole pairing for both spins, the ordered state
is characterized by 12 real numbers. Since only three phases
can be chosen at will by exploiting the conservation of the
number of particles of particles of each spin in each layer, the
energy can depend not only on absolute values of the order
parameters, but also on their phases, or, more specifically, on
gauge-invariant combinations of such phases.

In the absence of interlayer superconducting coupling,
there is only one gauge-invariant combination of the phases
ψt − ψb − ψ↑ − ψ↓, where ψσ=↑,↓ is the phase of the cor-
responding exciton pair potential and ψl=t,b is the phase of
the intralayer superconducting pairing potential. This combi-
nation changes sign under layer flip. If we assume that the
ground state preserves spin and layer invariance, we see that

ψt − ψb − ψ↑ − ψ↓ = πn, (4)

where n is an integer. In the gauge ψb = 0, ψ↑ = 0, ψ↓ = 0,
an even n will correspond to a state with two superconducting
gaps having the same sign, while an odd n will correspond to
a state with superconducting gap that changes sign under the
layer flip.

To extend this analysis to the case with nonzero interlayer
pairing, we identify four gauge-invariant quantities that do
not transform to themselves under layer or spin inversion:
x↑�bt

↑↓�tt
↑↓

∗, x↓�bt
↓↑�tt

↓↑
∗, x∗

↑�tb
↑↓�bb

↑↓
∗
, and x∗

↓�tb
↓↑�bb

↓↑
∗

and
require that their values do not change under these transfor-
mations [55]. This condition restricts the absolute values of
all self-energies |�t | = |�b| ≡ �d , |x↑| = |x↓| ≡ x, |�tb

↑↓| =
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|�bt
↑↓| ≡ �i as well as two gauge-invariant combinations of

phases

ψ1 − ψ2 = ψ↓ − ψ↑ − 2πm, (5)

ψt − ψb = ψ↑ + ψ↓ − 2πk, (6)

where ψ1 is the phase of �bt
↑↓ and ψ2 is the phase of �tb

↑↓,
k and m are integers. (d , and i in �d and �i are intended to
suggest direct and indirect pairing.)

The system has one more independent gauge-invariant
combination of phases ψt + ψb − ψ1 − ψ2 ≡ 2ψ+. Unlike
those we considered previously, this combination transforms
to itself under layer or spin flip, and therefore should be
determined by energy minimization.

Using global gauge invariance related to conserved particle
numbers for each spin and valley ψ1, ψ↑, and ψ↓ can be
chosen to be 0. Then because of (5) ψ2 = 2πm and ψ− ≡
(ψt − ψb)/2 = πk. In what follows, we use this gauge. This
leaves us with mean-field Hamiltonians that depend only on
four parameters. There are three absolute values: �d (direct

superconducting gap, particle-particle pairing within a layer),
�i (indirect superconducting gap, particle-particle pairing be-
tween the layers), x (electron-hole coherence between the
two layers), and a single free phase [ψ+ ≡ (ψt + ψb)/2],
whose values can be determined by solving self-consistent
field equations.

III. PHASE DIAGRAM

We saw previously that layer and spin symmetries restrict
the value of ψ−, but not ψ+ ≡ (ψt + ψb)/2. In this section,
we allow both phases to take any value to demonstrate explic-
itly that energies are minimized when spin/layer symmetries
are respected: the four distinct allowed values of ψ− (0, π/2,
3π/2 π if �i = 0 and 0 π if �i 	= 0) follow from the self-
consistency equations. The mean-field version of (1) can be
written as

Hm f =
∑

p

	†(p)H(p)	(p), (7)

where 	†(p) = (c†
t↑, ct↓, c†

b↑, cb↓) is a vector in an extended
Nambu space and the Hamiltonian matrix is

H(p) =

⎛
⎜⎜⎜⎝

ξp �d ei(ψ++ψ− ) x �i

�d e−i(ψ++ψ− ) −ξp �i −x
x �i ξp �d ei(ψ+−ψ− )

�i −x �d e−i(ψ+−ψ− ) −ξp

⎞
⎟⎟⎟⎠. (8)

The negative eigenvalues of the matrix have the form
ε± = −(η2 ± 2α2)1/2, where η2 = ξ 2 + x2 + �2

i + �2
d

and α4 = x2�2
d sin2(ψ−) + 2�d�ixξ cos(ψ+) cos(ψ−) +

�2
i �

2
d cos2(ψ+) + (xξ )2. Stable phases of the system are

determined by minimization of the energy density. At energy
extrema

E = 2�2
d

|λs| − 2�2
i

λx
+ 2x2

λx
+

∑
b

∫
dξν(ξ )εbnb(ξ ), (9)

where the sum is over quasiparticle bands b, ν(ξ ) is the
quasiparticle density of states per spin and per layer, and
nb(ξ ) is the Fermi occupation factor. At zero temperature, only
quasiparticle states with negative energies are filled.

The extrema of the energy are also extrema of (9), which
we vary first with respect to the phases ψ− and ψ+. We
conclude that energy minima occur at the extrema of α2 and
that these occur (independent of ξp) when

sin (ψ+) = 0 and sin (ψ−) = 0, (10)

or

cos (ψ+) = 0 and cos (ψ−) = 0. (11)

The first condition is consistent with the conditions we de-
rived for a mirror- and spin-symmetric state with �i 	= 0. We
will call it a parallel phase. The second condition defines the
antiparallel phase [56]. We will see that the second conditin
is consistent only with �i = 0. Note that each condition, in
fact, corresponds to two different states. Namely, (10) can be

satisfied with (ψt , ψb) = (π, π ), and (0,0), that typically have
different energies when interlayer superconducting order is
present. Now we consider the antiparallel and parallel phases
separately.

A. Antiparallel phase

We consider first the extrema in which the phases ψt and
ψb differ by π . The main conclusion of this subsection is
that, for any sufficiently smooth density of states, the energy
of the antiparallel phase is always higher than that of a pure
superconducting phase. In other words, this solution of the
mean-field equations corresponds to a local energy maximum
not an energy minimum, and can therefore be discarded. In
the antiparallel phase, variation of the energy density in (9)
with respect to �i combines with (11) to yield the self-
consistency equation

�i = −λx�i

4

∫
ν(ξ )

(
1

ε+
+ 1

ε−

)
. (12)

This equation clearly cannot be satisfied at any λx > 0. We
conclude that �i = 0 in the antiparallel phase. The quasipar-
ticle band energies are therefore

±ε± = ±|
√

ξ 2 + �2
d ± x|. (13)

The form of the band energies allows us to identify the antipar-
allel phase as an exciton condensate (spontaneous interlayer
phase coherent state) formed on top of superconductors within
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each of the layers. With �i eliminated, the system of gap
equations reduces to

x = λxN
(√

x2 − �2
d

)
, (14)

�d = −λs�d

2

∫
ν(ξ )√

ξ 2 + �2
d

+ λs�d

2

∫ √
x2−�2

d

−
√

x2−�2
d

ν(ξ )√
ξ 2 + �2

d

.

(15)

That is to say that the exchange self-energy is contributed by
wave vectors that have different occupation numbers for the
two orthogonal quasiparticle layer spinors. In (14) N (ε) ≡
1/2

∫ ε

−ε
dξ ν(ξ ).

A transition between pure superconductivity and an an-
tiparallel phase would occur at zero temperature if the later
phase were lower in energy. We find that

Em − Esc = 2

|λs|
(
�d

2
m − �d

2
0

)

− 2
∫ 

−μ

ν(ξ )
(√

ξ 2 + �d
2
m −

√
ξ 2 + �d

2
0

)

+ 2
∫ √

x2−�d
2
m

−
√

x2−�d
2
m

ν(ξ )
√

ξ 2 + �d
2
m

− 2xN (
√

x2 − �d
2
m) � 0, (16)

where we distinguish the superconducting gap �d m in the
mixed phase from the superconducting gap �d 0 in the pure
superconducting phase and used a self-consistency equation to
reexpress the last term. Since the energy of the pure supercon-
ducting phase is minimized by �d 0, we can conclude that the
sum of the first two lines in (16) is nonnegative. Provided that
the density of states does not significantly vary on the scale of√

x2 − �d
2
m, the third line can be approximated by

2ν0�d
2
m sinh−1

⎛
⎝

√
x2 − �d

2
m

�d m

⎞
⎠, (17)

where ν0 is the constant density of states and the full energy
difference is positive. Hence, at least for a sufficiently smooth
density of states, the antiparallel phase will never be thermo-
dynamically stable. We now analyze the parallel phase.

B. Parallel phase

The parallel phase is defined by the conditions sin(ψ+) =
0, sin(ψ−) = 0, so that ψt and ψb are equal to within a multi-
ple of 2π . This condition, however, leaves an ambiguity since
the cos(ψ+) cos(ψ−) factor present in the dispersion relation
can be either +1 or −1. We distinguish these possibilities
by introducing f = 0, 1 such that cos(ψ+) cos(ψ−) = (−1) f .
The quasiparticle energies can be expressed as

ε± =
√

(ξ ± x)2 + [�d ± (−1) f �i]2. (18)

We can interpret this phase as two superconductors: one with
Cooper pairs formed out of symmetric combinations of lay-
ers, another from antisymmetric combinations. Indeed, the
mean-field Hamiltonian matrix (7) is block-diagonal in this

basis. Note here that even though the transformation to the
symmetric and antisymmetric states block-diagonalizes H(p),
energy density E (9) will still have terms that couple the
two unless |λs| = λx. Solutions with f = 0/1 then correspond
to phases within which either symmetric or antisymmetric
superconducting gaps are larger. Variation of the full energy
density (9) with respect to �i yields

δE

δ�i
= −4�i

λx
− �i

∫
ν(ξ )

(
1

ε−
+ 1

ε+

)

+ (−1) f �d

∫
ν(ξ )

(
1

ε−
− 1

ε+

)
. (19)

We see here that the �i = 0 point is not an energy extremum
whenever both exciton condensates and superconductivity are
present. Note that the superconducting gap of the symmetric
quasiparticles is �d + (−) f �i, while for the antisymmetric
quasiparticles is �d − (−) f �i. Because the exciton conden-
sate breaks the symmetry between quasiparticle bands, one
should expect that �d + �i 	= �d − �i. A complimentary
explanation is that, even though the interlayer interaction is
repulsive, the BCS instability present within each layer to-
gether with interlayer coherence induces a response in the
interlayer Cooper channel: �i is induced by the coexistence
of the exciton condensate and superconductivity. It would not
acquire nonzero value in the isolation.

If we write the self-consistency equations in terms of �− ≡
�d − (−1) f �i, �+ ≡ �d + (−1) f �i and x we obtain

1

λ2− − λ2+
(λ+�+ − λ−�−)=�+

2

∫
dξν(ξ )√

(ξ + x)2 + �2+
,

(20)
1

λ2− − λ2+
(λ+�− − λ−�+) = �−

2

∫
dξν(ξ )√

(ξ − x)2 + �2−
,

(21)
4

λ+ − λ−
x =

∫
dξν(ξ )(x − ξ )√
(ξ − x)2 + �2−

+
∫

dξν(ξ )(x + ξ )√
(ξ + x)2 + �2+

.

(22)

Here λ+ ≡ (λs + λx )/2 and λ− ≡ (λs − λx )/2. Note that,
even though the mean-field Hamiltonian matrix is block
diagonal in the basis of the symmetric and antisymmetric
combinations of two layers, the energy density has a term of
the form �+�− because λs 	= λx. The mixed-state solution
summarized in Fig. 2 exists for ν(0)λx � 1. In the numerical
calculation, to treat both f = 0 and f = 1 minima on equal
footing, we allowed the interlayer superconducting gap �i

to take negative values. This extension does not have any
physical significance, as the discreteness of f comes from
the energy minimization. Negative value of �i corresponds
to the f = 1 minimum while positive values will correspond
to the f = 0 minimum. Our calculation shows that the f = 1
minimum tend to be more energetically favorable for larger
values of intralayer attraction, which has a simple physical
meaning: for |λs| ≈ λx the symmetric and the antisymmetric
superconductors are effectively decoupled and thus the larger
gap corresponds to a larger effective Fermi energy μ ± x (see
Appendix B). Along the first-order phase boundary in gs/gx
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FIG. 2. Order-parameter dependence on dimensionless interaction constants gs = νλs and gx = νλx in the parallel phase, where ν is the
parabolic band density of states. The normalized exciton self-energy x/μ is plotted in (a), where μ is the Fermi energy. At small |gs| there
is a phase transition at gx = 1, which is first order in our model, to a large gx state with x 	= 0. The normalized intralayer superconducting
self-energy �d/�0, where �0 its maximal value in the pure superconducting phase, plotted in (b) is always nonzero. The normalized interlayer
superconducting self-energy �i/�0 is plotted in (c) and acquires a finite value only when x 	= 0. At the transition the purely intralayer
superconducting phase to the mixed phase, �d (b) decreases. For large values of |gs| the excitonic transition is pushed to larger values of gx .
The inset in (a) shows the three self-energies as a function of gx at a fixed gs = −0.4. These results were obtained for cutoff  = 10 meV,
εF = 3 meV, and a parabolic band model with a constant density of states. To treat both f = 0 and f = 1 minima on the equal footing, we
allow the interlayer superconducting gap �i to take negative values. Self-energies are in units of meV. We minimized energy as a function of
the Bogolyubov angles using the conjugate graduate method.

space separating mixed and pure superconducting phases, the
two states have identical energies. It follows that the differ-
ential energy changes dEsc in the superconducting phase and
dEmix in the mixed phase should be the same. It follows that
the slope of the phase boundary lines

dgx

dgs
=

∂Esc
∂gs

− ∂Emix
∂gs

∂Emix
∂gx

. (23)

Partial derivatives in the formula will be proportional to or-
der parameters in each phase: ∂Esc,mix/∂gs = −2�2

sc,mix/g2
s ,

∂Esc/∂gx = 2(x2 − �i
2)/g2

x ≈ 2μ2/g2
x. Formation of the

mixed state accompanied by the immediate decrease in the
superconducting gap at least for large enough |gs|. Therefore,
dgx/dgs < 0 — for larger attractive interaction the gs transi-
tion will happen at a larger critical gx in agreement with Fig. 2.
Physically, it corresponds to the fact that the mixed parallel
and purely superconducting phases are competing. Because
with larger attraction within the layer it is more energetically
beneficial to have larger superconducting gaps, the purely
superconducting phase could be more energetically favorable
and thus the boundary between the phases goes up. Further
increase in the interlayer repulsion leads to the enhancement
of the superconductivity. It is easier to see, however, that in
the limit of infinite repulsion λx � |λs| between layers the
gap equations (20) and (21) are again governed by the the
intralayer attraction λs.

IV. NONLOCAL ANDREEV REFLECTION

Having established that an exotic mixed state with both
excitonic and Cooper pair order can exist, we now discuss
Andreev reflection experiments in separately contacted bilay-
ers that can be used to detect their presence. Consider metallic

leads separately connected to the top and the bottom layers of
our system. An electron incident on the interface between the
top lead and the top layer has equal weight in symmetric and
antisymmetric quasiparticle channels |t〉 = (|+〉 + |−〉)2−1/2.
Since the parallel state does not couple |+〉 with |−〉, we can
consider their transmission contributions separately, at least
if disorder is neglected. Incoming from the top quasiparticles
are reflected with probabilities Att (tt stands for top → top)
and Atb (tb stands for top → bottom) as holes, and with prob-
abilities Btt and Btb as electrons, to the top and bottom layers,
respectively. The respective amplitudes are denoted with small
letters (att , atb, btt , btb). The calculation of these reflection
amplitudes is discussed below.

If we apply V for voltage across the top part of the inter-
face, the top and bottom layer differential conductances will
be connected to reflection coefficients in a normal fashion.
The total currents in the top and bottom layers are

It/b = eν0

∫ eV

0
dω σt/b(V ), (24)

where

σt (V ) ≡ d jt/dV = e2v f ν0[1 − Btt (V ) + Att (V )],

σb(V ) ≡ d jb/dV = e2v f ν0[Atb(V ) − Bbt (V )], (25)

e is an electron charge, and v f ν0 is the product of the Fermi
velocity and the density of states. Note that the combination
Atb − Btb (Atb is a probability to reflect an incoming from the
top electron as hole to the bottom layer, Btb is a probability
to reflect it as an electron) of cross-layer reflection probabili-
ties can be measured experimentally. We derive expressions
for the scatterring amplitudes in the Appendix using the
Bogoliubov–de Gennes equations. The amplitude to reflect
an electron as a hole in either symmetric or antisymmetric
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states, at least in the limit x � μ, around 1 at ω = 0 similarly
to a single N-S junction. However, the amplitude to reflect
an incoming electron as an electron is no longer negligible
even in the �d � μ case. The electron reflection amplitude
at ω = 0 is given by b± ≈ ∓x/(2 μ ± x). Because b+ and b−
have opposite signs, the probability to reflect an electron to the
bottom layer Btb = |b+ − b−|2/4 is substantially higher than
the probability of the corresponding Andreev process, which
is almost zero. For the the same reason electron reflection
in the top layer is unimportant for small ω and instead the
Andreev process dominates (Fig. 3). When energy is equal to
the + or − gap and the gap �±/μ � 1, the corresponding
momenta in the leads and device match, giving rise to peaks
in Andreev reflection and minima in electron reflection. As
a result the Andreev process is stronger than the electron
reflection in the bottom layer. Altogether, we expect Atb − Btb

to have a μ-like shape, with negative values around ω = 0 and
positive peaks at the superconducting gaps (Fig. 3).

If we follow the standard practice [57] of modeling in-
terface disorder by a delta-function potentials vlδ(z), 〈v〉 =
(vt + vb)/2 will play a role identical to that of the disorder
in a regular superconductor by damping Andreev reflection
at subgap energies and increasing electron-electron reflection
in both symmetric and antisymetric channels. The dimen-
sionless quantity controlling its importance is 〈v〉/vF , where
vF is the Fermi velocity. Any difference �v = (vt − vb)/2
between layers in the disorder parameter values will couple
the symmetric and antisymmetric quasiparticle channels. The
importance of these corrections is, however, also controlled by
�dv/vF , and for values �dv/vF < 0.5 there is no qualitative
change in the μ-like shape of the differential conductance
(Fig. 4). Sufficiently large values of �dv/vF raise the low-
energy part of the differential conductance to positive values.

V. DISCUSSION

In recent years experimenters established moiré hetero-
junctions as attractive platforms [58] for new types of
two-dimensional electron ground states. In this article, we ex-
plored the phase diagram of bilayers with attractive effective
interactions (λs) within each layer and repulsive interactions
(λx) between layers. Two-dimensional bilayers with repul-
sive interlayer interactions can [21] have excitonic insulator
ground states that are counterflow superfluids and have spon-
taneous interlayer phase coherence. Our work is motivated by
the discovery of superconductivity, and hence attractive ef-
fective interactions, in graphene bilayers [35,43] and trilayers
[44]. We therefore address the possibility of states that have
both superconductivity and interlayer coherence, and study
how the occurrence of such exotic states would be mani-
fested by generalized Andreev effects in separately contacted
bilayers.

With this goal we performed mean-field calculations for
a model bilayer Hamiltonian with two identical layers and
attractive intralayer and repulsive interlayer interactions. We
neglected tunneling τ between the layers, assuming that the
bilayers are separated by dielectric layers. We stress here that
unlike in [46], we study a system with the ordering between
layers alike the magnetism. The difference is that, unlike

FIG. 3. Probabilities for an electron coming from the top lead
at energy ω to be reflected as a hole/electron in the same layer
(Att/Btt ), and as a hole/electron in the opposite layer (Atb/Btb). The
quantity Atb − Btb, proportional to the differential conductance in the
bottom layer, changes sign as function of ω. At low energies, the con-
ductance is dominated by electron-electron reflection. At energies
around superconducting gaps, the conductance is dominated by An-
dreev reflection processes. The inset shows a schematic experimental
device with voltage bias V across the top layer. When mesoscopic
effects are neglected, the top layer conductance of the device is
σt (V/2)/2, where σt (V ) is the differential conductance between the
top left lead and the top layer, and the transconductance driven
by excitonic order is σb(V/2)/2, where σb(V ) is the conductance
between the top left lead and the bottom layer.

in the scenario with excitonic condensation, there is no gap
established directly through the interlayer coherence.

Our calculations show that a mixed phase with both an
interlayer exciton coherence and superconductivity appears
over a wide range of model parameters. Interlayer coherence
couples the two superconducting order parameters with en-
ergy extrema occurring when the pair amplitudes are in phase
(parallel) and out of phase (antiparallel). We find that the
energy of the antiparallel phase is higher than that of the pure
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FIG. 4. Influence of interface disorder on the difference between
hole (Andreev process) and electron interlayer reflection coefficients
Atb − Btb. Disorder is modeled by a delta-function potential at the
interface vlδ(z). On each subplot, the ratio of 〈v〉 = (vt + vb)/2 to
the Fermi momentum is kept fixed. �v/pF = (vt − vb)/(2pF ) is
swept from −1.0 (red) to +0.8 (black) with step 0.1.

superconducting phase for any sufficiently smooth density of
states. In the parallel phase superconducting state, interlayer
coherence appears as a strong-coupling instability of states
with superconductivity in each layer, and is established when
gx ≡ ν(εF )λx > 1. In twisted bilayer graphene we estimate
that λx ≈ e2/(4πkF ) ≈ 100 meVnm2, and that the density of
states is around ν(ξs) ≈ 10−2 nm−2 meV−1 [59], implying
that gx = 1 is within reach. Since the superconducting tran-
sition temperature in tBG is ∼1 K, the value we chose for
|gs| � 1 is not unrealistic. After interlayer coherence is estab-
lished, further λx increases cause the superconducting order
parameters to decay. Note that self-consistent solution with
both exciton order parameter x and direct intralayer pairing
�d nonzero also have nonzero interlayer pairing �i.

As a convenience, we limited our considerations to the case
of two completely identical layers. This condition is, however,
not important for the stability of the phase. Consider, for ex-
ample, the case in which the Fermi energies in the two layers
are slightly different: μt,b = μ ± �μ. This change induces a
perturbation to the mean-field Hamiltonian matrix of the form
−τzσ

z�μ, where τ z and σz are the z-Pauli matrices acting
on layer and Nambu indices correspondingly. After transfor-
mation to +/− basis the perturbation acquire form iτ yσzμ.
As a result, there will be no first-order contribution to the
quasiparticle energies. At second order, only matrix elements
between positive and negative energy states will contribute.
The leading-order correction to the quasiparticle energies will
be small, ∼(�μ2/

√
�2 + x2). We conclude that small devi-

ations from the perfect layer-symmetric case do not destroy

the state, although they will change the mean-field-equation
solutions quantitatively.
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APPENDIX A: BOGOLOYUBOV–DE GENNES EQUATION
FOR THE PARALLEL STATE

Because Andreev reflection in symmetric and antisym-
metric states cancel each other at zero voltage bias, it is
instrumental to consider also electron-electron reflection. It
is still true, however, that the Bogoliubov–de Gennes equa-
tion consists of two uncoupled systems of equations for a fully
symmetric case. It is then sufficient to solve only one of them:

i∂t f = −
(

1

2m

∂2

∂z2
+ μ(z)

)
f + �(z)φ, (A1)

i∂tφ =
(

1

2m

∂2

∂z2
+ μ(z)

)
φ + �(z) f . (A2)

The only difference from the classical [3,57] setup is that
μ(z) is a function of a coordinate to take into account the
presence of the interlayer coherence inside the system. Fourier
transform with respect to the time f (t ) = ∫

e−iωt fω will give

1

2m

∂2

∂z2
f = −[ω + μ(z)] f + �(z)φ, (A3)

1

2m

∂2

∂z2
φ = [ω − μ(z)]φ − �(z) f , (A4)

or, alternatively,

1

2m

∂2

∂z2

(
f
φ

)
=

(−[ω + μ(z)] �(z)
−�(z) [ω − μ(z)]

)(
f
φ

)
.

(A5)
Let’s assume that � changes abruptly from 0 to �0 and
similarly μ changes from μ to μ + x:

μ(z) = μ + θ (z)x, (A6)

�(z) = θ (z)�, (A7)

where x can be both positive and negative. We solve it by
writing it as a system of the first-order equations

1

2m

∂

∂z

⎛
⎜⎝

f ′
φ′
f
φ

⎞
⎟⎠

=

⎛
⎜⎝

0 0 −(ω + μ) �

0 0 −� (ω − μ)
1/2m 0 0 0

0 1/2m 0 0

⎞
⎟⎠

⎛
⎜⎝

f ′
φ′
f
φ

⎞
⎟⎠.

(A8)

Eigenvalues of this matrix are ± i√
2m

(μ + √
ω2 − �2)1/2,

± i√
2m

(μ − √
ω2 − �2)1/2. A general solution for ω < � will
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be

(
f
φ

)
= C√

2
eiz

√
2m(μ+i

√
�2−ω2 )1/2

⎛
⎝

√
ω+i

√
�2−ω2

�√
ω−i

√
�2−ω2

�

⎞
⎠

+ D√
2

e−iz
√

2m(μ−i
√

�2−ω2 )1/2

⎛
⎝

√
ω−i

√
�2−ω2

�√
ω+i

√
�2−ω2

�

⎞
⎠. (A9)

We will denote in what follows
√

ω+i
√

�2−ω2

�
= u and√

ω−i
√

�2−ω2

�
= v and ksC = √

2m(μ + i
√

�2 − ω2)1/2, ksD =√
2m(μ − i

√
�2 − ω2)1/2. On the left-hand side equations for

a hole and an electron decouple and as a solution we get
instead(

f
φ

)
= ei

√
2mz

√
ω+μN

(
1
0

)
+ be−i

√
2mz

√
ω+μN

(
1
0

)

+ a

(
0
1

)
ei

√
2mz

√
μN −ω. (A10)

The last piece is the reflected hole. Now boundary conditions
read

1 + b = C√
2

u + D√
2
v, (A11)

a = C√
2
v + D√

2
u, (A12)

ke(1 − b) = C√
2

uksC − DksD√
2

v, (A13)

kha = C√
2
vksC − DksD√

2
u, (A14)

from which we conclude that

2 = Cu√
2

(
1 + ksC

ke

)
+ Dv√

2

(
1 − ksD

ke

)
, (A15)

0 = Cv√
2

(
1 − ksC

kh

)
+ Du√

2

(
1 + ksD

kh

)
, (A16)

hence

D

C
= −v

u

1 − ksC
kh

1 + ksD
kh

, (A17)

and so

2 = Cu√
2

(
1 + ksC

ke

)
− Cv2

u
√

2

(
1 − ksD

ke

)1 − ksC
kh

1 + ksD
kh

, (A18)

consequently,

C = 23/2u
(
1 + ksD

kh

)
u2

(
1 + ksC

ke

)(
1 + ksD

kh

) − v2
(
1 − ksD

ke

)(
1 − ksC

kh

) , (A19)

D = − 23/2v
(
1 − ksC

kh

)
u2

(
1 + ksC

ke

)(
1 + ksD

kh

) − v2
(
1 − ksD

kh

)(
1 − ksC

kh

) . (A20)

Expressions for amplitudes a and b are as follows:

a = 2uv
( ksD

kh
+ ksC

kh

)
u2

(
1 + ksC

ke

)(
1 + ksD

kh

) − v2
(
1 − ksD

ke

)(
1 − ksC

kh

) , (A21)

b = u2
(
1 + ksD

kh

)(
1 − ksC

ke

) − v2
(
1 − ksC

kh

)(
1 + ksD

ke

)
u2

(
1 + ksC

ke

)(
1 + ksC

kh

) − v2
(
1 − ksD

ke

)(
1 − ksC

kh

) . (A22)

It is clear that a drastic change of the potential on the
interface will lead to an increase in electron-electron scat-
tering. Let us explore the low-energy properties of both a
and b. Because at ω = 0: ke = kh = pF , where pF is a Fermi
momentum inside the metallic lead, u = eiπ/4, v = ei3π/4. As
a result, at ω = 0,

a = − i
√

μN (
√

μ − i� + √
μ − i�)

μN + √
μ + i�

√
μ − i�

, (A23)

b = (
√

μN − √
i� + μ)(

√
μN + √

μ − i�)

μN + √
μ + i�

√
μ − i�

. (A24)

Corresponding probabilities Att = |a+ + a−|2, Atb = |a+ −
a−|2, Btt = |b+ + b − |2, Btb = |b+ − b − |2. Because a for
the symmetric and antisymmetric states are approximately
equal to each other whenever μ � �, their difference is
typically small if this condition is satisfied. Surprisingly, the
electron-electron scattering amplitude does not vanish in the
�
μN

→ 0 limit because the effective Fermi energies inside and
outside the system are different. When the ω is close to the
gap, u ≈ v, kC ≈ kD, and if the gap is much smaller than
μN , ke ≈ kh, therefore, b ≈ 0, a ≈ 1. Thus, we expect the
Andreev process to be dominant at frequencies corresponding
to one of the gaps. If the disorder is present on the interface in
the form Vl (z) = vlδ(z), Bogoliubov–de Gennes equations are
still decoupled in the bulk, but amplitudes are now coupled
through the boundary conditions

1 + b± = C±√
2

u± + D±√
2
v±, (A25)

a± = C±√
2
v± + D±√

2
u±, (A26)

i

2m
(u±2−1/2C±k±sC − v±2−1/2D±k±sD − ke + keb+/−)

= 〈v〉(C±u±2−1/2 + D±v±2−1/2)

− �v(C∓u∓2−1/2 + D∓v∓2−1/2)

i

2m
(v±C±2−1/2k±sC − u±D±2−1/2k±sD − kha+/−)

= 〈v〉(C±v±2−1/2 + D±u±2−1/2)

− �v(C∓v∓2−1/2 + D∓u∓2−1/2),

where �v = (vt − vb)/2, 〈v〉 = (vt + vb)/2.

APPENDIX B: GREEN’S FUNCTION FORMALISM

In this Appendix we present equations of motion for
zero-temperature Green’s function and derive an important
symmetry of self-energy in a way different from the one we
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took in the main text. In addition to a normal Green’s function,
we introduce a set of additional functions

iF l †
σσ ′ (p, t1 − t2) = 〈T (c†

plσ (t1)c†
−plσ ′ (t2))〉e−i2μl t1 , (B1)

iF l
σσ ′ (p, t1 − t2) = 〈T [cplσ (t1)c−plσ ′ (t2)]〉ei2μl t1 , (B2)

iHtb
σ (p, t1 − t2) = 〈T (cptσ (t1)c†

pbσ (t2))〉ei(μt −μb)t1 , (B3)

iDtb†
σσ ′ (p, t1 − t2) = 〈T (c†

ptσ (t1)c†
−pbσ ′ (t2))〉e−i(μt +μb)t1 ,

(B4)

iDtb
σσ ′ (p, t1 − t2) = 〈T [cptσ (t1)c−pbσ ′ (t2)]〉ei(μt +μb)t1 . (B5)

Averages are taken over ground states with fixed and, in gen-
eral, different number of particles of each kind. Because of
this, averages are no longer dependent on the time difference.
To mitigate this problem, averages are multiplied by an expo-
nential with the difference between energies on the left and
the right. I will only consider spatially uniform solutions and
without spontaneous magnetization.

First, look at the equation of motion for the normal and the
anomalous Green’s functions(

i
∂

∂t
− εpt

)
Gt↑(p, t ) = Ft †

↓↑(p, t )�tt
↑↓ + Dbt †

↓↑(p, t )�tb
↑↓

+ Hbt
↑ (p, t )X tb

↑ + δ(t ), (B6)
(

i
∂

∂t
+ εpt − 2μt

)
Ft †

↓↑(p, t )

= �̄tt
↑↓Gt↑(−p, t ) + Hbt

↑ (−p, t )�̄bt
↑↓ − Dbt †

↓↑(p, t )X bt
↓ ,

(B7)

where we defined the self-energies

�ll
σσ ′ = − i

S

∑
Vll (q)F l

σσ ′ (−p − q, 0+), (B8)

X ll ′
σ = i

S

∑
Vll ′ (q)Hll ′

σσ ′ (p − q, 0+), (B9)

�ll ′
σσ ′ = − i

S

∑
Vll ′ (q)Dll ′

σσ ′ (−p + q, 0+), (B10)

where l 	= l ′, S is the area, and Vll (Vll ′ ) is the intralayer (inter-
layer) interaction. Note here that positive Vll means repulsion
within the layer and similarly for Vll ′ . The other two equa-
tions are(

i
∂

∂t
− εpb − (μt − μb)

)
Hbt

↑ (p, t )

= �bb
↑↓D†bt

↓↑(−p, t ) + X bt
↑ Gt

↑(p, t ) + �bt
↑↓F †t

↓↑(−p, t ),
(B11)(

i
∂

∂t
+ εpb − (μt + μb)

)
D†bt

↓↑(p, t )

= Hbt
↑ (p, t )�̄bb

↑↓ + Gt
↓(−p, t )�̄tb

↑↓ − F †t
↓↑(p, t )X tb

↓ .

(B12)

These equations can be either derived through equations of
motion for operators or diagrammatically. Equations (B7)
to (B12) constrain the form of the mean-field Hamiltonian.
Indeed, consider a case without spin symmetry breaking

X tb
↑ e−iψ↑ = X tb

↓ e−iψ↓ , �tt
↑↓ = −�tt

↓↑, G↑ = G↓. The last term
means that each term in (B6) must be invariant under spin flip

Hbt
↑ eiψ↑ = Hbt

↓ eiψ↓ , (B13)

Dbt †
↓↑(p, t )�tb

↑↓ = Dbt †
↑↓(p, t )�tb

↓↑, (B14)

Ft †
↓↑(p, t ) = −Ft †

↑↓(p, t ). (B15)

From (B7) it follows then that

�̄bt
↑↓

�̄bt
↓↑

= −Hbt
↓ (−p, t )

Hbt
↑ (−p, t )

= ei(ψ↑−ψ↓+π ). (B16)

Finally, since �tb
↑↓ ∝ 〈ct↑cb↓〉, �tb

↑↓ = −�bt
↓↑:

�̄bt
↑↓

�̄tb
↑↓

= ei(ψ↑−ψ↓ ). (B17)

Note that we did not imply anything about layer symmetry.

APPENDIX C: STABILITY OF THE PARALLEL PHASE

To explore the stability of the parallel state we first
represent the original Hamiltonian in the basis of the
symmetric/antisymmetric states

c+,σ = 1√
2

(ct,σ + cb,σ ), (C1)

c−,σ = 1√
2

(ct,σ − cb,σ ), (C2)

and perform the Bogolyubov transformation

cpα↓ = u∗
αpγα−(p) − vαpγ

†
α+(−p), (C3)

cpα↑ = vαpγ
†
α−(−p) + u∗

αpγα+(p). (C4)

Since we perform Bogolyubov rotation within symmetric and
antisymmetric subspaces separately, there are only two pa-
rameters at each k-point. Condition for bogolyubons to be
fermions is |uαk|2 + |vαk|2 = 1. Rewriting energy in terms of
angles uαk = cos(θαk ) and vαk = sin(θαk ) we obtain:

E = 2
∑

ξk sin(θαk )2 − λx

23S

( ∑
[cos(2θ+k ) − cos(2θ−k )]

)2

+ λ+
22S

∑
sin(2θαk ) sin(2θαk′ )

+ λ−
2S

∑
sin(2θ+k ) sin(2θ−k′ ), (C5)

where λ+ = (λx + λs)/2, λ− = (λs − λx )/2. The self-
energies become

�d = −λs

S

∑
k′

〈ct↑(k′)ct↓(−k′)〉

= − λs

2S

∑
k′α

u∗
αk′vαk′ = − λs

4S

∑
k′α

sin(2θαk′ ), (C6)

�i = −λx

S

∑
k′

〈ct↑(k′)cb↓(−k′)〉 = − 1

2S

∑
k′

λxu∗
αk′vβk′τ z

αβ

= − λx

4S

∑
k′

[sin(2θ+k ) − sin(2θ−k )], (C7)
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x = λx

S

∑
k′

〈c†
b↑(k′)ct↑(k′)〉

= − λx

4S

∑
k

[cos(2θ+k ) − cos(2θ−k )]. (C8)

Minimization of energy with respect to the Bogolyubov angles
gives

tan(2θk±) = λ+S± + λ−S∓
−ξk ± x

, (C9)

where d± = 1
2S

∑
k sin(2θ±k ) is the superconducting ampli-

tude. Nondiagonal entries of the matrix of second-order
derivatives vanish in the thermodynamic limit. Diagonal en-
tries are

1

2

∂2E

∂θ2
±k

= cos(2θ±)[(−ξk ± x) + tan(2θ±)(d±λ+ + λ−d∓)].

(C10)

At the energy extrema from (C9)

1

2

∂2E

∂θ2
±k

= cos(2θ±k )

−ξk ± x
[(ξk ± x)2 + (d±λ+ + λ−d∓)2]. (C11)

The stability requires that ∂2E
∂θ2

±k
� 0 at any k-point. Using (C9)

to express the cos(2θ ), we get

1

2

∂2E

∂θ2
±k

= 1√
(λ+d± + λ+d∓)2 + (ξk ∓ x)2

× [(ξk ∓ x)2 + (d±λ+ + λ−d∓)2] > 0, (C12)

we then conclude that both solutions ( f = 1, f = 0) will be
stable in the thermodynamic limit. Now we use the expression
for energy to see if one of the solutions has lower energy than
the other

E = const. −
∑

k

(ξk − x)ξk√
(d+λ+ + λ−d−)2 + (ξk − x)2

−
∑

k

(ξk + x)ξk√
(d−λ+ + λ−d+)2 + (ξk + x)2

− 2x2

λx
+ 2�2

d

λs
+ 2�2

i

λx
. (C13)

Let us isolate a part sensitive to a permutation of �+ ≡ �d +
�i and �− ≡ �d − �i. It reads

Easym = xν

⎛
⎝∫

dξ
ξ − x√

�2− + (ξ − x)2
− ξ + x√

�2+ + (ξ + x)2

⎞
⎠.

(C14)
Most of the time we have a fully polarized solution x = μ and
thus the contribution from the second term is always negative.
The contribution from the first term is only negative for the
range of energies between −μ and μ. If the high-energy
energy cutoff  > 2μ we better have �+ < �− to mini-
mize the energy. We then conclude that �i < 0 or, in other
words, the f = 1 solution has lower energy in accordance
to our numerical calculations. We also see that, because the
negative contribution from the first term is proportional to

the −μν

√
�2− + (2μ)2, there could be be an energy benefit

from having superconducting gaps larger than the one pre-
dicted through the Macmillan in the absence of the interlayer
coherence. Additionally, let us clarify here the dependence
of gaps on interaction parameters that follow from the gap
equations (20) and (21). First, the exciton order parameter x
acquires constant value μ almost immediately after the phase
transition and that is why we will it ignore it with the func-
tional dependence deep into the mixed phase. If λx � |λs|,

− 1

λs
(�+ + �−) ≈ �+

2

∫
dξν(ξ )√

(ξ + x)2 + �2+
, (C15)

− 1

λs
(�− + �+) ≈ �−

2

∫
dξν(ξ )√

(ξ − x)2 + �2−
. (C16)

Then for small �−, �+ it follows that �+ ≈ �− and thus
�i ≈ 0. Then it immediately follows that �d does not depend
on interaction between layers λx. Look now at the opposite
limit |λs| � λx. In this case,

− 1

λx
(�+ − �−) ≈ �+

2

∫
dξν(ξ )√

(ξ + x)2 + �2+
, (C17)

− 1

λx
(�− − �+) ≈ �−

2

∫
dξν(ξ )√

(ξ − x)2 + �2−
, (C18)

from which we conclude that gaps depend only on gx in this
limit. Interestingly, such a solution would require �d < �i,
which is nonphysical. In the intermediate regime λx ≈ |λs| we
expect the gaps depend on the combination λx − λs, so that the
gaps should be constant along the lines gs = gx + C.
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