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Quantum extraordinary-log universality of boundary critical behavior
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The recent discovery of extraordinary-log universality has generated intense interest in classical and quantum
boundary critical phenomena. Despite tremendous efforts, the existence of quantum extraordinary-log univer-
sality remains extremely controversial. Here, by utilizing quantum Monte Carlo simulations, we study the
quantum edge criticality of a two-dimensional Bose-Hubbard model featuring emergent bulk criticality. On top
of an insulating bulk, the open edges experience a Kosterlitz-Thouless-like transition into the superfluid phase
when the hopping strength is sufficiently enhanced on edges. At the bulk critical point, the open edges exhibit
the special, ordinary, and extraordinary critical phases. In the extraordinary phase, logarithms are involved
in the finite-size scaling of two-point correlation and superfluid stiffness, which admit a classical-quantum
correspondence for the extraordinary-log universality. Thanks to modern quantum emulators for interacting
bosons in lattices, the edge critical phases might be realized in experiments.
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I. INTRODUCTION

Scaling and universality are pillars of modern critical phe-
nomena [1]. In the paradigm of criticality, the two-point
correlation g(r) decays as the power law [1–4]

g(r) ∼ r2−(d+z)−η, (1)

with the spatial distance r, where d , z, and η are, respectively,
the spatial dimension, dynamic critical exponent, and anoma-
lous dimension.

Boundary critical behavior (BCB) refers to the critical phe-
nomena occurring on boundaries of a critical bulk [5–16] and
relates to a rich variety of state-of-the-art concepts [17–23].
Recently, in the context of BCB, extraordinary-log univer-
sality (ELU) was predicted by Metlitski for the classical
three-dimensional (3D) O(N) model with 2 � N < Nc, where
Nc is an upper bound [24]. For ELU the boundary two-point
correlation g(r) decays logarithmically with r as [24]

g(r) ∼ [ln(r)]−η̂, (2)

where η̂ is dependent on only N . Shortly afterwards, much
attention was devoted to the BCB in classical [25–31] and
quantum [32–36] systems.

Evidence for classical ELU was obtained from the
Monte Carlo simulations of the Heisenberg and XY models
[25,26,28]. Inspired by the studies using magnetic fluctuations
at different Fourier modes to explore precise finite-size scaling
(FSS) [37,38] as well as the two-length scenarios for high-
dimensional Ising models [39–44] and deconfined criticality
[45], an alternative scaling formula of g(r) was conjectured
for ELU [26]. This conjecture was based on the fact that the
critical magnetic fluctuations at zero and the smallest nonzero
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modes scale as L2[ln(L)]−q̂ and L2[ln(L)]−η̂, with the critical
exponents q̂ and η̂ = q̂ + 1, respectively. This observation can
be related to the FSS of g(r) as [26]

g(r) ∼
{

[ln(r)]−η̂, ln(r) � O{[ln(L)]q̂/η̂},
[ln(L)]−q̂, ln(r) � O{[ln(L)]q̂/η̂}. (3)

With the concept of “unwrapping” [40,46,47], a geometric
explanation of the two-length scenario was introduced based
on the unwrapped correlation length [40,44,48]. The two ex-
ponents q̂ and η̂ were also observed in the classical ELU at an
emergent O(2) critical point [30]. Equation (3) formally agrees
with (2) on the FSS of g(r) in the r → ∞ limit.

Quantum edge criticality has been extensively studied in
the two-dimensional dimerized antiferromagnetic quantum
(2D-DAQ) Heisenberg and XXZ models, which are prototype
models for O(3) and O(2) criticality [13,14,14–16,32–34],
respectively. On the one hand, the dangling edges of 2D-DAQ
spin-1/2 and spin-1 Heisenberg models harbor the nonordi-
nary criticality [14–16,32], where the critical exponents in the
magnetic sector are almost compatible with the O(3) special
transition [14,15]. The numerical results for the scaling di-
mension �n (�v) of the Néel (valence bond solid) order were
compared [32] to the field-theoretic prediction [49],

�n − 1/2 = εn, �v − 1/2 = −3εn, (4)

with �φ − 3/2 = −εn, where �φ ≈ 1.187 [10] is the scal-
ing dimension of spin order in O(3) ordinary universality.
For the spin-1/2 case, the results do not agree with Eq. (4)
but conform with the scaling relation 3�n + �v = 2. For
the spin-1 case, the estimate �v ≈ −2 is roughly compatible
with the theory of extraordinary-power phase [24], hence in
sharp contrast to Eq. (4) and the theory of ELU. On the
other hand, the nondangling edges of the 2D-DAQ spin-1/2
Heisenberg model host the ordinary phase, special transition,
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and long-range-ordered extraordinary phase [14,15,33].
Moreover, the 2D-DAQ spin-1 XXZ model may exhibit
extraordinary-log criticality, but this observation does not hold
for the spin-1/2 case [34].

Hence, despite the tremendous efforts devoted to the BCB
of quantum antiferromagnets, the existence of quantum ELU
remains extremely controversial. Moreover, as indicated in
Ref. [24], the existing results cannot form a self-contained
picture for the classical-quantum correspondence of BCB and
failed to realize quantum ELU. Here, we switch to interacting
bosons and show that the open-edge Bose-Hubbard model
hosts quantum ELU. This conclusion is based on the logarith-
mic FSS of two-point correlation and superfluid stiffness for
extraordinary phase as well as an overall classical-quantum
correspondence for various critical phases. The sharp dif-
ference from the BCB of the XXZ antiferromagnet [34]
reflects the sensitivity of BCB to geometric settings and local
operators.

In the following, we focus on the open-edge Bose-Hubbard
model and explore the quantum O(2) BCB of the model.
Section II defines the open-edge Bose-Hubbard model and
presents its ground-state phase diagram. Section III intro-
duces the methodology adopted throughout the present study.
Section IV presents Monte Carlo data and scaling analyses. A
summary is finally given in Sec. V.

II. MODEL AND GROUND-STATE PHASE DIAGRAM

We consider the square-lattice Bose-Hubbard model at unit
boson filling with the Hamiltonian

Ĥ = −
∑
〈i j〉

ti j (b̂
†
i b̂ j + b̂†

j b̂i ) + U

2

∑
i

n̂i(n̂i − 1), (5)

where b̂†
i and b̂i are, respectively, bosonic creation and an-

nihilation operators at site i and n̂i = b̂†
i b̂i. ti j denotes the

amplitude of the nearest-neighbor hopping between i and j,
and U > 0 represents on-site repulsion. The first summation
runs over pairs of nearest-neighboring sites, while the second
summation is over sites. We set U = 1 as the energy unit.

As illustrated in Fig. 1(a), we define our model for BCB by
setting open and periodic boundary conditions along the [01]
and [10] directions, respectively. Hence, a pair of open edges
is specified. The hopping amplitude ti j = t ′ on open edges
is distinguished from ti j = t in the bulk. The edge hopping
enhancement is parameterized by κ = (t ′ − t )/t .

At κ = 0, model (5) reduces to the standard Bose-Hubbard
model at unit boson filling [50], which has an emergent O(2)
quantum critical point separating the Mott insulating and su-
perfluid phases. This critical point features Lorentz invariance
with z = 1. The present authors and coworkers have given an
estimate for the quantum critical point as tc = 0.059 729 1(8)
[51], which agrees with the literature result tc =
0.059 74(3) [52].

We explore quantum phases of model (5) by FSS, and the
results are summarized as a ground-state phase diagram in
Fig. 1(b). There is a phase, dubbed SE-MIB, that features su-
perfluid edges on top of Mott insulating bulk. Moreover, there
are three critical edge phases at tc: the ordinary, special, and

FIG. 1. Model and ground-state phase diagram. (a) Definition
of the open-edge Bose-Hubbard model, where t and t ′ are hopping
amplitudes and U denotes on-site repulsion. (b) The phase diagram
in terms of t and the edge hopping enhancement κ , including a phase
with superfluid edges and Mott insulating bulk (SE-MIB) as well as
the phases of the bulk-edge superfluid (SF) and Mott insulator (MI).
These phases are separated by the Kosterlitz-Thouless-like (KT-like),
extraordinary-log, and ordinary critical lines that are terminated at
the multicritical special transition point.

extraordinary-log phases. Scaling behaviors of edge critical
phases are described in Table I [53].

III. METHODOLOGY

We apply the Prokof’ev-Svistunov-Tupitsyn worm quan-
tum Monte Carlo algorithm [54,55] to simulate model (5) in
the imaginary-time path integral representation. The maxi-
mum side length of the square lattice is up to L = 192. The
inverse temperature is set as β = L, which is in line with z =
1. We study the special, ordinary, and extraordinary phases
at tc = 0.059 729 1 by varying κ and explore the Kosterlitz-
Thouless-like (KT-like) transition for t < tc. In particular, we
analyze the extraordinary phase in a broad parameter regime.

Analyses of the FSS involving ln(L) may be “notoriously
difficult” [56]. We perform the analyses using least-squares
fits. Following the standard criterion, we prefer fits with
χ2/DOF ∼ 1, where DOF denotes the degree of freedom.
We also examine the stability against varying Lmin, which
represents the minimum side length involved in fitting.

IV. RESULTS

A. Special transition

We detect the special transition by tuning κ at t = tc.
We sample the winding probability R[10] = 〈R[10]〉, where

TABLE I. Leading scaling behaviors of the edge two-point cor-
relation g(L/2) and the superfluid stiffness ρs in critical phases.

Critical phase g(L/2) ρs

Special L−η, η ≈ 0.65 L−1

KT-like L−η, η = 1/4 L−1

SE-MIB L−η, η ∈ (0, 1/4) L−1

Ordinary L−η, η ≈ 2.438 L−1

Extraordinary [ln(L)]−q̂, q̂ ≈ 0.59 L−1ln(L)
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FIG. 2. Special transition. (a) Winding probability R[10] versus κ .
The inset displays R[10] versus (κ − κc )Lyt with κc = 1.18 and yt =
0.608. (b) Scaled superfluid stiffness ρsL versus L. (c) Scaled two-
point correlation g(L/2)L4−2yh with yh = 1.675.

R[10] = 1 if there exists at least a particle line winding around
the periodic [10] direction of the square lattice. The wind-
ing probability is dimensionless and obeys the FSS R[10] =
R̃[10](εLyt ), where ε = κ − κc represents the deviation from
the critical point κc, and yt is related to the correlation length
exponent ν by yt = 1/ν. R[10] is useful for locating critical
points [51]. Expanding R̃[10] and incorporating corrections to
scaling, we obtain

R[10] = Rc
[10] +

∑
j

a jε
jL jyt +

∑
m

bmL−ωm , (6)

where Rc
[10] is somewhat universal, a j ( j = 1, 2, . . . ) and

bm (m = 1, 2, . . . ) are nonuniversal, and ωm represents ex-
ponents for corrections. We show R[10] versus κ in Fig. 2(a),
where a scaling invariance point is nearly at κ ≈ 1.2. We fit
R[10] data with L = 48, 64, 96, 128, and 192 to Eq. (6). We ob-
serve ω1 ≈ 1.4, which is larger than ω1 ≈ 0.789 from the 3D
O(2) value [57] and ω1 = 1 from boundary irrelevant fields
[25]. The correction with ω1 � 1 is either absent or weak.
Hence, we also perform fits without the correction term and
monitor the effects of corrections by examining the stability of
fits upon gradually increasing Lmin. We obtain κc = 1.206(7)
and yt = 0.44(8) with χ2/DOF ≈ 4.6 for Lmin = 64, κc =
1.184(6) and yt = 0.4(1) with χ2/DOF ≈ 0.9 for Lmin = 96,
and κc = 1.175(5) and yt = 0.8(3) with χ2/DOF ≈ 0.2 for
Lmin = 128. Next, by fixing yt at the estimate yt = 0.608 for
the special transition of the classical O(2) model [10], we
obtain κc = 1.197(2), 1.180(3), and 1.175(7) with χ2/DOF ≈
4.6, 1.1, and 0.3, for Lmin = 64, 96, and 128, respectively.
When yt = 0.58 is fixed, we obtain close estimates, which
are detailed in Appendix C. By comparing all these fits, we
finally estimate κc = 1.18(2). To illustrate the single-variable
function R̃[10] together with the estimates of κc and yt , we plot
R[10] versus εLyt in Fig. 2(a) with κc = 1.18 and yt = 0.608,
where finite-size corrections are already negligible for large
systems.

FIG. 3. KT-like criticality (κ = 10). (a) Winding probability R[10]

versus t . The inset displays the scaled superfluid stiffness ρsL.
(b) Scaled two-point correlation g(L/2)L1/4 versus t . (c) Log-log plot
of g(L/2) versus L.

Further evidence comes from the FSS of the superfluid
stiffness ρs, which is defined as [58] ρs = 〈W2

[10]〉/(2t ′β )
through the fluctuations of the winding number W[10] along
the [10] direction of the square lattice. At κc, ρs should scale
as ρs ∼ L2−(d+z). This scaling behavior is verified by Fig. 2(b)
with d = 2 and z = 1: as L → ∞, ρsL is asymptotically a
constant for κ � κc but bends upwards for κ > κc.

We consider the two-point correlation g(L/2) at the largest
distance r[10] = L/2 along an open edge, which is estimated
from the random walks of the two defects in worm quantum
Monte Carlo simulations. More descriptions and benchmarks
for this estimator are presented in Appendix B. Figure 2(c)
shows that the result at κc is compatible with the critical
scaling behavior g(L/2) ∼ L−0.65, yet deviates when κ 
= κc.
The scaling behavior at κc is accounted for by the O(2) special
universality with the exponent yh ≈ 1.675 [10,30,31,59], as
g(L/2) ∼ L2yh−4.

B. KT-like criticality

Figure 3(a) shows R[10] versus t for κ = 10. Around tx ≈
0.023, R[10] varies drastically. For t > tx, R[10] extrapolates to
a nontrivial value in the L → ∞ limit, which is dependent
on t . Meanwhile, the superfluid stiffness scales as ρs ∼ L−1.
These observations indicate a regime of the critical phase.

The KT-like criticality is evidenced by the anomalous di-
mension η. Figure 3(b) demonstrates that, at tKT ≈ tx, g(L/2)
scales as g(L/2) ∼ L2−(d+z)−η, with d = 1, z = 1, and η =
1/4. The value of 1/4 is consistent with that of the KT tran-
sition in the 2D XY model [60]. For t > tKT, we fit g(L/2)
to the formula g(L/2) ∼ L−η of leading scaling. The fits are
illustrated in Fig. 3(c) and detailed in Appendix C. In par-
ticular, for t = 0.027 and 0.05, we obtain η = 0.150(2) and
0.058(4), respectively, with χ2/DOF ≈ 1.0 and Lmin = 96.
The continuously varying exponent η is reminiscent of the
low-temperature critical phase of the 2D XY model [61].

224502-3



YANAN SUN AND JIAN-PING LV PHYSICAL REVIEW B 106, 224502 (2022)

0.01

0.1

1

40 80 120 160

(b)

�sL vs. L

R[10] vs. L

0.0002

0.002

0.02

(a)  g(L/2) vs. L

-2.438

FIG. 4. Ordinary critical phase (κ = 0.4). (a) Log-log plot of
two-point correlation g(L/2) versus L. The slope −2.438 relates
to 2yh − 4 with yh = 0.781. (b) Log-log plot of scaled superfluid
stiffness ρsL and winding probability R[10] versus L.

C. Ordinary critical phase

Corresponding to classical O(2) BCB, the small-κ side of
the special transition may fall into the ordinary critical uni-
versality class. For κ = 0.4, Fig. 4 demonstrates that g(L/2)
scales as L2−(d+z)−η, with η ≈ 2.438, d = 1, and z = 1. The
value of η relates to yh = 0.781(2) [10] of the O(2) BCB by
η = 4 − 2yh. As L → ∞, ρsL and R[10] tend to be indepen-
dent of L. These scaling behaviors indicate the existence of
the O(2) quantum ordinary universality.

D. Extraordinary-log critical phase

To explore the extraordinary phase, we make use of a broad
parameter regime on the large-κ side of special transition. In
the ELU, g(L/2) scales as [24]

g(L/2) = a[ln(L/l0)]−q̂, (7)

where l0 is a reference length and a denotes a nonuniversal
constant. For the classical XY model, this scaling form was
verified, and q̂ = 0.59(2) was estimated [26]. Close values
of q̂ were obtained for the classical ELU of the O(2) model
[28] and emergent O(2) criticality [30,31]. We perform fits
for g(L/2) according to Eq. (7) and obtain 0.3 � q̂ � 0.7 for
κ = 2, 3, 5, and 7. We observe that l0 decreases significantly
as κ increases. These features conform to the observations
for classical ELU in Ref. [26]. When q̂ = 0.59 is fixed, we
achieve, for each κ , stable fitting results for l0 and a. Instance
results of l0 include l0 = 0.31(3), 0.21(1), 0.04(4), 0.0108(5),
and 0.002(1) with χ2/DOF ≈ 0.3, 1.8, 0.9, 0.7, and 0.5 for
κ = 2, 3, 5, 7, and 10, respectively. The power-law depen-
dence of g(L/2) on ln(L/l0) is illustrated in Fig. 5(a).

From Fig. 5(b), we find that ρsL roughly obeys the
logarithmic scaling formula

ρsL = bln(L) + c (8)

with universal b ≈ 1.1 and nonuniversal c. Preferred fits are
achieved in the deep extraordinary regime. With Lmax = 192,
we obtain b = 1.14(3), 1.15(3), and 1.1(1) with χ2/DOF ≈
0.9, 2.8, and 0.7 for κ = 5, 7, and 10, respectively. We also
perform fits to

∑
κ ρsL = 5bln(L) + C (C is a fitting param-

eter), where the summation runs over the set {2, 3, 5, 7, 10}
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(a) log-log plot of g(L/2) vs. ln(L/l0) 
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FIG. 5. Extraordinary-log critical phase. (a) Log-log plot of the
two-point correlation g(L/2) versus ln(L/l0), where the values of l0

come from preferred fits. The slope −0.59 relates to −q̂. (b) Scaled
superfluid stiffness ρsL versus ln(L). Inset: the summation of ρsL
over κ . The slopes 1.14 and 5.7 denote b in Eq. (8) and 5b,
respectively.

of κ . For Lmin = 64, we obtain reasonably good results
as 5b = 5.8(2) and C = −5.3(7) with χ2/DOF ≈ 2.0 and
Lmax = 192, as well as 5b = 5.6(2) and C = −4.6(8) with
χ2/DOF ≈ 0.8 and Lmax = 128. These fits are consistent and
finally yield 5b = 5.7(3), which relates to b = 1.14(6). By
contrast, the logarithmic divergence of ρsL is absent in the
paradigm of criticality, as illustrated for the special transi-
tion [Fig. 2(b)] and ordinary critical phase [Fig. 4(b)], and
does not emerge in the KT-like criticality [Fig. 3(a)]. The
logarithmic FSS (8) with unit exponent and universal coef-
ficient resembles that of the helicity modulus in the classical
XY and Heisenberg models [24–26].

V. SUMMARY

The extensive ongoing activities in the search for quan-
tum ELU are restricted to dimerized antiferromagnets, for
which conclusive evidence remains unavailable. Here, we
switched to interacting bosons by formulating an open-edge
Bose-Hubbard model and demonstrated the emergence of
quantum ELU. An edge superfluid phase was observed on top
of an insulating bulk. When the bulk is at the emergent quan-
tum critical point, the special, ordinary, and extraordinary-log
critical phases emerge on open edges. In the extraordinary-
log critical phase, the leading FSS for the longest-distance
two-point correlation and scaled superfluid stiffness are log-
arithmic. By an overall classical-quantum correspondence of
O(2) BCB as well as the universal behavior of logarithmic
FSS in the extraordinary phase, we provided complemen-
tary evidence for the existence of quantum ELU. As the
Bose-Hubbard model can be accessed by quantum emulators
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with ultracold bosons in optical lattices [62–65], our results
indicate a possible experimental scheme for realizing ELU.

ACKNOWLEDGMENTS

J.-P.L. wishes to warmly thank Y. Deng for collabora-
tion on earlier related studies. The present work has been
supported by the National Natural Science Foundation of
China (under Grants No. 12275002, No. 11975024, and No.
11774002) and the Education Department of Anhui.

APPENDIX A: DETAILS OF METHODOLOGY

In the appendixes, we present details for Monte Carlo
simulations and provide a benchmark for two-point correla-
tion using bulk criticality. We then analyze the data for the
quantum critical phenomena on open edges, which include
the special transition, the Kosterlitz-Thouless-like criticality,
the ordinary critical phase, and the extraordinary-log critical
phase.

The raw data are all obtained from quantum Monte
Carlo simulations by means of the worm algorithm in the
continuous-time path integral representation. The side lengths
of square lattices include L = 16, 32, 48, 64, 96, 128, and
192. In the worm simulations, the number of tentative updates
for the defects, usually denoted by Ira (I) and Masha (M),
ranges from 3.6 × 1012 to 3.4 × 1013 for 16 � L � 48 and
from 1.8 × 1013 to 3.7 × 1013 for 64 � L � 192.

We perform FSS analyses by using least-squares fits. To
this end, we utilize the function NONLINEARMODELFIT in
Mathematica, as adopted in Ref. [66]. According to stan-
dard criterion, we prefer the fits with χ2/DOF ∼ 1, where
χ2/DOF represents chi squared per degree of freedom. We
draw conclusions by comparing the fits that are stable against
varying Lmin, which is the minimum side length incorporated
in fitting. In certain situations, we also include a cutoff Lmax

for larger sizes.

APPENDIX B: BENCHMARK FOR TWO-POINT
CORRELATION USING BULK CRITICALITY

We use an estimator of equal-imaginary-time correlations,
which avoids reweighting along the imaginary-time axis and
turns out to be computationally cheap. The estimator cor-
rectly captures the asymptotic behavior in the L → ∞ limit.
Specifically speaking, in the worm quantum Monte Carlo
simulations, we trace the trajectories of the defects I and M on
an edge. If the imaginary-time distance between the defects
is less than the 1/L fraction of the entire axis, the distance
r of two defects along the edge is recorded. The follow-up
treatment is similar to the measurement of two-point correla-
tions in a classical model [43] which was based on the original
idea in Ref. [67]. We use the r = 1 result to normalize the
two-point correlation and concentrate on the r 
= 0 domain of
correlation function. Hence, the results do not suffer from the
biased allocations of statistical weight between original and
Green’s function state spaces. Finally, we obtain the two-point
correlation g(r) as a function of r along the edge.

We proceed to benchmark the above-mentioned method-
ology for the correlation function using the bulk criticality.
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FIG. 6. Bulk criticality. (a) Log-log plot of g(r) versus r.
(b) Log-log plot of g(L/2) versus L.

Particularly, we apply periodic conditions for both the [10]
and [01] directions to eliminate the open edges and sample
the correlation functions at tc. We analyze the r dependence
of g(r) as well as the L-dependent behavior of g(L/2). We
quote a precise estimate η = 0.03853(48) for the anomalous
dimension of the (2+1)-dimensional O(2) criticality [51].
As shown in Fig. 6(a), the r-dependent behavior converges
to the power law g(r) ∼ r2−(d+z)−η, with d = 2, z = 1, and
η ≈ 0.03853. From Fig. 6(b), we verify that g(L/2) scales as
g(L/2) ∼ L−1.03853.

More quantitative verification can be achieved by least-
squares fits. We fit g(L/2) to

g(L/2) = aLb, (B1)

where a is a constant and b = −1 − η. The results are
summarized in Table II. We obtain b = −1.027(6) and
χ2/DOF ≈ 1.2 for Lmin = 48, b = −1.03(1) and χ2/DOF ≈
1.5 for Lmin = 64, and b = −1.06(3) and χ2/DOF ≈ 1.4 for
Lmin = 96. The estimates of b are consistent with −1 − η =
−1.03853(48) of the (2+1)-dimensional O(2) universality.

TABLE II. Fits of g(L/2) to Eq. (B1) at the bulk critical point.

Lmin χ 2/DOF a b

32 20.62/4 2.65(3) −1.009(3)
48 3.45/3 2.86(6) −1.027(6)
64 3.04/2 2.9(1) −1.03(1)
96 1.41/1 3.4(4) −1.06(3)
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TABLE III. Fits of R[10] to Eq. (C1) for the special transition.

Lmin χ 2/DOF κc yt Rc
[10] a1 b1 ω1

48 5.14/9 1.12(7) 0.50(5) 0.02(22) 0.06(1) 0.4(2) 0.4(7)
64 4.47/6 1.1(1) 0.55(8) 0.1(3) 0.05(2) 0.7(5.2) 0.7(3.0)
96 2.92/3 1.15(3) 0.4(1) 0.09(3) 0.09(6) 6.24(1) 1.4(2)
48 8.83/10 1.13(5) 0.608 0.03(18) 0.0390(9) 0.4(2) 0.4(7)
64 5.03/7 1.1(1) 0.608 0.1(4) 0.038(1) 0.4(2.3) 0.5(2.9)
96 4.41/4 1.16(2) 0.608 0.10(2) 0.038(1) 8.900(6) 1.5(2)
48 7.09/10 1.13(5) 0.58 0.03(19) 0.044(1) 0.4(2) 0.4(7)
64 4.62/7 1.1(1) 0.58 0.1(3) 0.043(1) 0.5(3.4) 0.6(3.0)
96 3.98/4 1.16(2) 0.58 0.10(2) 0.043(2) 7.903(7) 1.4(2)

APPENDIX C: DETAILS OF THE FSS ANALYSES FOR BCB

In this Appendix, we perform FSS analyses for the special
transition, the Kosterlitz-Thouless-like criticality, the ordinary
critical phase, and the extraordinary-log critical phase.

Special transition. We locate the special transition point
using the FSS of the winding probability R[10]. We perform
fits according to

R[10] = Rc
[10] + a1(κ − κc)Lyt + b1L−ω1 , (C1)

where Rc
[10] is the critical dimensionless ratio, a1 and b1 rep-

resent fitting parameters, κc denotes the transition point, yt

relates to the correlation length exponent ν by yt = 1/ν, and
ω1 denotes the exponent for leading finite-size corrections. We
perform least-squares fits with κ = 1.16, 1.18, 1.2 and L =
48, 64, 96, 128, 192. We consider situations with yt being free
or fixed at 0.608 and 0.58, which were estimated for the spe-
cial transition of the classical O(2) model in spin [10] and flow
[59] representations, respectively. For each situation, we ob-
tain reasonably good results for large Lmin. When the leading
correction term is present, the best estimate of ω1 is ω1 ≈ 1.4
(Table III), which is larger than ω1 = 0.789 for the 3D O(2)
value [57] and ω1 = 1 originating from boundary-irrelevant
fields [25], indicating that the correction term with ω1 � 1 is
either absent or weak. Hence, as shown in Table IV, we also
perform fits without incorporating the correction term, which
have a reduced number of fitting parameters, and examine the

TABLE IV. Fits of R[10] to Eq. (C1) for the special transition with
b1 = 0.

Lmin χ 2/DOF κc yt Rc
[10] a1

48 108.12/11 1.25(1) 0.29(5) 0.160(7) 0.15(3)
64 37.02/8 1.206(7) 0.44(8) 0.138(4) 0.08(3)
96 4.41/5 1.184(6) 0.4(1) 0.123(4) 0.10(7)
128 0.33/2 1.175(5) 0.8(3) 0.117(4) 0.01(2)
48 145.25/12 1.206(2) 0.608 0.1398(8) 0.0394(9)
64 41.39/9 1.197(2) 0.608 0.133(1) 0.037(1)
96 6.35/6 1.180(3) 0.608 0.121(2) 0.038(1)
128 0.84/3 1.175(7) 0.608 0.116(5) 0.035(2)
48 138.73/12 1.208(2) 0.58 0.1407(8) 0.045(1)
64 40.01/9 1.198(2) 0.58 0.134(1) 0.042(1)
96 5.84/6 1.181(4) 0.58 0.121(2) 0.043(2)
128 0.98/3 1.175(7) 0.58 0.116(5) 0.040(2)

TABLE V. Fits of g(L/2) to Eq. (B1) for the large-t side of the
Kosterlitz-Thouless-like transition at κ = 10.

t Lmin χ 2/DOF a b

0.027 48 208.63/3 1.115(3) −0.1700(6)
64 36.28/2 1.080(4) −0.1628(8)
96 0.96/1 1.01(1) −0.150(2)

0.03 48 591.62/3 1.016(2) −0.1264(4)
64 127.87/2 0.980(2) −0.1187(5)
96 6.02/1 0.929(5) −0.108(1)

0.035 48 437.57/3 0.990(1) −0.0979(3)
64 119.14/2 0.964(2) −0.0924(4)
96 5.54/1 0.925(4) −0.0841(9)

0.04 48 96.45/3 1.010(2) −0.0881(5)
64 28.96/2 0.991(3) −0.0839(7)
96 0.65/1 0.950(8) −0.075(2)

0.045 48 24.06/3 1.017(3) −0.0788(7)
64 6.70/2 1.003(4) −0.076(1)
96 1.05/1 0.97(1) −0.069(3)

0.05 48 18.18/3 1.017(4) −0.070(1)
64 9.31/2 1.004(6) −0.067(1)
96 0.98/1 0.96(2) −0.058(4)

stability of fitting results by varying Lmin. By comparing the
fits, our final estimate of κc is κc = 1.18(2).

Kosterlitz-Thouless-like critical phase. We explore the crit-
ical phase on the large-t side of the Kosterlitz-Thouless-like
transition for κ = 10. For each t in the set {0.027, 0.03, 0.035,
0.04, 0.045, 0.05}, we perform scaling analyses for g(L/2)
according to Eq. (B1) with b = −η, which corresponds to
the leading FSS. The results are summarized in Table V,
which demonstrates that the fits are precise only at large sizes.
Moreover, as t increases, the exponent η decreases.

Ordinary critical phase. We analyze the ordinary criti-
cal phase at κ = 0.4 and t = tc. We fit g(L/2) to Eq. (B1)
with b = 2yh − 4. The results are presented in Table VI. For
Lmin = 48, 64, and 96, we find b = −2.41(2), −2.45(4), and
−2.5(1) with χ2/DOF ≈1.3, 1.1, and 1.4, respectively. These
results are compatible with the exponent 2yh − 4 with yh =
0.781(2) for the classical O(2) ordinary surface criticality
[10]. If a correction term is included and the fitting ansatz be-
comes g(L/2) = Lb(a + cL−ω1 ), the effects from corrections
decrease rapidly with L as Lb−ω1 . It is practically difficult to
estimate the amplitude of finite-size corrections.

TABLE VI. Fits of g(L/2) to Eq. (B1) for the ordinary critical
phase at κ = 0.4.

Lmax Lmin χ 2/DOF a b

192 32 7.02/4 66.6(1.8) −2.374(7)
48 4.01/3 76.5(6.5) −2.41(2)
64 2.15/2 90.9(14.1) −2.45(4)
96 1.41/1 141.2(77.8) −2.5(1)

128 32 2.62/3 66.2(1.8) −2.373(7)
48 0.84/2 73.9(6.4) −2.40(2)
64 0.002/1 83.7(13.7) −2.43(4)
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TABLE VII. Fits of g(L/2) to Eq. (C2) for the extraordinary
phase at κ = 2, 3, 5, 7, and 10.

κ Lmin χ 2/DOF a l0 q̂

2 16 1.93/4 0.68(1) 3.5(3) 0.32(1)
32 0.12/3 0.76(8) 2.2(9) 0.38(5)
48 0.07/2 0.7(2) 3.3(4.9) 0.3(2)
64 0.03/1 0.8(9) 1.7(8.1) 0.4(5)
16 177.76/5 1.170(2) 0.648(8) 0.59
32 8.09/4 1.248(7) 0.40(2) 0.59
48 0.89/3 1.29(2) 0.31(3) 0.59
64 0.12/2 1.31(4) 0.25(7) 0.59
96 0.07/1 1.33(8) 0.2(1) 0.59

3 16 2.74/4 1.11(8) 1.0(2) 0.42(3)
32 1.01/3 0.9(1) 2.3(1.3) 0.33(6)
48 0.42/2 1.5(2.0) 0.3(1.2) 0.5(5)
16 16.72/5 1.649(3) 0.257(4) 0.59
32 7.21/4 1.69(1) 0.21(1) 0.59
48 0.42/3 1.73(2) 0.16(2) 0.59
64 0.31/2 1.75(5) 0.15(4) 0.59
96 0.003/1 1.7(1) 0.2(2) 0.59

5 16 2.17/4 2.7(9) 0.03(3) 0.7(1)
32 1.30/3 1.5(6) 0.3(5) 0.5(2)
48 1.14/2 2.7(6.5) 0.02(22) 0.7(8)
64 0.99/1 1.1(1.3) 1.2(7.4) 0.3(5)
16 2.57/5 2.221(6) 0.053(1) 0.59
32 1.72/4 2.20(2) 0.058(5) 0.59
48 1.15/3 2.23(4) 0.05(1) 0.59
64 1.08/2 2.21(7) 0.05(2) 0.59
96 0.85/1 2.3(2) 0.04(4) 0.59

7 16 2.29/4 4.4(2.7) 0.001(4) 0.7(2)
32 1.34/3 1.7(9) 0.1(3) 0.4(2)
16 3.31/5 2.692(9) 0.0108(5) 0.59
32 1.67/4 2.66(3) 0.013(2) 0.59
48 0.83/3 2.70(5) 0.010(3) 0.59
64 0.06/2 2.63(9) 0.015(7) 0.59
96 0.001/1 2.6(2) 0.02(2) 0.59

10 16 12.53/5 3.35(2) 0.00084(8) 0.59
32 0.93/4 3.22(4) 0.0017(4) 0.59
48 0.91/3 3.21(8) 0.0018(7) 0.59
64 0.91/2 3.2(1) 0.002(1) 0.59
96 0.08/1 3.0(3) 0.01(1) 0.59

Extraordinary critical phase. We analyze the FSS for the
extraordinary phase. We fit g(L/2) to

g(L/2) = a[ln(L/l0)]−q̂. (C2)

TABLE VIII. Fits of the summed scaled stiffness
∑

ρsL over
κ = 2, 3, 5, 7, and 10 to Eq. (C4) for the extraordinary phase.

Lmax Lmin χ 2/DOF A B

192 32 95.84/4 0.2(2) 4.47(5)
48 28.71/3 −2.3(4) 5.10(9)
64 3.98/2 −5.3(7) 5.8(2)
96 0.45/1 −8.8(2.0) 6.5(4)

128 32 64.32/3 0.5(2) 4.41(5)
48 16.33/2 −1.9(4) 5.0(1)
64 0.77/1 −4.6(8) 5.6(2)

The results are given in Table VII. If q̂ is free, we obtain 0.3 �
q̂ � 0.7 and find that l0 drastically decreases with increasing
κ . When q̂ = 0.59 is fixed, we obtain stable fitting results of
a and l0 for each considered κ . For l0, instance results are
l0 = 0.31(3), 0.21(1), 0.04(4), 0.0108(5), and 0.002(1) with
χ2/DOF ≈ 0.3, 1.8, 0.9, 0.7, and 0.5, for κ = 2, 3, 5, 7, and
10, respectively.

Assuming the existence of extraordinary-log critical uni-
versality, for each κ , we fit the data of ρs to

ρsL = a + blnL. (C3)

We obtain preferred fits with Lmax = 192 for the deep extraor-
dinary regime. For κ = 5, we obtain b = 1.14(3) with Lmin =
64 and χ2/DOF ≈ 0.9. For κ = 7, we obtain b = 1.15(3)
with Lmin = 64 and χ2/DOF ≈ 2.8. For κ = 10, we obtain
b = 1.1(1) with Lmin = 96 and χ2/DOF ≈ 0.7. To obtain a
unique estimate of fitting parameters, we analyze the sum of
the scaled superfluid stiffness ρsL over κ = 2, 3, 5, 7, and 10
by performing fits to

∑
κ

ρsL = A + BlnL. (C4)

As summarized in Table VIII, we obtain reasonably
good fits with χ2/DOF ∼ 1 for Lmax = 192 and 128.
For Lmax = 192, we obtain A = −5.3(7), B = 5.8(2), and
χ2/DOF ≈ 2.0 with Lmin = 64, as well as A = −8.8(2.0),
B = 6.5(4), and χ2/DOF ≈ 0.5 with Lmin = 96. For Lmax =
128, we obtain A = −4.6(8), B = 5.6(2), and χ2/DOF ≈ 0.8
with Lmin = 64.
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