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The antiferromagnetic semiconductor CuFeS, belongs to a magnetic symmetry class that is of interest for
spintronics applications. In addition, its crystal lattice is compatible with Si, making it possible to integrate it
with nonmagnetic semiconducting structures. Therefore, we investigate this material by finding the effective k - p
Hamiltonian for the electron and hole bands. We base this description on ab initio calculations and classify the
electronic bands by their symmetry. As a result, we find that CuFeS, exhibits spin-polarized bands. We also find
that the crystal symmetry allows for the anomalous Hall effect. Finally, we suggest using cyclotron resonance to
verify our proposed effective mass tensors at the conduction band minimum and valence band maximum.
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I. INTRODUCTION

Antiferromagnets (AFMs) currently attract considerable
interest because of their intriguing ultrafast spin dynamics
that couple to electric currents [1-3]. The interplay between
spin excitations and the transport of spin, heat, and charge can
reveal novel phenomena. Recent works have demonstrated the
central capabilities of AFMs for use in spintronics devices.
Electrical currents can switch the staggered field in AFMs
[4-6]. Spins can propagate longer than micrometers in antifer-
romagnetic insulators [7]. Dynamical spins in AFMs can act
as spin batteries, as revealed via the inverse spin Hall effect
[8-14]. These features, the high-frequency capacity, and the
robustness against external magnetic fields can enable new
ways to realize high-speed electronics.

Magnetic semiconductors are of interest for use in spin-
tronics devices because of the tunable charge carrier density,
integration with other semiconductors such as Si and GaAs,
and the possibility of creating low-dimensional structures like
quantum wells, quantum wires, and quantum dots. Decades
ago, dilute ferromagnetic semiconductors got attention be-
cause of the prospect of combined control of the electron
spin and the charge carriers [15—17]. Materials like GaMnAs
exhibit a reasonably high Curie temperature of around 200 K,
yet it is significantly below room temperature. (In,Fe)As is an
electron-induced ferromagnetic semiconductor with a Curie
temperature above 300 K [17].

On the other hand, antiferromagnetic semiconductors are
underexplored for use in spintronics devices. This class of ma-
terials combines ultrafast spin dynamics and tunable electron
and hole properties that potentially can enable new features
and reveal interesting phenomena. CuFeS; is a good candi-
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date because of its high Néel temperature of 823 K [18].
Additionally, its magnetic crystal structure belongs to an in-
triguing symmetry class. This is the type-I Shubnikov class,
and it generally allows for the anomalous Hall effect and
spin-polarized electron bands [19,20]. These properties are
typical for ferromagnets. In this sense, CuFeS, may exhibit
favorable properties of both ferro- and antiferromagnets. To
make use of its semiconducting properties, CuFeS, can also
be integrated with Si due to their compatible lattice structures
[21].

CuFeS; has already seen interest in different areas, mostly
due to its thermoelectric properties [22-28]. However, to un-
derstand its semiconductor properties, knowledge and models
of the dispersions of electrons and holes at low doping levels
are essential. Previous works compute, with ab initio tech-
niques, the electronic band structure [29-31]. However, future
exploration of this antiferromagnetic semiconductor requires
a systematic study of the low-energy electron and hole proper-
ties while taking spin-orbit coupling (SOC) into account. The
purpose of the present paper is to fill this knowledge gap.

The paper is organized as follows. First, we provide a brief
overview of the magnetic space group (MSG) symmetries
of CuFeS,. We use the MSG symmetries to give a phe-
nomenological description of the conductivity tensor based
on Neumann’s principle. The following section presents ab
initio calculations of the electronic bands and the symmetry
characterization of the principal bands relevant for electron
and hole transport. We then derive effective models for the
valence band maximum (VBM) and conduction band mini-
mum (CBM) based on this symmetry classification. Lastly,
we discuss how electron cyclotron resonance can be used

©2022 American Physical Society
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FIG. 1. The conventional unit cell of CuFeS,. The Fe atoms are
blue and host magnetic moments represented by arrows, the Cu
atoms are red, and the S atoms are yellow.

to verify the suggested electron- and hole-band extrema and
dispersions.

II. CRYSTAL SYMMETRY

Chalcopyrite, CuFeS,, has a tetragonal crystal structure
with space group /42d, No. 122 [32]. To account for the
collinear antiferromagnetic ground state, we consider its MSG
[33]. This configuration is shown in Fig. 1. The magnetic
space group is a type-I Shubnikov group, also called a
Fedorov group. Such groups lack antiunitary symmetry op-
erations such as time-reversal symmetry. In other words, the
crystal space group and the MSG are isomorphic. Conse-
quently, the chemical and the magnetic unit cell coincide. The
MSG consists of the eight symmetries

(E10),
(C2x|7:)7

(C10),
(C2y | T),

(S,10),

(ny [T),

(5410),  (la)
(o%y|T), (1b)

where the origin of the unit cell coincides with a Fe ion.
Four of the symmetries are nonsymmorphic symmetry op-
erations. They are composite symmetries consisting of a
point group operation and a translation T = (0, a/2, ¢/4) in
terms of the tetragonal lattice constants a and c¢. The crys-
tal is noncentrosymmetric such that the space group allows
for antiferromagnetic skyrmions [34]. The nonsymmorphic
symmetries relate the spins of the two Fe atoms and render
chalcopyrite a fully compensated AFM. The fact that the
oppositely aligned spins are related by unitary nonsymmor-
phic symmetries allows for interesting features for spintronic
applications. According to the classification given by Yuan
et al. [19], the MSG allows for AFM-induced spin-polarized
electron bands. We investigate this phenomenon further in
Sec. IV B, along with ab initio calculations.

III. ELECTRON CONDUCTIVITY

CuFeS, becomes conducting when it is electron or hole
doped. In this case, the conductivity o captures the electron
transport properties of the crystal. We consider the conductiv-
ity to first order in the Néel vector

Ji = GijEj + O’ijkEjl’lk. (2)

Here, i, j, and k refer to Cartesian directions of the current
density J;, the electric field £}, and the Néel vector ny. The
first term on the right-hand side includes the second-rank
conductivity tensor o;;. The second term is proportional to
ng and yields a third-rank conductivity tensor o;jx. Notably,
any anomalous Hall conductivity vanishes for conventional
collinear AFMs. That is, AFMs with either a composite
time-reversal- and inversion symmetry or time-reversal- and
translation symmetry [20]. CuFeS,; has neither of these com-
posite symmetries, which opens the possibility for a finite
anomalous Hall effect.

The MSG symmetries allow for a phenomenological
description of the conductivity tensors using Neumann’s prin-
ciple [35]. We require o;; and o;j; to be invariant under all
symmetries:

0ij = RisRjjouj, (3a)
oijk = (=D Ry Ry Rig o jie (3b)

The Néel vector n; has special transformation properties.
It is a pseudovector, which means it is invariant under orienta-
tion reversal. Also, it changes signs under sublattice exchange
caused by the nonsymmorphic transformations. To account
for this, we introduce the boolean variables [, m € {0, 1},
which are nonzero for orientation-reversing- and nonsymmor-
phic symmetries, respectively.

As a result, the conductivity relations to the first order in n
are

Jo = 0,Ey + 0/Esn, + 0, E ny, (4a)
Jy = 0,Ey + 0/Eyn, + 0 ,E.n,, (4b)
J. = 0,E, + 0/E.n; + og(Eny, + Eyny). (4¢)

The coefficients oy, 07, 0/, 0/, o4, and oy can be found
empirically or from microscopic calculations. In each of
the relations, the first term corresponds to a Neel vector-
independent diagonal conductivity. The second term is a shift
in the diagonal conductivity dependent on the direction of the
Neel vector to linear order. The last terms are off-diagonal
conductivity terms corresponding to an anomalous Hall effect.
These are finite when the Neel vector takes on an x or y
component. The relations in Egs. (4) allow for direct measure-
ment of both the sign and direction of the Néel vector. In the
following, we consider the electron structure properties using
ab initio calculations.

IV. AB INITIO CALCULATIONS
A. Methods

Density functional theory (DFT) calculations were per-
formed with the projected augmented-wave method [36,37].
Accordingly, we used the VIENNA AB INITIO SIMULATION
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TABLE I. Lattice parameters a, c, their ratio c/a, and magnetic
moment of Fe atoms for DFT+U models using PBEsol with different
Ui values for Fe 3d. The bottom row shows the same quantities
calculated with the hybrid functional HSEO6 for comparison.

TABLE II. High-symmetry points and lines of the conventional
Brillouin zone of chalcopyrite and the little group of the wave vector.
Primed symmetries are nonsymmorphic and include the translation
t=1(0,a/2,c/4).

Ueit (eV) a(A) c(d) c/a my (1Lp)
0 5.152 10.177 1.975 2.620
1 5.196 10.225 1.968 3.127
2 5.218 10.285 1.971 3.335
3 5.236 10.337 1.974 3.487
4 5.251 10.380 1.977 3.607
5 5.263 10.416 1.979 3.709
6 5.275 10.442 1.980 3.801
7 5.301 10.420 1.966 3.883
8 5.305 10.473 1.974 3.966
9 5.288 10.571 1.999 4.051
HSEO6 5.259 10.366 1.971 3.715

PACKAGE in the DFT + U methodology, including SOC, to
capture the SOC-induced band splitting at high-symmetry
points. To represent the bulk crystal, we used a periodic
model of a single conventional unit cell that contains 16
atoms. Furthermore, we sampled the Brillouin zone using a
I"-centered mesh with at least 4 x 4 x 2 k-points. The mesh
was generated with the Monkhorst-Pack scheme [38]. For the
density of states (DOS) calculations, we changed the k mesh
to include 12 x 12 x 6 k-points. The electron band structure
was sampled at 100 k-points on the interval between each
pair of high-symmetry points on the k-path. We set an energy
cutoff at 700 eV.

To relax the structure and minimize the total energy, we
applied the iterative conjugate-gradient method. We relaxed
the atomic positions until the residual forces acting on the
atoms were smaller than 10~° eV/A and the energy difference
in the final convergence step was smaller than 1078 eV per
unit cell.

The Fe magnetic moments converged to consistent values
for initial inputs on the interval 1 to 6 Bohr magnetons up.
The spins are oriented antiferromagnetically, as illustrated in
Fig. 1. We considered other collinear AFM orderings, as well
as a ferromagnetically ordered structure. Consistent with the
results of Ref. [27], and as shown in Appendix A, these or-
derings produced a higher energy state than the chosen AFM
structure.

The DFT + U scheme of Dudarev et al. [40] was used,
with a varying U.g applied to Fe 3d and a Uy = 0.1 eV
applied to Cu 3d. We used the Perdew-Burke-Ernzerhof func-
tional for solids (PBEsol) [41] for the relaxation, electronic
structure, DOS, and band-structure calculations. The states
3s23p*, 3p%4s'3d'°, and 3p°4s'3d” were treated as valence
electrons for the atomic types S, Cu, and Fe, respectively. To
determine a fitting value of Ue in DFT + U, we performed
a full relaxation with the HSEO06 hybrid functional [42].
Table I presents the results from the PBEsol relaxations with
various U, values applied to Fe 3d orbitals, as well as those
determined with the HSEO6 functional. We fit the U, value to
the first lattice constant, a, and calculated the DOS and band
structure with U = 4.7. This value gives the lattice constants
a=5259Aand c = 10.407 A.

r (0,0,0) EC,.S;.8..C,.Ch 0),04,
M (0,0,1) EC,.S1.8..C;,.Ch 0),04,
P (1/2,1/2,1/2) ECy.S;.5,.C,.Ch 00,07,
PA (1/2,1/2,—1/2) ECy.S;.S,.C,,Cy 07,00,
X (1/2,1/2,0) ECy.0,,0%,
N (1/2,0,1/2) ECy

B. Results

Figure 3 shows the calculated electronic band structure.
The bands follow a path in k space traversing the high-
symmetry points denoted in Table II and shown in Fig. 2.
The electron states at the high-symmetry points transform as
irreducible representations of the corresponding little group.
The full set of irreps for each of the high-symmetry points is
given in Ref. [39]. Consistent with other ab initio calculations
[23], the band structure is strongly anisotropic. The VBM
is at the X point, and the CBM is at the N point. The X
point is part of a two-fold valley structure, and the N point
is part of a fourfold valley structure. This renders chalcopyrite
a multivalley semiconductor. The bands show an indirect band
gap of 0.779 eV. Experimentally, values between 0.3-0.6 eV
have been reported [43,44]. The direct band gap is 0.915 eV
and found at the X point.

In the presence of SOC, the VBM and CBM exhibit band
splittings. However, the bands are degenerate in the absence
of SOC, as shown by the insets of Fig. 3. However, in the
presence of a magnetic ordering, this band degeneracy is not
symmetry protected. Moreover, based on the form of the basis
functions presented in Secs. V A and V B, the splittings at the
X and N points are not solely due to SOC. Hence, the band
splittings should be interpreted as a result of the interplay of
SOC and the magnetic crystal.

FIG. 2. The first Brillouin zone of CuFeS, with high-symmetry
points. The coordinate system denotes the direction of the crystal
momenta.
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the high-symmetry points according to the notation in Ref. [39]. A b “MM
Isolated bands marked by an asterisk have a nontrivial topological 0
index. The insets show the VBM (a) and CBM (b) in the absence of -9 -1 0 1 2
SOC. (b)
7 — S(s)
Figure 4 shows the atom-decomposed electron DOS. Cu = 6 1 ggg;
and S electrons dominate the valence band. On the other hand, % 5
the conduction bands are dominated by Fe and S electrons. 9 4
These findings suggest that conduction band electrons are g
more strongly coupled to the localized magnetic moments — 3
than the valence band electrons are. Hence, the spin polar- 8 2
ization of the conduction band is of special interest. A
Because the sublattice spins of CuFeS; are related by non- 0 o~
-2 -1 0 1

symmorphic symmetries instead of composite time-reversal
and inversion symmetry, its magnetic symmetry class allows
for spin-polarized electron bands. Figure 5 shows the net spin
projected DOS for the two lowest conduction bands on the
considered k path based on the ab initio calculations. At spe-
cific points, the crystal symmetries prohibit spin polarizations
in all directions. This is the case for the I', X, PA, P, and M
points, as well as for some high-symmetry lines. Notably, the
CBM at the N point exhibits a finite spin-polarization in the y
direction. The spin polarization of the related valley N’ has an
opposite sign. There is a similar relationship between N” and
N with spin polarization in the x direction.

Spin polarization in the z direction is more restricted by
symmetry. Any high-symmetry point or line with a symmetry
listed in Egs. (1b) as part of its little group is prohibited from
having spin-polarized bands. The reason is that these sym-
metry operations relate the two magnetic sublattices. For the
chosen k path, only the N-I" interval lack these symmetries.
Although this interval is a small part of this specific k path, it
represents most of the Brillouin zone in the sense that its little
group contains the identity operation only. Hence, we expect a
large part of the Brillouin zone to exhibit electron bands spin
polarized in the z direction as well as the x and y direction.

Large efforts have been made to determine the topological
character of magnetic compounds. We consider the electron
bands of CuFeS, with respect to the symmetry-based indicator
as introduced in Ref. [45]. For the magnetic space of CuFeS,,

Energy (eV)
(©)

FIG. 4. The atom-decomposed density of state from ab initio
calculations of CuFeS,. The Cu 3d and S 3p orbitals dominate the
valence band, whereas the Fe 3d and S 3p orbitals dominate the
conduction band. The scaling on the y axes differs for better visibility.

itis a Z, topological invariant [46]. Based on the ab initio cal-
culations and magnetic quantum chemistry software [47,48],
we find that certain bands of CuFeS, are topologically non-
trivial with respect to this topological invariant. These isolated
bands are marked by an asterisk in Fig. 3. The total topological
index summed over all occupied bands is zero. Hence, the
ab initio calculations and the crystal symmetries suggest that
CuFeS, does not exhibit topologically protected edge states.

V. EFFECTIVE MASS THEORY

In this section, we develop an effective theory for the band
structure of the CBM and VBM. To that end, we use k - p
theory [49-52].

We start with the Hamiltonian

_r .
H= V@O + 2o (W) xp) o, (5)
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FIG. 5. The net spin projected density of states Ds; in the (a) i =
x, (b) i =y, and (c) i = z directions of the two lowest electron
conduction bands. The numerical results are consistent with the
crystal symmetry, except for the partly finite spin polarization in the
z direction on the P-N interval.

where p is the momentum operator and m is the electron mass.
The crystal potential V (r) gives rise to SOC. The SOC term
contains the spin Pauli matrices o.

Following the standard approach, we let the Hamiltonian in
Eq. (5) act on Bloch waves ¥, (r) = e (e u,y, (r)), where
the wave function u,, (r) has the lattice periodicity. The crys-
tal momentum k = kg + &, where « is a small deviation from
a high-symmetry point ky. We consider the small deviation
perturbatively and write

H = Hi, + My ps (6)
where
e
Hie, = o) +V)+ W(VV X (p+ko)-o (7
and
H;C,p = I%K - P. ®)

TABLE III. Selection rules for the electronic states at the X point.

L (u¥1|(Py, Py, P)u¥) = (0,0, a;;)
L2 |(Py, Py, P)u™) = (a3, a3, 0)
W |(P,, Py, P)|u*) = (0,0, 0)
(u|(Py, Py, P)|u*5) = (aps, —ans, 0)
(U3 |(Py, Py, P)|u™) = (az4, —az4, 0)
(u ) =1(0,0,0)

(u ) =

(ass, ass, 0)

5| (P,, Py, P’
X |(Pe, Py, P

MIENE I S s e e

Here, P is a generalized momentum defined as

P = i 9
(p+ gz 9V) ©

and transforms as a radial vector.

A. Valence band maximum

The VBM is located at the X = 27 (1/2a, 1/2a, 0) point.
It is part of a two-valley structure together with X' =
2n(—1/2a, 1/2a,0). These points are related through sym-
metry transformations. Table II shows the group of the
wave vector. We characterize the electron bands by double
group representations. At the X point, there are four one-
dimensional irreducible representations (irreps). These couple
through the radial vector P as shown in Table III.

Figure 3 shows that the VBM consists of two nearly degen-
erate bands. The upper and lower bands transform as the X4
and X, irreps, respectively. They do not couple through the
generalized momentum P as shown in Table III. The splitting
of these bands is 10.2 meV. To describe the bands, we consider
a two-band model based on Eq. (6). In deriving the secular
equation, we consider second-order contributions outside the
two nearly degenerate bands. The first-order intra-band cou-
plings are zero at band extrema.

The resulting secular equation is

Hyo¥ = EV. (10)

where the two-component ¥ denotes the wave-function coef-
ficients. The explicit form of the basis functions is unknown.
Nevertheless, we use the transformation properties of the basis
functions to derive the intra- and interband coupling parame-
ters phenomenologically. The effective Hamiltonian H3,, is

Hi —E2+(A2+C2)(K + &y )+32K
2

hi
+2(Ay — Ca)icrkey + — K2, (11a)
2m
2= M+ L)(k] —«5), (11b)
Hor = (M* + L*)(k] — 7). (11c)
Hyp = E4 + (Ag + C4)(K + K, ) + By}
h2
—2(As — Cy)kky + —K>. (11d)
’ 2m

Here, E, and E, are the energies of the bands at the X point
exactly. The phenomenological parameters that govern the
dispersion away from the X point are given in Appendix C 1.
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The Hamiltonian HX , acts on a basis consisting of two
wave functions transforming as the representations X, and
X4. These wave functions have contributions from all three
types of atoms, whereas the largest contributions are from the
Cu ions. For a more intuitive understanding of these wave
functions, we consider basis functions of the irreps with the
relevant orbital characters. That is, we consider functions of
identical transformation properties, under the little group sym-
metry operations, as the electron wave functions. We present
the basis functions on the form

v = |A, ko, O, n) <;) (12)

where A denotes atom type, ko denotes the high-symmetry
point, O denotes the orbital part of the wave function, and
n € {1, 2} the location in the primitive unit cell such thatn = 1
and n = 2 are related by the nonsymmorphic translation. The
last factor is the spinor. A similar treatment has been done for
the P point [53]. The S-ion part of the X, state is of p-orbital
character, and the Cu-ion part is mostly of d-orbital character.
The p-orbital basis functions are of the form

w,,ﬁ,'py =15, X, x + iy, 1)(0) +e 7S, X, x — iy, 2)<1>,

(13a)
=18 X, x — iy D 1) = ¥ 18, X x4 iy, 2 (©
wpx—tpy—| s X, X — 1Y, ) 0 —e€ | ) 7-x+ly7 > 1)

(13b)
0 3 ; 1
Vp. =18, X, z, 1)<1> +e+S,X,z,2 (0 (13¢)

The dominant d orbitals are of the form

—_ O

) (14a)

Va, = |Cu, X, yz, 1)((1)) + ¢3|Cu, X, xz, 2) ) (14b)

Vi, = |Cu, X, xz, 1><0> +e+|Cu, X, yz,2 (

Va, = ICu, X, xy, 1)(?) +et7|Cu, X, xy, 2)(5). (14c)

The nonsymmorphic symmetries exchange the locations
n = 1,2 along with a spin flip. The X4 basis functions have
a similar form, except that the n = 2 part has a relative minus
sign. Evaluating the Pauli spin matrices with respect to the
basis functions at the X point reveals zero spin polarization
in all directions, as consistent with the calculations shown in
Fig. 5.

The eigenvalues of the effective Hamiltonian in Eq. (10),

E_=E + (A +C) (k] + 5 ) + Bk}
2

h
+2(A2 — Co)rxky + 2—:c2, (15a)
Ey = E4+ (Ay + Cy) (k7 + k7) + Bak?
hZ
—2(Ag — Cy)kepky + —K2, (15b)
2m

illustrate the band dispersion at the VBM to second order
in k.

TABLE IV. Selection rules for electronic states at the N point.

L |(Py, Py, P)u™) = (0, ay,0)
LN |(P,, Py, P)uM) = (0, a3, 0)
s |(Py, Py, P)uM) = (ass, 0, baa)

The effective mass tensor is defined as
1 9°E
hz 8/{,-8/(,- ’

(mi)~" = (16)

and is, in general, valley specific. The effective mass tensor at
arelated valley is

=RiRjym; (17)

l/]/’

where R is a symmetry transformation relating the two val-
leys. Now, for the two bands at the X point, the effective
masses differ in magnitude but have the same tensor form

My My 0
m* = | my My 0 1. (18)
0 0 my

From numerical calculations, we estimate that
mP =—-148, mlP =-1.36,
m?) = —1.40,

m(}) =0.63, (19a)

m2 =—-137, m3 =0.70 (19b)

in units of the bare electron mass m. The superscripts refer to
the upper X4 band and the lower X, band at the VBM.

B. Conduction band minimum

In this section, we consider the CBM located at the N
point. The N point has a low symmetry and a fourfold valley
degeneracy. The valleys are at N = 27 (1/2a,0, 1/2¢), N’ =
27 (—1/2a,0,1/2¢), N =2n(0, 1/2a, —1/2c), and N” =
27 (0, —1/2a, —1/2c). Each CBM consists of two nonde-
generate bands. The lower band transforms as the Ny irrep,
whereas the upper band transforms as the Nj irrep. The bands
are split by 2.9 meV in the presence of SOC. We perform a
similar analysis as we did for the X point, starting with the
band coupling shown in Table I'V.

The intraband coupling to the first order in the crystal
momentum deviation k is again zero at band extrema. We find
the two-band Hamiltonian

Hi = Es + Ask; + Bs; + Csi. + (R3 + R} i, + %xz,
(20a)
Hiz = azaky + baakc; + (Sq + Spliciey + (T + Ty )icykc,
(20b)
Hot = aiukx + b3k, + (S 4+ Sp)kckey + (T + T, iy,
(20¢)

h2
Hyp = E4 +A4K3 +B4K3 + C4KZ2 + (Ry4 +RZ)KXKZ + ﬁK2'

(20d)
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Here, E5 and E, are the energies of the N3 and Ny bands at
the N point exactly. Table IV defines the first-order coupling
constants as4 and bis and the phenomenological coupling
parameters to second order are defined in Appendix C 2.
The corresponding eigenvalues to second order in the crystal
momentum deviation k are

E = E3 + Ask; + Bsk; + Gk + (R3 + R} ik

n lazalic? + |bsa|*k2 + (asably, + aiybsa )ik,
E; — E4

2
+—2x2, (21a)
m
E_ = Ey + Ay} + Basi + Carc? (Ry + Rk,
B lazal*,c? + |bsa|*k2 + (asably, + aybsa )ik,
E; — E4

+$K2. (21b)
The second-order terms in Eqgs. (20b) and (20c) do not
contribute to the effective mass of the bands, but to the fourth
order in momentum deviation k. We disregard these terms.
The wave functions constituting the CBM have large Fe d,,
contributions. We now explore the N3 and Ny basis functions
of this type. The basis function for the N3 state has the form

o

Ya,. = |Fe, N, xz, 1)<,3> + i|Fe, N, xz, 2)( ﬁa)' 22)

The analogous basis function of the Ny irrep has a relative
minus sign for the n = 2 part. The apparent x-y asymmetry
is compensated by the related valleys. The N point has a low
symmetry. Hence, the spinor part of the basis functions has a
more general form than for the X point. Evaluating the spin
Pauli matrices with respect to the basis functions, we find
a finite spin polarization in the y direction consistent with
Fig. 5(b).

Based on the dispersion relation of the two N bands in
Eq. (21), the effective mass tensor is of the form

Myx 0 My,
m* = 0 My, 0 1. (23)

My, 0 my;

We find the numerical estimates of effective mass tensors to
be

m$) =072, m{) =0.84, (24a)
mg‘) = 0.88, m)(;) =0.89, (24b)
mg) = 0.86, mS) =(0.83, (25a)
m§3) =0.89, m)(f) =0.92, (25b)

in units of the bare electron mass m. The superscripts refer
to the lower Ny state and the upper Nj state constituting the
CBM.

VI. EXTERNAL MAGNETIC FIELD

In this section, we extend the effective model for the va-
lence electrons at the X point and the conduction electrons at
the N point to include the effects of an external magnetic field.

We employ the Kohn-Luttinger transcription £ — (—iV —
eA) and account for the external magnetic field through the
vector potential A. This yields a system of envelope function
differential equations

D [Dunij(—iVi — eA)(=iV j — eA))|Fy(r) = EF,(r),
n,

(26)
where F;, are envelope functions. Products of noncommuting
factors should be interpreted as symmetrized products [54,55].
To that end, we consider both the symmetric and antisymmet-
ric terms

s A

Dyyijiij = 3Di) i ki) + 3D [ki il (27)
Here, {k;, k;} = kikj + Kjk; is the anticommutator and the
commutator
ie

ki, ki] = —B, 28

[ i j] hic k ( )
is finite in the presence of an external magnetic field By. The
indices i, j, and k form a right-handed Cartesian coordinate
system. The symmetric and antisymmetric terms are defined
as

Dt(’li)'[j = %(Drm’ij + Dnn/ji), (293)
thﬁ’)ij = %(Dnn’ij — Dy ji), (29b)
with
B (nlPn") (0" |Pj|n')
Duij = 55 > s (30)

E, — Ep

n"

The symmetric terms are identical to the coefficients in
Egs. (11) and (20). The antisymmetric terms transform as
the Zeeman coupling Hz = ugo - B and give rise to an ef-
fective coupling constant ges. In general, we find that the
effective Zeeman coupling tensor takes a different form than
for conventional nonmagnetic semiconductors. This can be
understood from the form of the basis functions in Egs. (13),
(14), and (22).
For the X point, we find

ie
DY) = up(Xaloz|Xa)B: — (M —L)—-B..  (3la)
A _ « N
Dy = up(Xslo|X2)B, — (M* — L )%Bz, (31b)

where the first terms are the spin Zeeman effect and the second
terms arise from coupling to external bands. Note that an
external magnetic field in the xy plane does not couple directly
to the electronic states at the X point within the regime of the
two-band model. This is consistent with the form of the basis
functions at the VBM.

Next, we consider the Zeeman effect and the antisymmetric
terms for the N point. We find

D[] = MB(N3|Uy|N3)By - (R3 - R3)_By’ (323)

hc
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DY = 1up (N30, |Ns) By 4 1p (N30 |Ny)B,

ie ie
—(Sy — Sp)—B, + (T, — T,)—B,,  (32b)

hc hc

DSY = pp(Nslow|N3) By, + 1p(Nalo,|N3)B,
—(S* — S*)i—eB +(T* — T*)i—eB (32c¢)
a b pe ™t a b pe "

A _ % ie

D5 = tp(NaloyINa) By — (Rs = Rj)--By. (32d)

The N point has a lower symmetry than the X point. Here,
the bands are split by an external magnetic field in all di-
rections. There is a finite Zeeman coupling for each of the
bands individually in the y direction. Figure 5(b) shows that
(N3|oy|N3) ~ —(N4|oy|Ns) at the CBM.

VII. CYCLOTRON RESONANCE

The values of the effective mass tensors of the valence band
maxima and the conduction band minima can be experimen-
tally determined. One possibility is to measure the cyclotron
resonance due to an AC electric field E in the presence of a
static magnetic field B. In this section, we investigate how the
cyclotron resonance depends on the direction of the magnetic
field. As discussed in Sec. IV B, both the VBM and CBM
have a two-band structure with a splitting that appears in the
presence of SOC. As shown in Sec. V, the effective masses
of these split bands differ. Hence, this structure may give rise
to twice the number of resonance peaks as for a single band.
The onset of the extra peaks should depend on temperature
and carrier density. Consider the equation of motion

d(m* Vg4 ) m* Vg
dr T

= e(E + [vq x B)), (33)

where vq is the carrier drift velocity, m* is the effective mass
and 1, is the scattering time [56]. To solve Eq. (33) within the
many-valley model of chalcopyrite, we introduce a coordinate
system (€, &, 3) that diagonalizes the effective mass tensor.
Furthermore, we define directional cosines of the magnetic
field B with respect to this coordinate system as

B-é1 B-éz B'éS
= —, = —, y = .
IB| IB| IB|

(34)

These coordinates diagonalize the effective mass tensor such
that

ny 0 0
m =10 mm 0] (3%
0 0 ms3

Equation (33) yields w. = (e/m*™)B for the resonance fre-
quency, where

. mymyn;
m = 2 2 2,
a‘my + B*my + yims

Here, we neglected E and 7,,! at the resonance frequency for
simplicity. Both the diagonalizing coordinate system and the
effective mass tensor are, in general, valley specific. The ef-
fective mass tensors at related valleys are found from Eq. (17).

(36)

Now we consider Eq. (36) for the VBM explicitly. The
effective mass tensor in Eq. (18) is diagonal in the basis

V2 V2

(17170)5 é2:7(_17130)7 é3=(05071)’

(37)

e = —
T2
with principle effective masses

X

X X
My = My + Myy, My = My — My, My =y, (38)

at the X point. The related effective masses at X’ are
X X X' X X' X (39)

my =mj, m, =my, m; =m3.

The two valleys are equivalent with respect to a magnetic field
in the Z direction. The effective mass in such a configuration

is
*
m* = /mimy =\ /m% —ml. (40)

For a magnetic field, B in the xy plane, with a polar angle 6
with respect to the x axis, the effective mass is

% mymyms
m = — 5.
my sin“ @ + my cos” 6

(41)

Hence, in general, the two valleys give two distinct cyclotron
resonance frequencies for an in-plane magnetic field. The
number and the relation between the cyclotron resonance fre-
quencies can be used to verify that the VBM is located at the
X point.

The CBMs consist of the four inequivalent N-valleys as
defined in Sec. V B. Each valley has a distinct effective mass
tensor, although the tensors are related as in Eq. (17). The
coordinate system in which each tensor is diagonal differs.
The four sets of unit vectors are

¢, =1(0,1,0),
A~ Myx — Myz — A
=C_{————,0,1),
2, ( o ) )
xx A
o = C+<w, 0. 1)
2my,
for the N point,
¢, =(0,1,0),
Al —Myxx + mzz +A
=C_| ———,0,1),
6’2 ( 2mxz ) (43)
~ —My +my; — A
=C,| ——,0,1).
© *( 2m, )
for the N’ point,
é/l/ = (1’ 07 0)7
—My +m,, + A
ef=C_[0, —/——=——,0,1),
. ( 2. (44)
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for the N” point and
é/l// = (1’ Oy 0)9

o —c (o MMz A
2 — s 2mxz s Uy s (45)
o = C+<O, Mox — Mz + A 1)

2my,

for the N” point. We introduced the variable A =
V/(myx — m_;)> + 4m?2_ for notational convenience. The nor-
malization constants are

-1

1 o — A\’

2 2my,
A ) 2

C = 1 4+ Myx — My; —
I ) 2m,,

-1

(46b)

The effective mass tensor for each valley is diagonal with
respect to their coordinate system. For each of the four valleys,
the diagonal elements are

mp = my,, (47a)
np = %(mxx + my — A)’ (47b)
msz = %(mxx + my + A) (47C)

In this way, cyclotron resonance is a good way to verify the
suggested multivalley structure of both the VBM and CBM.

VIII. CONCLUSIONS

CuFeS; is a semiconducting collinear AFM with a non-
symmorphic crystal lattice. Its MSG allows for intriguing
properties such as spin-polarized electron bands and the
anomalous Hall effect. We have explored its low-energy elec-
tron properties based on its magnetic symmetry group and
DFT calculations. On phenomenological grounds, we found
that the conductivity has components scaling linearly with
the Néel vector. This included both diagonal and off-diagonal
elements of the conductivity tensor. The latter corresponds
to the anomalous Hall effect. The electron dispersion ren-
dered a multivalley semiconductor with an indirect band gap
of 0.779 eV. Consistent with the magnetic symmetry class,
we found the electron bands to be partly spin polarized. In
particular, we found an in-plane spin polarization at the CBM.
We developed effective k - p models of the VBM and CBM.
The resulting effective mass tensors were quantified by the
ab initio calculations. We extended the models to include
an external magnetic field using the envelope function ap-
proximation. Lastly, we suggested how to verify the effective
mass tensors experimentally. The approach takes into account
the multivalley band structure and serves as a framework for
measuring the effective mass at and verifying the location of
the determined CBM and VBM, specifically.
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APPENDIX A: ALTERNATIVE MAGNETIC
CONFIGURATIONS

In total, the energies of five magnetic configurations were
calculated. The magnetic configurations are shown in Fig. 6.
The energies of the magnetic configurations are given in
Table V. The A-type magnetic configuration has the lowest
energy and is the state considered throughout the main text.

APPENDIX B: EVALUATION OF MATRIX PRODUCTS

We evaluate the matrix products based on the symmetry
of the respective wave functions and the transformation prop-
erties of operators. As an example, we consider the matrix
product

(X10|Y), (B1)

where the bra state, ket state, and the operator transform as
the irreducible representations I'xy and I'y, Iy, respectively.
To determine if the matrix product is finite, we consider the
corresponding tensor product

Ix®Cp®Ty =P

1

(B2)

where the right-hand side is a direct sum of irreducible repre-
sentations. The matrix product is then finite if and only if the

TABLE V. Energy per formula unit of five magnetic configura-
tions relative to that of the A-type configuration.

Type A A’ C G FM

Energy OmeV 31.5meV 130.1 meV 139.0meV 54.5 meV
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sum on the right-hand side contains the trivial representation
I';. Furthermore, we can relate distinct matrix products by
using that the value of all matrix products is invariant under
the relevant symmetry operations.

APPENDIX C: DEFINITION OF FREE PARAMETERS

Inthe k - p theory, we consider the coupling between bands
to second order in the H,., perturbation in Eq. (8). The re-
sulting free parameters are typically treated semiempirically.
In this paper, we consider them as free parameters to be
determined experimentally. In the following, we define the
free parameters used in Secs. V and VI.

1. The X point

The X point exhibits four distinct one-dimensional repre-
sentations. We call these X5, X3, X4, and X5 consistent with
the Bilbao Crystallographic Server [39].

First, we present the parameters describing the coupling
between the X, band to all external bands:

|(X2| P i) |2 R (X2 |P i)
Ar = 22 Ez— - ZZ E,—E; (€1
ielr; ielr;
|{Xo| P, Il |2
By=-— Z : (C2)
ielr,
[{(X2| Py Il |2 n [{(X2|Py Il
G = m2 Z m2 Z (S
ielrs ielrs

Here, the sums run over all bands i, which transform as
the representation Ir,. In addition, we include the processes
mixing P, P, and P;:

S
Azzgg—%gg&g LI
= ; FIEEER (o)
-G, = m2 Z w (C7)

i€lrs

Note how the nonsymmorphic mirror symmetries (o,,|7) and
(0o3y|7) relate the P, and P, components.

Now we consider the coupling of the X4 band to all other
bands:

X4|P|z |2 R [(Xa|P]i)?

Ay = ==y ———  (C¥)
— 2 — FE.
ielrs E4 m ielrs E4s—E
X4|P |l
o Z = (C9)
ielry E4
|(Xa|Peli) > R X, |Py|i)|?
Z (X |z| B BIDe o
2 E4 — m2 4 E4 — E,'
i€lrs i€lrs

The mixed-momentum components are

(X4 | P8} (i | Py | Xsg)
—Ai=— Z T’ (C11)
i€lrs
(X4l Py i) (i| P | Xa)
—A, = 22?’ (C12)
i€lrs
(X4 | Py i) (i Py| Xq)
=— Z - (C13)
i€lrs
(X4 | Pyl i) (i| Py |X4>
— Z LA LG (C14)

E,—E

ielrs

Now we consider the off-diagonal terms. That is, coupling
between the X, and X, band to second order in momentum

ﬁ (Xa| Py i) (i Py | Xa)
M=— -_— C15
. Z E_E (C15)
i€lrs
(X2 |Py1T) (il Py | X.
_ 22 2|Py17) l| | 4)» (C16)
m E4 -
i€lr,
2 X, | P li) (i| P | X.
[ (Xo| Pe|d) (il Px| 4)’ €17
m2 E4 — E
zeIr5
(X2 |Py i) (i| Py|X.
22 2Py ) l| | 4). (C18)
E, —
i€lrs
Now we consider mixing of Py, P,, and P, terms:
(X2 |Peli) (il Py | X.
" i LT L] 4>, c19)
E, —
i€lrs
(Xa| Py i) (i Py |X4)
z— 20
i€lrs
n (Xa| P i) (i Py| Xa)
L=— - C21
> Z E_E (C21)
i€lrs
n (Xa| Pyl i) (i Py |X4)
—L=— - C22
3 SalBhnir )

2. The N point

In this section, we define the free parameters related to the
effective description of the CBM. For each of the two bands,
these are

(N
A= Z Wl (C23)
zeIr;
|(N4| P, |z
Av=— Z o (C24)
1€Ir4
|(Na|Py |z
By=-— Z o (C25)
ielry
(N3] P,
Bi=1s Z (N3] 'l (C26)

ielr;
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|(N5] P, |z
22 3 (C27)
i€lry
|(Na| P, i) |2
ZZ E_F (C28)
i€lrs
(N3 |P,|i) (i| P,|N:
R = 22 3 |l (i |3)’ (C29)
i€lry
(N4 | P, i) (i| P, N.
Re = 22 1P i) GIP:INs) 30

E,—E

i€lrs

The off-diagonal coupling is captured by the free parameters:

I Z (N3] Pyli) (i| Py |Ny)

S, = — , 1
m? - E; — E; €30
i€lrs
B <~ (N3|Pyli) (i] Py|Na)
S, = — _— C32
= Z EE (C32)
ZEII4
B < (N3|Pyli) (i P.|Ns)
T, =— _— C33
m2 Z E3 — Ei ( )
lEII‘z
i (N3| P, i) (i| P, | Ny)
=5 —3 : (C34)

ielry
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