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In this work, we study quantum many-body systems which are self-dual under duality transformation connect-
ing different symmetry protected topological (SPT) phases. We provide a geometric explanation of the criticality
of these self-dual models. More precisely, we show a ground state (quasi)degeneracy under the periodic boundary
conditions, i.e., the ingappability of the bulk spectrum. Equivalently, the symmetry group at criticality, including
the duality symmetry, has a mixed ’t Hooft anomaly. This approach can not only predict the spectrum of the
self-dual model with ordinary 0-form symmetry but also be applied to that with generalized symmetry, such as
higher form and subsystem symmetry. As an application, we illustrate our results with several examples in one
and two dimensions, which separate two different SPTs.
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I. INTRODUCTION

One central task of condensed matter theory is to classify
different phases and phase transitions. In the past two decades,
many exotic gapped phases beyond the Landau paradigm
have attracted a considerable amount of interest. A family of
gapped quantum many-body systems which has been exten-
sively studied is the SPT phase, such as the Haldane phase
of the spin-1 antiferromagnetic Heisenberg model [1–6] and
bosonic analogs of topological insulators and superconductors
[7,8]. In general, a nontrivial SPT phase can be characterized
by a short-range entangled ground state on a closed lattice [9],
nonlocal string order [10–12], gapless edge states [6,13,14],
and entanglement spectrum [5,6], which is protected by a
global symmetry symmetry G. One systematical way to con-
struct nontrivial SPT phases is via decorating domain wall
[15,16], starting from the lower dimensional SPTs. This do-
main wall decoration can be implemented through finite depth
unitary operators [17], which defines a duality relating differ-
ent SPT phases by conjugating their Hamiltonians.

While the topological properties of the SPT phases are
by now largely well-understood, our understanding of phase
transitions between them is still under development. Since an
SPT phase does not break any symmetry, the phase transition
between SPT phases is expected to host novel quantum crit-
ical behavior, which is beyond the Landau-Ginzburg-Wilson
(LGW) paradigm. Recently, many analytic and numerical
development displays deep connections between such phase
transitions and deconfined quantum critical points (DQCP)
[18–23], including the study of quantum criticality separating
SPT phases in 1D and 2D [24–32]. However, this scheme can
not tell us dynamic properties of criticality from microscopic
models, such as the deconfined degrees of freedom. Thus an
overarching theoretical framework of such quantum criticality
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is still lacking. Moreover, the existing research mainly fo-
cuses on the phase transition between SPT phases which is
protected by 0-form symmetry and classified by the group
cohomology. However, the study of critical theory with gen-
eralized symmetry, such as higher form symmetry [33–39]
and subsystem symmetry [40–43], has remained relatively
scarce.

In this work, we will focus on the system where the duality
relating different SPT phases becomes a nononsite symme-
try, i.e., the system is self-dual. The self-duality forces the
system to stay on the boundary separating duality-related
phases, often inducing critical or muticritical points. There
have been several studies showing that this duality symmetry
often shares an ’t Hooft anomaly with the 0-form symmetry
protecting SPT phases, based on the group cohomology fixed
points wavefunctions and short-range entanglement properties
of SPT states [44,45]. Therefore the approach above strictly
hold away from the critical point and break down when the
correlation length diverges. One can expect that this approach
can still be applied to critical points and imply restrictions on
the dynamical properties, since ’t Hooft anomaly is preserved
in the renormalization group (RG) flow [46]. Intuitively, this
result can be understood as follows: the system with an ’t
Hooft anomaly is imposed with general constraints on its
spectrum by the notion of ingappabilities [47–55], namely the
system cannot have a unique symmetric gapped ground state,
which is consistent with the fact that duality operator connects
different SPTs.

The work presented here is to provide another geometric
approach which can be directly applied to any local self-
dual Hamiltonian with additional onsite symmetry rather than
basing on fixed-point Hamiltonians and wavefunctions. More
precisely, we will prove the ingappability of the bulk spectrum
of the self-dual model by making use of the spectrum robust-
ness argument on the symmetry twisted boundary conditions
(STBC) [56–58], which does not depend on the divergent
behavior of correlation length. Moreover, our approach can
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also apply to the self-dual model with generalized symmetry,
such as higher form and subsystem symmetry. Therefore we
can use this method to discuss the dynamical properties of
phase transitions between SPT phases protected by general-
ized symmetry, which can provide insights to field theory and
numerical study to determine their properties. In the main text,
we shall restrict our attention to the system with several Z2

symmetry and prove the ingappabilities in a systematic man-
ner. The generalization to ZN symmetry is straightforward and
the related discussion is provided in the Appendix.

The organization of the paper is as follows. In Sec. II,
we discuss ingappabilities of the systems with duality and
(Z2)d+1 0-form symmetry in d spatial dimensions. More pre-
cisely, we begin with the detail of proof for ingappabilities
in one-dimensional models and provide an intuitive argument
for higher dimensional models, while the rigorous proof is left
in the appendices. In Sec. III, we apply a similar method to
prove ingappabilities of two kinds of self-dual models. The
first kind of model possesses the Z2 × Z2 subsystem sym-
metry which only acts on one-dimensional sublattice, whose
spatial dimension can be arbitrary. The other kind respects
Z2 one-form symmetry and Z2 zero-form symmetry, which
is defined on the two-dimensional lattice. As an application
of our framework, we present some concrete examples in one
and two dimensions in Sec. IV. These models exhibit critical
properties which are consistent with our general proof. In
Sec. V, we end with a conclusion and discussion of directions
for future studies.

II. INGAPPABILITIES OF DUALITY
AND 0-FORM SYMMETRY

In this section, we will consider duality transformation
which is used to construct bosonic SPT phases protected by
a 0-form discrete symmetry. And we will study ingappabil-
ities of the self-dual system where the duality becomes an
emergent symmetry. More precisely, we focus on the (Z2)d+1

symmetry on d-dimensional lattice and the duality operator
U(0, 0, . . . , 0︸ ︷︷ ︸

d+1

) can be realized as multiqubit control-Z op-

erators [17]. The discussion on general ZN cases in one
dimension will be provided in Appendix A.

A. One-dimensional model with duality symmetry
and ZA

2 × ZG
2 onsite symmetry

Let us warm up with a closed chain and assign two spin- 1
2 ’s

per unit cell: the spins σ living on the integer sites are charged
under ZG

2 while those living on the half-integer sites to be
denoted τ are charged under ZA

2 . The symmetry operators are
defined to be

UA =
L∏

i=1

τ x
i− 1

2
, UG =

L∏
i=1

σ x
i , (1)

where σ a
i and τ a

i− 1
2
, a = x, y, z, are Pauli matrices acting on the

two spin- 1
2 ’s, and L is the number of unit cells. The nononsite

Z(0,0)
2 duality symmetry is given by

U(0,0) =
L∏

i=1

CZi− 1
2 ,iCZi,i+ 1

2

=
L∏

i=1

exp

[
π i

4

(
1 − σ z

i

)(
1 − τ z

i− 1
2

)]

×
L∏

i=1

exp

[
π i

4

(
1 − σ z

i

)(
1 − τ z

i+ 1
2

)]
. (2)

It is known that the U(0,0) transformation correspond to the
domain wall decoration [15,59–62] with respect to ZG

2 and ZA
2

symmetry. For example, we can identify the spin configuration
representing the ZA

2 domain wall, i.e., τ z
i− 1

2

τ z
i+ 1

2

= −1. Then

on the link (i − 1
2 , i + 1

2 ), the U(0,0) assigns the wavefunc-
tion an extra minus sign if σ z

i = −1 on the wall. Thus one
assigns a minus sign to the wavefunction with two configura-
tions (τ z

i− 1
2

, σ z
i , τ z

i+ 1
2

) = (1,−1,−1), (−1,−1, 1) and leaves

it invariant for other configurations. Physically, this opera-
tion means that we stack a (0 + 1)d ZG

2 SPT on the link
(i − 1

2 , i + 1
2 ) with nontrivial ZA

2 domain wall configuration.
One can swap the place of σ and τ spin in the explanation
above, then U(0,0) operator must also decorate a nontriv-
ial ZG

2 domain wall with a (0 + 1)d ZA
2 SPT at the same

time.
To see how this duality connects different SPT phases,

one can start with a trivial phase with a paramagnetic
Hamiltonian:

H (0,0)
0 := −

L∑
i=1

(
σ x

i + τ x
i+ 1

2

)
, (3)

whose ground state is the product state:

|GS〉 = ∣∣σ x
i = 1, τ x

i+ 1
2

= 1
〉
. (4)

Then the nontrivial SPT Hamiltonian is arrived at
by conjugating the paramagnetic Hamiltonian by U(0,0),
yielding

H (0,0)
1 := U(0,0)H

(0,0)
0 U †

(0,0)

= −
L∑

i=1

(
σ z

i τ x
i+ 1

2
σ z

i+1 + τ z
i− 1

2
σ x

i τ z
i+ 1

2

)
, (5)

which is known as the cluster model. This Hamiltonian also
possesses a single ground state on a closed chain. However,
if we consider the open boundary condition, there are stable
edge modes localized on the boundaries [15].

Now, let us start to prove ingappabilities for any self-dual
Hamiltonian, namely, a one-dimensional spin-1/2 chain can-
not have a unique gapped symmetric ground state if Z(0,0)

2 and
ZA

2 × ZG
2 are strictly imposed. More precisely, we consider

a closed spin chain of length L with the periodic boundary
condition (PBC), which is used to eliminate possible edge
modes, as we are only interested in the bulk spectra. However,
instead of studying the spectra under PBC directly, let us intro-
duce a Hamiltonian with the ZA

2 -symmetry twisted boundary
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condition (STBC):

τ a
i+L− 1

2
≡ UAτ a

i− 1
2
U −1

A , with i = 1, . . . , L, (6)

where the closed boundary bond is between the sites i = L
and i = 1.

Similar to Ref. [57], this twisted Hamiltonian explicitly
breaks the original Z(0,0)

2 symmetry, but instead is invariant
only when followed by an additional “gauge” transformation:

U (1)
(0,0) = σ z

LU(0,0). (7)

To see it, we begin with a local term Hj,...,L,1/2,...,k in
the Hamiltonian with PBC which crosses the boundary link
(L, 1/2). Here the index ( j, . . . , L, 1/2, . . . , k) means this
term only acts on these sites at most, and the support of
this term is bounded due to locality. Thus after twisting, the
resulting term when k ∈ Z + 1

2 is

H tw
j,...,L,1/2,...,k =

⎛
⎝k+ 1

2∏
i=1

τ x
i− 1

2

⎞
⎠Hj,...,L, 1

2 ,...,k

⎛
⎝k+ 1

2∏
i=1

τ x
i− 1

2

⎞
⎠,

(8)

while when k ∈ Z, it is given by

H tw
j,...,L,1/2,...,k =

(
k∏

i=1

τ x
i− 1

2

)
Hj,...,L, 1

2 ,...,k

(
k∏

i=1

τ x
i− 1

2

)
. (9)

The above equations do not imply that the entire Hamilto-
nians H tw and H are related by a unitary transformation.
If they were related by some unitary transformation, then
their spectra would be identical, which is obviously incorrect.
Formally, they are related by an “ill-defined” transformation∏∞

i=1 τ x
i−1/2. However, as manifested in the above equations,

the long tail until the formal “∞” is invisible to any local
term in the Hamiltonian since the interaction range of the local
terms is bounded by a fixed finite number. Due to this locality
condition, the action of this ill-defined transformation on the
Hamiltonian terms becomes well-defined.

Then we can consider the dual term of this local term, and
under the original periodic boundary condition, it is invariant
up till a change of subscript:

Hj− 1
2 ,...,L,1/2,...,k+ 1

2
= U(0,0)Hj,...,L,1/2,...,kU

†
(0,0). (10)

We notice that this term acts on the region ( j −
1/2, j, . . . , L, 1/2, . . . , k, k + 1/2) at most as U(0,0) only acts
on two nearest-neighbor sites. Imposing the modified trans-
formation onto the twisted local term, the resulting term when
k ∈ Z + 1

2 is

U (1)
(0,0)H

tw
j,...,L,1/2,...,k

(
U (1)

(0,0)

)†

= σ z
LU(0,0)

⎛
⎝k+ 1

2∏
i=1

τ x
i− 1

2

⎞
⎠Hj,...,L, 1

2 ,...,k

⎛
⎝k+ 1

2∏
i=1

τ x
i− 1

2

⎞
⎠U †

(0,0)σ
z
L

=
⎛
⎝k+ 1

2∏
i=1

τ x
i− 1

2

⎞
⎠U(0,0)Hj,...,L, 1

2 ,...,kU
†
(0,0)

⎛
⎝k+ 1

2∏
i=1

τ x
i− 1

2

⎞
⎠

= H tw
j− 1

2 ,...,L,1/2,...,k+ 1
2
. (11)

When k ∈ Z, it is given by

U (1)
(0,0)H

tw
j,...,L,1/2,...,k

(
U (1)

(0,0)

)†

= σ z
LU(0,0)

(
k∏

i=1

τ x
i− 1

2

)
Hj,...,L, 1

2 ,...,k

(
k∏

i=1

τ x
i− 1

2

)
U †

(0,0)σ
z
L

=
(

k∏
i=1

τ x
i− 1

2

)
U(0,0)Hj,...,L, 1

2 ,...,kU(0,0)

(
k∏

i=1

τ x
i− 1

2

)

= H tw
j− 1

2 ,...,L,1/2,...,k+ 1
2
. (12)

Let us give a brief explanation of Eqs. (11) and (12). When
we exchange U(0,0) and the τ x string operator, the σ z opera-
tors on two endpoints of this string are generated. Since the
Hamiltonian term is local, we can consider a long enough
string to twist terms that cross the boundary link. The σ z at
the rightmost site does not touch these local terms and only
σ z

L appears in the modified Z(0,0)
2 symmetry.

In the next step, we consider the local term Hj,...,L, which
ends at the boundary. Thus it is unchanged after twisting.
Moreover, the dual term is as follows:

Hj− 1
2 ,...,L, 1

2
= U(0,0)Hj,...,LU †

(0,0). (13)

After twisting, we can obtain

U (1)
(0,0)H

tw
j,...,L

(
U (1)

(0,0)

)† = U(0,0)σ
z
LHj,...,Lσ z

LU †
(0,0)

= τ x
1
2
U(0,0)Hj,...,LU †

(0,0)τ
x
1
2

= H tw
j− 1

2 ,...,L, 1
2
. (14)

As last, we consider the local term Hj,...,k ( j < k < L) and
its dual term U(0,0)Hj,...,kU

†
(0,0). Since both of them do not cross

the boundary, they are unchanged after twisting. Moreover, we
also notice that U(0,0)Hj,...,kU

†
(0,0) = U (1)

(0,0)Hj,...,k (U (1)
(0,0))

†. Thus
the local term above and its dual term after twisting are also
related by U (1)

(0,0) operator. Thus we conclude that the twisted
Hamiltonian is invariant under this modified duality operator
which finishes proof of Eq. (7).

Since U (1)
(0,0) anticommucates with the UG operator, the

twisted Hamiltonian must have an exactly double degenerate
spectrum. Then we arrive at a rigorous conclusion: If a 1d
ZA

2 × ZG
2 -invariant spin-1/2 chain also possesses Z(0,0)

2 sym-
metry, it must have a doubly degenerate spectrum under STBC
(6).

However, our initial interest is the low-energy spectrum
under PBC. Fortunately, there is a spectrum robustness the-
orem relating STBC and PBC [56–58]: if the (pretwisted)
Hamiltonian under PBC has a unique and gapped ground
state, the twisted Hamiltonian under STBC also possesses a
unique gapped ground state. As a direct consequence, we can
obtain that any Hamiltonian under PBC must either be gapless
or have a nontrivial ground-state degeneracy, rather than a
unique gapped ground state, which finishes the proof of the
ingappability of bulk spectra.

Here we remark that if the system under PBC is in the
SSB phase, then either the global onsite symmetry is broken
or the duality symmetry is broken. The first case will be
discussed in Sec. IV, where SSB phases can be detected by
the expectation value and correlation function of local order
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FIG. 1. The triangular lattice where spins on the vertices are
colored in red, green, and blue. The symmetry is generated by spin
flips on each sublattice.

parameters. Besides, if only the duality symmetry is broken,
the degenerate ground states should have the same topological
response as, respectively, the trivial and the nontrivial SPT
states, i.e., it can be detected by the string order parameter.
Nevertheless, a concrete example of such an SSB can be a
future interest.

B. Two-dimensional model with duality symmetry and (Z2 )3

onsite symmetry

In 2 + 1 dimensions, we focus on the triangle lattice shown
in Fig. 1 and assign a spin 1

2 on each vertex.
Then one can naturally consider the onsite (Z2)3 symmetry

generated by spin flips on each of the three sublattices, which
are colored by red, green, and blue:

UA =
∏
v∈A

σ x
v , UB =

∏
v∈B

τ x
v , UC =

∏
v∈C

μx
v. (15)

Here we label sublattice by A, B, and C.
The duality operator connecting trivial and nontrivial SPT

phases protected by this (Z2)3 symmetry is given by [17]

U(0,0,0) =
∏

(i, j,k)∈�
(CCZ)i, j,k,

(CCZ)i, j,k|α, β, γ 〉i, j,k = (−1)αβγ |α, β, γ 〉i, j,k, (16)

where � represents the sets of all triangles and CCZ is a
unitary operator acting on each triple of spins belonging to
one triangle. Moreover, α, β, and γ belong to {0, 1} and they
represent the spins of i, j, k sites where spin up corresponds
to 0 and spin down corresponds to 1.

To see the effect of the duality operator, one can also start
with the paramagnetic Hamiltonian which is in a trivial SPT
phase:

H (0,0,0)
0 = −

∑
v∈A

σ x
v −

∑
v∈B

τ x
v −

∑
v∈C

μx
v. (17)

Then the nontrivial SPT Hamiltonian is obtained by conjugat-
ing the paramagnetic Hamiltonian by U(0,0,0), yielding

H (0,0,0)
1 := U(0,0,0)H

(0,0,0)
0 U †

(0,0,0) = −
∑

v

Ov, (18)

FIG. 2. The local term Ov where a Pauli X operator at the vertex
v is decorated by CZ operators on all links surround this vertex.

Ov∈A = σ x
v

∏
e∈1−link(v)

CZe, Ov∈B = τ x
v

∏
e∈1−link(v)

CZe,

Ov∈C = μx
v

∏
e∈1−link(v)

CZe. (19)

Here Ov operator is represented in Fig. 2 including CZ opera-
tors on all links e surround the vertex v. These links are also
known as the 1-links of vertex v [17]. Moreover, X operator
corresponds to the Pauli operator σ x or τ x or μx.

In fact, there are seven distinct generators for SPT phases
protected by Z2 × Z2 × Z2 symmetry according to the group
cohomology, which can be classified into three types, named
types I, II, and III. The Hamiltonian (18) in our inter-
est corresponds to the type III, which generates the class
H1(Z2, H2(Z2 × Z2, U(1))). Physically, it can be understood
as decorating a one dimension SPT phase protected by the
last two Z2 symmetries on the domain wall of the first Z2

symmetry [15].
Now, let us discuss the ingappability of the bulk spectrum

of the self-dual model. Similar to Sec. II A, we first twist the
boundary condition by Zσ

2 symmetry and the closed bound-
ary is an armchair line shown in Fig. 3. Then the twisted
Hamiltonian explicitly breaks U(0,0,0) but possesses a modified
symmetry

U (1)
(0,0,0) = U(0,0,0)U(0,0)(Sred), (20)

where Sred represents the red solid line in Fig. 3.
In the next step, we can continue to consider the STBC in

another direction where the addition closed boundary is the
green armchair Zτ

2 line in Fig. 4.
After twisting, both two operators in U (1)

(0,0) will be modified
according to Eq.(7) and Eq.(20). Thus the modified duality
transformation is as follows:

U (2)
(0,0,0) = U(0,0,0)U(0,0)(Sgreen)U(0,0)(Sred)μz

d . (21)

Here Sgreen represents the green solid line and μz
d comes from

modifying of U(0,0)(Sred).
Since U (2)

(0,0,0) anticommutes with UC , all the eigenstates
of the STBC Hamiltonian are doubly degenerate. Then
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FIG. 3. Twisted boundary condition by Zσ
2 symmetry. The red

solid links represent CZ operators of τ and μ spins in U (1)
(0,0,0).

according to the robustness of the spectrum under STBC, this
result implies an ingappability of the system under PBC, i.e.,
a unique gapped ground state is forbidden. Hence, the only
task is to prove Eq. (20). We will provide an intuitive proof on
an infinite lattice without boundaries, which should be valid
for a closed lattice in the thermodynamic limit. A rigorous
proof for the periodic boundary condition will be provided in
Appendix B.

We first span the ground state by the eigenstate of Z oper-
ators:

|GS〉 =
∑

(i, j,k)∈�/�
ψi jk|α1, α2, α3〉i jk . (22)

Since the lattice now is not closed, the twisted “bound-
ary condition” in the Fig. 3 is equivalent to adding a same
armchair Zσ

2 twisting line. More precisely, the twisted Hamil-
tonian and original Hamiltonian are related by a unitary

FIG. 4. Twisted boundary condition by Zσ
2 symmetry and Zτ

2

symmetry. The green solid links represent CZ operators of σ and
μ spins in the U (2)

(0,0,0).

transformation: H
Zσ

2
tw = (

∏
v∈K σ x

v )H (
∏

v∈K σ x
v ), where the K

is the set of all A sites below this twisting line. And
the corresponding ground state is |GS〉Zσ

2
tw = ∏

v∈K σ x
v |GS〉.

Moreover, the modified duality operator becomes U (1)
(0,0,0) =

(
∏

v∈K σ x
v )U(0,0,0)(

∏
v∈K σ x

v ).
Let us focus on the action of the duality operator on the

two neighboring triangles which consist of a, b, c and d sites
in Fig. 3. The phase of the original duality operator is given
by

U(0,0,0)|α1, α2, α3, α4〉 = (−1)(α2+α3 )α1α4 |α1, α2, α3, α4〉,
(23)

where α1, α2, α3, and α4 represents the spins of a, b, c, and
d sites.

After inserting this red twisting line, we need to flip the
spin of c site in these two triangles. Then local action of the
duality operator is

U (1)
(0,0,0)|α1, α2, α3, α4〉 = σ x

c U(0,0,0)σ
x
c |α1, α2, α3, α4〉

= U0,0,0CZa,d |α1, α2, α3, α4〉, (24)

where CZa,d acts on the solid red link as a domain wall of b
and c sites. We can sum over all pairs of neighbored triangles
which are separated by the twisting line and the total addition
phase is U(0,0) on solid red links in Fig. 3. This region is also
an armchair line and is locally parallel to the twisting line.
Therefore the modified duality operator after adding the Zσ

2
symmetry twisting line is Eq. (20), which finishes our proof.

C. Higher dimensional model with duality symmetry
and onsite symmetry

Finally, we can generalize our discussion to the ingap-
pability for (d + 1)-dimensional model with (Z2)d+1 onsite
symmetry and duality symmetry. Let us consider a d-
dimensional simplicial lattice which is (d + 1)-colorable with
color labels a1, . . . , ad+1 and place a spin- 1

2 on each vertex.
One can naturally define a (Z2)d+1 onsite symmetry associ-
ated to spin-flips on each sublattice ai

Uai =
∏
ν

X (ai )
ν . (25)

Then the duality operator is defined as

U(0, 0, . . . , 0︸ ︷︷ ︸
d+1

) =
∏

(i1,i2,...id+1 )∈�
(C⊗d Z)i1,i2,...id+1 ,

× (C⊗d Z)i1,i2,...id+1 |α1, α2, . . . , αd+1〉i1,i2,...id+1

= (−1)
∏d+1

j=1 α j |α1, α2, . . . , αd+1〉i1,i2,...id+1 ,

(26)

where � represents the sets of all d-simplexes and αk = 0/1
represents the spin up/down on the site k.

Similar to the argument in Sec. II B, we begin with the
boundary condition twisted by the Ua1 operator. More pre-
cisely, we consider a closed and connected d − 1-dimensional
sublattice S1 which consists of d − 1-dimensional sim-
plex colored in a2, . . . , ad+1. The d − 1-dimensional twisted
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boundary is placed close and locally parallel to the d − 1-
dimensional sublattice above. Then the twisted Hamiltonian
possesses a modified duality symmetry

U (1)
(0, 0, . . . , 0︸ ︷︷ ︸

d+1

)
= U(0, 0, . . . , 0︸ ︷︷ ︸

d+1

)U(0, 0, . . . , 0︸ ︷︷ ︸
d

)(S1). (27)

Next, we continue to twist the boundary condition by the
Ua2 operator similarly and the twisted boundary is close and
locally parallel to a closed and connected d − 1-dimensional
sublattice S2 which consists of d − 1-dimensional sim-
plex colored in a1, a3, . . . , ad+1. According to Eq.(27),
this twisted Hamiltonian possesses a new modified duality
symmetry

U (2)
(0, 0, . . . , 0︸ ︷︷ ︸

d+1

)

= U(0, 0, . . . , 0︸ ︷︷ ︸
d+1

)U(0, 0, . . . , 0︸ ︷︷ ︸
d

)(S2)U(0, 0, . . . , 0︸ ︷︷ ︸
d

)(S1)

×U(0, 0, . . . , 0︸ ︷︷ ︸
d−1

)(S1 ∩ S2). (28)

Here S1 ∩ S2 is a closed and connected d − 2-dimensional
sublattice S2, which consists of d − 1-dimensional simplex
colored in a3, . . . , ad+1.

Moreover, we can continue to twist the boundary con-
dition by the Ua3 ,Ua4 , . . . ,Uad operators step by step. The
final twisted Hamiltonian possesses a new modified duality
symmetry

U (d )
(0, 0, . . . , 0︸ ︷︷ ︸

d+1

)

= U(0, 0, . . . , 0︸ ︷︷ ︸
d+1

)

d∏
k=1

∏
{iα}

U(0, 0, . . . , 0︸ ︷︷ ︸
d+1−k

)

( ∩k
α=1 Siα

)
. (29)

When k < d , the operator U(0, 0, . . . , 0︸ ︷︷ ︸
d+1−k

)(∩k
α=1Siα ) com-

mutes with all onsite symmetries since the sublattice ∩k
α=1Siα

is closed. However when k = d , this operator is the prod-
uct of Z operators in the sublattice ∩d

i=1Si. We can assume
∩d

i=1Si is one site colored in ad+1 and thus the final modified
duality operator (29) anticommutes with Ud+1. Then all the
eigenstates of the final twisted Hamiltonian are doubly de-
generate which implies an ingappability of the spectra under
PBC.

To prove Eq. (27), we also provide an intuitive proof on the
infinite lattice without boundaries here and the rigorous proof
for the periodic boundary condition is left in Appendix B.
Now, the twisted “boundary condition” is equivalent to adding
a same armchair twisting line. Similarly, we only need to fo-
cus on the action of the duality operator on the two neighbored
d-dimensional simplex separated by the twisting line. We
denote that one simplex has sites (i1, i2, . . . id+1) and the other
has sites (i2, i3, . . . id+2). Thus they share a d − 1-dimensional
simplex with sites (i2, i3, . . . id+1) which belongs to S1. Since
the sites of each d-dimensional simplex are in different colors,
the sites (i2, i3, . . . id+1) has different colors and i1 and id+2

share the same color. The phase of the duality operator is given

by

U(0, 0, . . . , 0︸ ︷︷ ︸
d+1

)|α1, α2, . . . , αd+2〉

= (−1)(α1+αd+2 )
∏d+1

j=2 α j |α1, α2, . . . , αd+2〉. (30)

Then if we insert a twisting line between the sites i1 and id+2,
the duality operator is twisted locally as

U (1)
(0, 0, . . . , 0︸ ︷︷ ︸

d+1

)
|α1, α2, . . . , αd+2〉

= X (a1 )
i1

U(0, 0, . . . , 0︸ ︷︷ ︸
d+1

)X
(a1 )
i1

|α1, α2, . . . , αd+2〉

= U(0, 0, . . . , 0︸ ︷︷ ︸
d+1

)(C
⊗d−1Z)i2,i3,...id+1 |α1, α2, . . . , αd+2〉.

(31)

We can sum over all C⊗d−1Z on the d − 1-dimensional
simplex for all pairs of neighbored d-dimensional simplex
separated by the twisting line and the total addition phase
is U(0, 0, . . . , 0︸ ︷︷ ︸

d

)(S1). Therefore the modified duality operator

after symmetry twisting is Eq. (27).

III. INGAPPABILITIES OF DUALITY AND HIGHER
FORM OR SUBSYSTEM SYMMETRY

In this section, we will discuss the ingappability of the bulk
spectra of lattice models with higher form or subsystem sym-
metry and duality symmetry. Similarly, this duality operator
also connects trivial and nontrivial SPT phases. We will focus
on the Z2 case, but the generalization to ZN case should be
straightforward.

A. Ingappabilities of duality symmetry and Z2 × Z2

line symmetry

We begin with a generalization of the result in Sec. II A to
spin system invariant under duality and Z2 × Z2 line symme-
try which is a special subsystem symmetry.

Let us consider a d-dimensional body-centered cubic
(BBC) lattice. The BCC lattice can be regarded as two dis-
placed simple cubic lattices and we denote them as A/B
sublattice. They live in the center of cubes of each other.
Hence we can naturally assign two kinds of spin- 1

2 ’s: the
spin- 1

2 ’s σ living on the A sublattice are charged under ZG
2

while those living on the B sublattice are charged under ZA
2

and denoted as τ . The Z2 × Z2 line symmetry is generated by
spin flips of each straight line and the number of generators
is proportional to Ld−1. Furthermore, the nononsite decorated
domain wall duality operator is given by

UDW =
∏
〈i, j〉

exp

[
π i

4

(
1 − σ z

i

)(
1 − τ z

j

)]
, (32)

where 〈i, j〉 is a pair of nearest neighbored sites.
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FIG. 5. The local terms in the SSPT Hamiltonian. τ and σ spins
live in blue and red sites, respectively.

As before, one can start with the trivial cubic paramagnetic
Hamiltonian:

Hcubic := −
∑
i∈A

σ x
i −

∑
i∈B

τ x
i . (33)

After conjugating this Hamiltonian by duality operator, one
can obtain nontrivial subsystem symmetry protected topolog-
ical (SSPT) Hamiltonian:

HSSPT = UDW HcubicU
†
DW

= −
∑

CA, j∈CA

τ x
j

∏
i∈CA

σ z
i −

∑
CB, j∈CB

σ x
j

∏
i∈CB

τ z
i . (34)

Here CA(CB) refers to the cube of A(B) sublattice including its
vertex and center.

In fact, when d = 1, the subsystem symmetry is the ordi-
nary ZA

2 × ZG
2 symmetry and the duality operator and SPT

Hamiltonian are the same as Sec. II A. If we take one step
further and consider d = 2, the BBC lattice is shown in Fig. 5
and the Hamiltonian of nontrivial SSPT phase is [40]

H2d
SSPT = −

∑
iklm∈CA

τ x
i σ z

j σ
z
k σ z

l σ z
m −

∑
i jklm∈CB

σ x
i τ z

j τ
z
k τ

z
l τ

z
m. (35)

The first term involves the four σ z spins and the τ x in the blue
plaquette. The second term involves four τ z spins and the σ x

in the red plaquette.
Moreover, if we combine the Hamiltonians (35) and (33) in

two dimensions, it has been shown that this self-dual model is
in a first-order phase transition separating the nontrivial SSPT
phase and trivial paramagnetic phase [63–66].

Now let us start to prove the ingappability of the general
self-dual model where UDW becomes a symmetry and Z2 ×
Z2 line symmetry is imposed. Similar to the section above,
we choose one straight line and twist the boundary condition
by the spin flip operator supported by it.

For simplicity, we assume τ spin’s coordinates are all inte-
ger and σ spin’s coordinates are all half integer. Without loss
of generality, we choose a horizontal line of τ spins whose
coordinates except x1 are all zero. Moreover, the twisted link
is put between sites x1 = L and x1 = 1. Then following the
same calculation in Sec. II A, the twisted Hamilton possesses

FIG. 6. The body center square lattice where σ spins colored in
red live on the center and τ spins colored in blue live on the link of
each plaquette.

a modified duality symmetry by a “gauge” transformation:

U (1)
DW = UDW

2d−2∏
i=1

σ z
i , (36)

where the coordinate of site i is (x1 = L − 1
2 ,± 1

2 , . . . ,± 1
2 ).

For example, when d = 2, we can choose the straight line
l in the green frame and twist the boundary condition by the
operator

∏
i∈l τ x

i . The twisted link can be put between site e
and f . Then one can directly show the modified UDW is

U (1)
DW = UDW σ z

pσ
z
q . (37)

It is obvious that the modified duality operator Eq. (36)
anticommutes with Zσ

2 spin flip supported by the horizontal
line whose coordinates except x1 are ± 1

2 . Thus we conclude
that if a Z2 × Z2 line symmetry-invariant spin-1/2 model
also possesses ZDW

2 duality symmetry, it must have a dou-
bly degenerate spectrum under STBC. Then according to the
spectrum robustness theorem connecting PBC and STBC, we
can arrive at ingappabilities of the bulk spectra of Hamiltonian
under PBC. Moreover, we remark that this requirement for
the ingappability can be relaxed where the lattice model only
needs to preserve the Z2 × Z2 subsystem symmetry supported
on two nearest neighbored parallel lines and ZDW

2 duality
symmetry.

B. Ingappabilities of duality symmetry and Z2 0-form
and Z2 1-form symmetry

Besides the subsystem symmetry, we can also discuss
ingappabilities of the two-dimensional lattice model which
preserves a Z2 0-form and Z2 1-form symmetry and duality
symmetry.

Let us consider a two-dimensional body-centered square
lattice shown in Fig. 6. However, now we place τ spins col-
ored in blue on each link whose coordinates are integer and
half-integer and σ spins colored in red on the center of each
plaquette whose coordinates are both half-integers.

The 0-form Z2 symmetry operator is generated by the spin
flip of σ :

UG =
L∏

i, j=1

σ x
i+ 1

2 , j+ 1
2
. (38)
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FIG. 7. Two generators of 1-form Z2 symmetry on torus.

The 1-form symmetry operator is a string of τ x operators
supported on a noncontractible loop M:

UA(M ) =
∏

e∩M 	=∅

τ x
e . (39)

Here e ∩ M 	= ∅ means the link e intersects with the loop M.
Moreover, two configurations |{τ z

e }〉 and |{τ̃ z
e }〉 are gauge

equivalent if they are related by a Z2 gauge transformation:

τ̃ z
e = Wmτ z

eW −1
n , (40)

where m, n are sites on the boundary of link e and Wm/n = ±1.
Thus, the elements of Z2 1-form symmetry group on the torus
correspond to the cohomology group H1(T 2,Z2) after con-
sidering the Z2 gauge equivalence class, which differs from
the subsystem symmetry.

For example, two generators of the cohomology group are
spin flips on the link which crosses the x line and the y line
shown in Fig. 7. Physically, they correspond to inserting a
different π flux through the two holes in the torus.

Moreover, the nononsite duality operator is given by deco-
rated domain wall construction [17]:

U(0,1) =
∏
〈a,b〉

exp

[
π i

4

(
1 − σ z

a

)(
1 − τ z

b

)]
. (41)

To see the effect of this duality operator, one can start from
the trivial Hamiltonian

H (0,1)
0 := −

L∑
i, j=1

(
σ x

i+ 1
2 , j+ 1

2
+ τ x

i+ 1
2 , j + τ x

i, j+ 1
2

)
(42)

and the nontrivial SPT Hamiltonian can be arrived at after
conjugating this Hamiltonian by the duality operator:

H (0,1)
1 = U(0,1)H

(0,1)
0 U †

(0,1)

= −
L∑

i, j=1

σ x
i+ 1

2 , j+ 1
2
τ z

i, j+ 1
2
τ z

i+1, j+ 1
2
τ z

i+ 1
2 , j

τ z
i+ 1

2 , j+1

−
L∑

i, j=1

(
τ x

i+ 1
2 , jσ

z
i+ 1

2 , j+ 1
2
σ z

i+ 1
2 , j− 1

2

+ τ x
i, j+ 1

2
σ z

i+ 1
2 , j+ 1

2
σ z

i− 1
2 , j+ 1

2

)
(43)

Now let us start to discuss ingappabilities of self-dual sys-
tems. We can also consider the symmetry twisted boundary

condition on the x direction by 0-form Z2 symmetry:

σ a
i+L+ 1

2 , j+ 1
2

= UGσ a
i+ 1

2 , j+ 1
2
U −1

G , with i = 1, . . . , L, (44)

where closed boundary is put between the vertical line i = L
and i = 1. Then following the same calculation in Sec. II A,
the twisted Hamiltonian is invariant under a modified duality
symmetry

U (1)
(0,1) = U(0,1)

L∏
j=1

τ z
1, j+ 1

2
, (45)

which anticommutes with 1-form Z2 symmetry generator on
the x direction. Thus all the eigenstates of the STBC Hamil-
tonian are exactly doubly degenerate. Finally, we can arrive
at the conclusion that the spectra of Hamiltonian under PBC
must be either gapless or gapped with nontrivial ground state
degeneracy, which finishes the proof of ingappabilities.

IV. APPLICATION AND CONCRETE EXAMPLES

In this section, we will introduce concrete examples be-
sides the direct combination of different SPT Hamiltonians.
More precisely, we will discuss two examples in one dimen-
sion and one in two dimensions and show that their spectrum
is either gapless or gapped with nontrivial ground state degen-
eracy.

A. Self-dual model-1 in one dimension

The first example is a Hamiltonian which combines the
trivial and nontrivial 1d SPT Hamiltonian with a next-nearest-
neighbor (NNN) Ising interaction and it is also discussed in
Ref. [67]:

H = −
L∑

i=1

(
σ x

i + τ x
i+ 1

2

)
−

L∑
i=1

(
σ z

i τ x
i+ 1

2
σ z

i+1 + τ z
i− 1

2
σ x

i τ z
i+ 1

2

)

− J
L∑

i=1

(
σ z

i σ z
i+1 + τ z

i+ 1
2
τ z

i+ 3
2

)
. (46)

When J = 0, this Hamiltonian is described by a free boson
CFT in the low energy [68,69]:

H = K
∫

(∂xϕ)2 + 1

4K

∫
(∂xθ )2, (47)

where ϕ and θ are 2π periodic field and satisfies commutation
relations [∂xθ (x), ϕ(y)] = 2π iδ(x − y). And the Luttinger liq-
uid parameter K = 1

4 .
The symmetries of our interest act as

UA : ϕ → −ϕ, θ → −θ, UG : ϕ → −ϕ, θ → π − θ,

U(0,0) : ϕ → ϕ + π, θ → θ. (48)

This CFT has a mixed anomaly with respect to these three
symmetries [53,70], which is consistent with the ingappability
on the lattice.
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When J 	= 0, we can perform the Kramers-Wannier (KW)
transformation1 to study the spectrum, which maps this
Hamiltonian to an XXZ chain [67]:

H = −
L∑

i=1

(
τ z

i− 1
2
σ z

i + σ z
i τ z

i+ 1
2

)
+

L∑
i=1

(
σ

y
i τ

y
i+ 1

2

+ τ
y
i− 1

2

σ
y
i

)

− J
L∑

i=1

(
σ x

i τ x
i+ 1

2
+ τ x

i+ 1
2
σ x

i+1

)
. (49)

When −1 < J � 1, this dual Hamiltonian is described by the
free boson CFT in the low energy. When J > 1 or J < −1,
the last nearest neighbored term dominates, which induces
the ferromagnetic/antiferromagnetic order of σ x and τ x op-
erators. When J = −1, the gapped and gapless regimes are
separated by a multicritical point with dynamical critical ex-
ponent z = 2.

Since the dynamical critical exponent and the center charge
is invariant under the KW transformation, we can conclude
that the Hamiltonian (46) is described by a free boson CFT
when −1 < J � 1, while the multicritical point on J = −1
has dynamical critical exponent z = 2. When J > 1 or J <

−1, since the last term in Eq. (49) is relevant, the NNN Ising
interaction before the KW transformation is also relevant,
namely, it dominates the Hamiltonian (46). As a result, σ z and
τ z have nonzero expectation value and the ZA

2 × ZG
2 symme-

try is spontaneously broken.

B. Self-dual model-2 in one dimension

The second example is a Hamiltonian which is a combi-
nation of another two cluster-like terms with a NNN Ising
interaction [67]:

H = −
L∑

i=1

(
τ

y
i− 1

2

σ x
i τ

y
i+ 1

2

+ σ
y
i τ x

i+ 1
2
σ

y
i+1

)

−
L∑

i=1

(
σ z

i−1τ
x
i− 1

2
σ x

i τ x
i+ 1

2
σ z

i+1 + τ z
i− 1

2
σ x

i τ x
i+ 1

2
σ x

i+1τ
z
i+ 3

2

)

− J
L∑

i=1

(
σ z

i σ z
i+1 + τ z

i+ 1
2
τ z

i+ 3
2

)
. (50)

The first and second terms also belong to the trivial and non-
trivial SPT phases protected by ZA

2 × ZG
2 symmetry2. Indeed,

these two terms are mapped to each other by the product of∏L
j=1 σ z

j τ
z
j+ 1

2

and the original duality transformation U(0,0).

Since
∏L

j=1 σ z
j τ

z
j+ 1

2

is an onsite operator, it does not affect the

ingappability of the self-dual model above.

1Here we treat τ and σ as one kind of spin in the Kramers-Wannier
transformation.

2If we include the time-reversal symmetry T = K which is com-
plex conjugation, these two terms and the cluster chain (5) are
distinct nontrivial SPT phases.

Now, we can perform the KW transformation to study the
spectrum and this resulting Hamiltonian is:

H =
L∑

i=1

(
τ z

i− 1
2
σ x

i τ x
i+ 1

2
σ z

i+1 + σ z
i τ x

i+ 1
2
σ x

i+1τ
z
i+ 3

2

)

+
L∑

i=1

(
τ

y
i− 1

2

σ x
i τ x

i+ 1
2
σ

y
i+1 + σ

y
i τ x

i+ 1
2
σ x

i+1τ
y
i+ 3

2

)

− J
L∑

i=1

(
σ x

i τ x
i+ 1

2
+ τ x

i+ 1
2
σ x

i+1

)
. (51)

To be more convenient, we label σ and τ by one nota-
tion, namely, σ x/z

i = X2i/Z2i and τ
x/z
i+ 1

2

= X2i+1/Z2i+1. Then the

Hamiltonian (51) is rewritten as

H =
2L∑
i=1

(Zi−1XiXi+1Zi+2 + Yi−1XiXi+1Yi+2)

−J
2L∑
i=1

XiXi+1. (52)

The symmetry of our interest is the diagonal spin flip in the x
direction and three-site translation:

Rπ
x =

2L∏
j=1

exp

(
π i

2
(1 − Xj )

)
, T3XjT

−1
3 = Xj+3,

T3ZjT
−1

3 = Zj+3. (53)

We apply the Jordan-Wigner (JW) transformation, which
maps the spin operator to the fermion operator:

Xi = (−1)ni+1 = 2 f †
i fi − 1, Zi =

i−1∏
j=1

(−1)n j ( f †
i + fi ), (54)

and the Hamiltonian (52) is mapped to a fermion chain:

H = 2
2L∑
i=1

f †
i fi+3 + h.c − J

2L∑
i=1

(2ni − 1)(2ni+1 − 1). (55)

It is natural to consider the case L ∈ 3Z. Then the first term is
equivalent to three decoupled fermion chains with the nearest
neighbored hopping term and the second term corresponds to
a local interchain interaction.3

Hence, when J = 0, low-energy theory is three decoupled
Dirac fermions. To discuss the spectra under interaction, we
perform the standard Bosonization procedure and the low-
energy theory is mapped to three decoupled free boson CFTs:

HLL = 1

2π

3∑
i=1

∫ (
K (∂xϕi )

2 + 1

4K
(∂xθi )

2

)
dx, (56)

where Luttinger liquid parameter K = 1
4 .

3If the length L is not a multiple of 3, this Hamiltonian is equivalent
to the nearest-neighbor hopping term with a long rang interaction
when J 	= 0
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The dictionary relating the spin operators and effective
low-energy field operators is given by

X3k+ j ∼ 1

2π
∂xϕ j − (−1)ka1 cos ϕ j,

× Z3k+ j + iY3k+ j ∼ eiθ j (b0(−1)k + b1 cos ϕ j ), (57)

where a1, b0 and b1 are nonuniversal numbers. By this rela-
tion, we can obtain the action of symmetry of our interest in
low energy:

Rπ
x : θ j → θ j + π, ϕ j → ϕ j,

× T3 : θ j → θ j + π, ϕ j → ϕ j + π. (58)

Moreover, the interchain interaction corresponds to two
terms in the low energy:

H1
int = − J

4π2

∫
(∂xϕ1∂xϕ2 + ∂xϕ2∂xϕ3 + ∂xϕ3∂xϕ1)dx,

H2
int = −Ja2

1

∫
(cos ϕ1 cos ϕ2 + cos ϕ2 cos ϕ3

− cos ϕ3 cos ϕ1)dx

= −Ja2
1

2

∫
[cos(ϕ1 − ϕ2) + cos(ϕ1 + ϕ2)

+ cos(ϕ2 − ϕ3) + cos(ϕ2 + ϕ3)

− cos(ϕ3 − ϕ1) − cos(ϕ3 + ϕ1)]dx. (59)

We can diagonalize the first term and three eigenvalues are
−1,−1, 2 times the coefficient − J

8π2 . This term will modify
Luttinger liquid parameter as follows:

HLL + H1
int = 1

2π

3∑
i=1

∫ (
Ki

eff (∂xϕ
′
i )

2 + 1

4Ki
eff

(∂xθ
′
i )2

)
dx,

(60)

where K1
eff = K2

eff = 1
4 (1 + J

π
) and K3

eff = 1
4 (1 − 2J

π
). The re-

lation between ϕ and ϕ′ is ϕi = ∑3
j=1 Ai jϕ

′
j , where the matrix

A is

A =
⎛
⎝−0.7152 0.3938 0.5774

0.0166 −0.8163 0.5774
0.6987 0.4225 0.5774

⎞
⎠. (61)

We can calculate the scaling dimension of the term cos(ϕi ±
ϕ j ) in the second low-energy interaction:

(Ai1 ± Aj1)2

4K1
eff

+ (Ai2 ± Aj2)2

4K2
eff

+ (Ai3 ± Aj3)2

4K3
eff

= 2

4K1
eff

+ (Ai3 ± Aj3)2

(
1

4K3
eff

− 1

4K1
eff

)
, (62)

where we use the fact that A is an orthogonal matrix.
When J is small, the scaling dimension can be simplified

as

cos(ϕi ± ϕ j ) : 2 ± 2J

π
. (63)

Therefore the term cos(ϕ1 − ϕ2) + cos(ϕ2 − ϕ3) − cos(ϕ3 −
ϕ1) is relevant when J is positive. However, ϕ1 − ϕ2, ϕ2 − ϕ3

and ϕ3 − ϕ1 are linearly dependent4 and there is another
independent degree of freedom ϕ1 + ϕ2 + ϕ3. Thus the low-
energy theory after adding interaction is still gapless with
center charge 1, which implies that the Hamiltonian (50)
before the KW transformation is also gapless with center
charge 1.

On the other hand, while when J is negative, cos(ϕ1 +
ϕ2) + cos(ϕ2 + ϕ3) − cos(ϕ3 + ϕ1) is relevant. Then the
ground states are gapped with configuration: ϕ1 = ϕ3 =
0, ϕ2 = π and ϕ1 = ϕ3 = π, ϕ2 = 0,which break the trans-
lation symmetry but do not break the spin flip in the
x direction. Based on the properties of KW transforma-
tion, the Hamiltonian (50) is in the spontaneous symmetry
breaking (SSB) phase of diagonal spin flip symmetry∏L

i=1 σ x
i τ x

i+ 1
2
.

C. Self-dual model in two dimensions

In two dimensions, we briefly introduce a spin model
on the triangle lattice which has been studied in de-
tail in Ref. [30]. The Hamiltonian is the combination
of trivial and nontrivial SPT Hamiltonian protected by
(Z2)3 onsite symmetry with nearest-neighbor antiferromag-
netic (J > 0) Ising interactions within each of the three
sublattices:

H = H (0,0,0)
0 + H (0,0,0)

1 + J
∑

<v1,v2>

σ z
v1

σ z
v2

+ J
∑

<v1,v2>

τ z
v1

τ z
v2

+ J
∑

<v1,v2>

μz
v1

μz
v2

. (64)

The numerical calculation shows this model is in an FM
phase breaking (Z2)3 symmetry when J is smaller than 0.42.
On the other hand, this model is in a direct first-order tran-
sition between the SPT phases whose universality is that of
the SO(5) DQCP when J is large. Moreover, the Z(0,0,0)

2 and
(Z2)3 symmetry belong to a subgroup of SO(5) and there is
a mixed ’t Hooft anomaly between them in the low energy
whose inflow action is a Z2 phase:

iπA1A2A3A4. (65)

Here Ai is the background gauge field of Z(0,0,0)
2 duality and

(Z2)3 symmetry respective. This anomaly inflow action is
consistent with the ingappability on the lattice.

V. CONCLUSION AND DISCUSSION

In this work, we focus on the quantum many-body systems
which are self-dual under duality transformation connecting
different SPTs. Such self-duality often forces the systems
to be critical points separating duality-related phases. We
prove the ingappability of the bulk spectrum of these self-
dual models based on the spectrum robustness argument on
the STBC. As a direct result, these self-dual systems can be
first order phase transition/SSB phase with nontrivial gapped
ground state degeneracy or the continuous phase transition

4The configuration with lowest energy is (ϕ1 − ϕ2, ϕ2 − ϕ3) =
( π

3 , π

3 )/(− π

3 , − π

3 ).
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whose spectrum is gapless. This is equivalent to the state-
ment that the symmetry group at criticality has a mixed ’t
Hooft anomaly. We apply our method to several cases: 1. d
dimension self-dual systems with 0-form (Z2)d+1 symmetry,
2. self-dual systems with Z2 × Z2 line symmetry in arbitrary
spatial dimensions, 3. two-dimensional self-dual systems with
Z2 0-form and Z2 1-form symmetry. Moreover, we illustrate
this result with several examples in one and two dimensions,
whose spectrum can be obtained by analytical or numerical
calculations.

For future studies, one important question is how to gener-
alize our method to the critical points between fermionic SPT
phases. An interesting example of such a fermionic duality
transformation is the Majorana translation operator, which
connects the trivial and nontrivial Majorana chains. It has
been shown that there is an ingappability of the self-dual
model under such duality transformation [71]. Moreover, it
is also quite interesting to study the geometric description
of ingappabilities of self-dual systems separating SPTs pro-
tected by anti-unitary (time-reversal) symmetries or crystal
symmetries.
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APPENDIX A: INGAPPABILITIES
OF 1 + 1-DIMENSIONAL MODELS WITH Z(0,0)

N AND
ZN × ZN SYMMETRY

In this Appendix, we generalize the result in Sec. II A to
the ZN × ZN symmetry. Let us place two ZN “spins” σ and τ

on the integer and half-integer sites respectively. They satisfy
the ZN Heisenberg algebra:

(σ x )N = (σ z )N = 1, σ zσ x = ωσ xσ z,

(σ z )† = (σ z )N−1, (σ x )† = (σ x )N−1, (A1)

(τ x )N = (τ z )N = 1, τ zτ x = ωτ xτ z,

(τ z )† = (τ z )N−1, (τ x )† = (τ x )N−1, (A2)

where ω = exp( 2π i
N ).

The natural generalization of the paramagnetic Hamilto-
nian to the N-state case is

H0 = −
L∑

j=1

(
σ x

j + τ x
j+ 1

2
+ H.c.

)
(A3)

where we assume the periodic boundary condition: σ
x/z
i+L =

σ
x/z
i and τ

x/z
i+L = τ

x/z
i .

This Hamiltonian has ZA
N × ZG

N symmetry:

UG =
∏

j

σ x
j , UA =

∏
j

τ x
j+ 1

2
. (A4)

To be transparent, let us define an N-dimensional basis on
each site, satisfying

σ z
j |α〉 j = ωα|α〉 j, σ x

j |α〉 = |α + 1(mod N )〉 j, (A5)

τ z
j+ 1

2
|β〉 j+ 1

2
= ωβ |β〉 j+ 1

2
, τ x

j+ 1
2
|β〉 j+ 1

2

= |β + 1(mod N )〉 j+ 1
2

(A6)

for α ∈ ZN and β ∈ ZN .
Moreover, we can define a duality operator U(0,0) as fol-

lows:

U(0,0) =
L∏

i=1

CZi,i+ 1
2
CZ−1

i+ 1
2 ,i+1

,

CZi,i+ 1
2
|α, β〉i,i+ 1

2
= ωαβ |α, β〉i,i+ 1

2
,

CZ−1
i+ 1

2 ,i+1
|α, β〉i+ 1

2 ,i+1 = ω−αβ |α, β〉i+ 1
2 ,i+1. (A7)

After conjugating the paramagnetic Hamiltonian by this trans-
formation, we obtain

H1 := U(0,0)H0U
−1
(0,0)

= −
L∑

j=1

[(
τ z

j− 1
2

)−1
σ x

j τ
z
j+ 1

2
+ σ z

j τ
x
j+ 1

2

(
σ z

j+1

)−1]
, (A8)

which is ZN cluster model and corresponds to the generator
of the group cohomology H2(ZN × ZN ,U (1)) = ZN . More-
over, we can continue to conjugate (A8) by this transformation
and obtain all SPT phases:

Hk := U k
(0,0)H0U

−k
(0,0)

= −
L∑

j=1

[(
τ z

j− 1
2

)−k
σ x

j

(
τ z

j+ 1
2

)k + (
σ z

j

)k
τ x

j+ 1
2

(
σ z

j+1

)−k]
.

(A9)

Since U(0,0) is a ZN transformation, k ∈ ZN . Then the self-
dual model can be a combination of all SPT phases:

Hself-dual =
N−1∑
k=0

Hk . (A10)

To prove ingappabilities of the general self-dual models,
we can consider symmetry twisted boundary condition using
the ZA

N symmetry:

τ a
i+L− 1

2
= U −1

A τ a
i− 1

2
UA, i = 1, . . . , L, (A11)

where the closed boundary bond is between the sites i = L
and i = 1.

Following the same calculation in Sec. II A, the modified
duality transformation is given by

U (1)
(0,0) = σ z

LU(0,0), (A12)

which has a nontrivial commutator with the UG operator:

U (1)
(0,0)UG = exp

(
2π i

N

)
UGU (1)

(0,0). (A13)

Hence, the twisted Hamiltonian must have an exactly N
degenerate spectrum. According to the spectrum robustness
argument, the Hamiltonian under PBC must either be gapless
or have a nontrivial ground-state degeneracy, rather than a
unique gapped ground state.
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Besides, one can also prove the ingappability if a model
only preserves any nontrivial subgroup of Z(0,0)

N symmetry
with additional ZA

N × ZG
N symmetry. For example, let us con-

sider a group generating by U m
(0,0) where N divides m. If we

twist the boundary condition using the ZA
N symmetry, then the

modified duality transformation is given by

(
U (1)

(0,0)

)m = (
σ z

LU(0,0)
)m

(A14)

which still does not commute with the UG operator.
Thus we can conclude that if a ZA

N × ZG
N invariant spin

chain also possesses any nontrivial subgroup of Z(0,0)
N sym-

metry, the Hamiltonian under PBC can be gapped only if the
ground states are at least doubly degenerate.

APPENDIX B: PROOF OF THE DUALITY OPERATOR
UNDER TWISTED BOUNDARY CONDITION ON THE

CLOSED LATTCIE

In this Appendix, we will prove Eqs. (20) and (27) under
symmetry twisted boundary conditions on the closed lattice.

Let us begin with a d-dimensional simplicial lattice with
a twisted boundary condition using Ua1 operator in Sec. II C.
As discussed before, this twisted boundary is close and lo-
cally parallel to a closed and connected d − 1-dimensional
sublattice S1 which is colored in a2, . . . , ad+1. When d = 2,
the twisted boundary and the corresponding one-dimensional
sublattice are shown in Fig. 3.

To manifest how the twisted boundary condition modifies
the duality operator, we consider a local term H0 in the Hamil-
tonian with PBC and its dual term by conjugating the duality
operator. Here we denote the union of the regions of H0 and
its dual term Hdual as R. Similar to the discussion in Sec. II A,
the pair of this local term and its dual term can be classified
into three cases. The first and second cases are that both two
terms cross or do not cross the twisted boundary. And in the
last case, we can assume only the dual term Hdual does not
cross the twisted boundary without loss of generality.

In the first case, the region R is divided by the twisted
boundary into the up part R1 and the down part R2. Then
after twisting, we have H tw

0 = (
∏

v∈R′ X (a1 )
v )H0(

∏
v∈R′ X (a1 )

v )
and H tw

dual = (
∏

v∈R′ X (a1 )
v )Hdual(

∏
v∈R′ X (a1 )

v ), where the sub-
lattice R′ is on the same side of R2 and R2 ⊂ R′. Besides, we
can construct this region R′ so that ∂R′ = S′ ⊕ S1 where S′
is another closed and connected d − 1-dimensional sublattice
colored in a2, . . . , ad+1. The distance between S1 and S′ is far
enough but still finite in the thermodynamic limit. Hence we
have R ∩ S′ = ∅ and R1 ∩ R′ = ∅. In fact, this construction
is also consistent with the other two cases. In the second
case, both two terms are unchanged after twisting. We can
take R2 = ∅ and the sublattice S′ only need to be below the
twisted boundary and thus satisfy R ∩ S′ = ∅. Thus both the
H0 and Hdual are also unchanged after conjugating

∏
v∈R′ X (a1 )

v .
In the third case, the region of Hdual belongs to R1 and we
also construct R′ so that it is below the twisted boundary
(R1 ∩ R′ = ∅) and R ∩ S′ = ∅. Then Hdual is unchanged after
conjugating

∏
v∈R′ X (a1 )

v .
According to the discussion in Secs. II B and II C, we can

obtain

( ∏
v∈R′

X (a1 )
v

)
U(0, 0, . . . , 0︸ ︷︷ ︸

d+1

)

( ∏
v∈R′

X (a1 )
v

)
= U(0, 0, . . . , 0︸ ︷︷ ︸

d+1

)U(0, 0, . . . , 0︸ ︷︷ ︸
d

)(S1 ⊕ S′). (B1)

Thus, the dual term after twisting can be rewritten as

H tw
dual =

( ∏
v∈R′

X (a1 )
v

)
U(0, 0, . . . , 0︸ ︷︷ ︸

d+1

)H0U
†
(0, 0, . . . , 0︸ ︷︷ ︸

d+1

)

( ∏
v∈R′

X (a1 )
v

)

= U(0, 0, . . . , 0︸ ︷︷ ︸
d+1

)U(0, 0, . . . , 0︸ ︷︷ ︸
d

)(S1 ⊕ S′)H tw
0 U †

(0, 0, . . . , 0︸ ︷︷ ︸
d

)
(S1 ⊕ S′)U †

(0, 0, . . . , 0︸ ︷︷ ︸
d+1

)

= U(0, 0, . . . , 0︸ ︷︷ ︸
d+1

)U(0, 0, . . . , 0︸ ︷︷ ︸
d

)(S1)H tw
0 U †

(0, 0, . . . , 0︸ ︷︷ ︸
d

)
(S1)U †

(0, 0, . . . , 0︸ ︷︷ ︸
d+1

)
, (B2)

where the last equality comes from R ∩ S′ = ∅.
Finally, we can conclude that the twisted Hamiltonian possesses a modified duality symmetry

U (1)
(0, 0, . . . , 0︸ ︷︷ ︸

d+1

)
= U(0, 0, . . . , 0︸ ︷︷ ︸

d+1

)U(0, 0, . . . , 0︸ ︷︷ ︸
d

)(S1). (B3)
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