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Spin and thermal transport and critical phenomena in three-dimensional antiferromagnets
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We investigate spin and thermal transport near the Néel transition temperature TN in three dimensions by
numerically analyzing the classical antiferromagnetic XXZ model on the cubic lattice, where in the model, the
anisotropy of the exchange interaction � = Jz/Jx plays a role to control the universality class of the transition.
It is found by means of the hybrid Monte Carlo and spin-dynamics simulations that in the XY and Heisenberg
cases of � � 1, the longitudinal spin conductivity σ s

μμ exhibits a divergent enhancement on cooling toward TN

while not in the Ising case of � > 1. In all three cases, the temperature dependence of the thermal conductivity
κμμ is featureless at TN , being consistent with experimental results. The divergent enhancement of σ s

μμ toward
TN is attributed to the spin-current relaxation time which gets longer toward TN , showing a power-law divergence
characteristic of critical phenomena. It is also found that in contrast to the XY case where the divergence in σ s

μμ

is rapidly suppressed below TN , σ s
μμ likely remains divergent even below TN in the Heisenberg case, which might

experimentally be observed in the ideally isotropic antiferromagnet RbMnF3.

DOI: 10.1103/PhysRevB.106.224407

I. INTRODUCTION

In magnetic materials, dynamical properties of interacting
spins, such as magnetic excitations and fluctuations, are often
reflected in transport phenomena where the properties of the
electric and thermal currents have widely been discussed.
Recently, thanks to the development of experimental methods
in the context of spintronics [1–5], the spin current is also
becoming available as a probe to study the spin dynamics.
This demands us to explore the fundamental physics underly-
ing the association between the spin transport and magnetic
phase transitions. Previously, we theoretically investigated
transport properties of two-dimensional insulating magnets
and showed that the XY -type magnetic anisotropy leads to
a divergence in the longitudinal spin conductivity σ s

μμ at the
Kosterlitz-Thouless (KT) transition temperature [6]. In this
paper, we extend our analysis to a three-dimensional system
and numerically investigate the spin and thermal transport
near the antiferromagnetic transition whose critical behavior
is controlled by a magnetic anisotropy.

As is well-known, magnetic phase transitions can be de-
scribed by classical spin models, and a magnetic anisotropy
plays a role to control the universality class of the transition.
A minimal model possessing the magnetic anisotropy would
be the classical nearest-neighbor (NN) XXZ model, which is
given by

H = −J
∑
〈i, j〉

(
Sx

i Sx
j + Sy

i Sy
j + �Sz

i Sz
j

)
, (1)

where Sα
i is an α component of a classical spin Si at a lattice

site i, 〈i, j〉 denotes the summation over all the NN pairs, J <

0 is the NN antiferromagnetic exchange interaction, and � >

0 is a dimensionless parameter characterizing the magnetic
anisotropy. For simplicity, we consider unfrustrated systems

where the ground state is the two-sublattice Néel order. In
the case of the two-dimensional square lattice, a second-order
antiferromagnetic transition and the KT transition [7] occur
at finite temperatures for the Ising-type (� > 1) and XY -
type (� < 1) anisotropies, respectively, while in the isotropic
Heisenberg case of � = 1, a phase transition does not occur at
any finite temperature [8]. In the case of the three-dimensional
cubic lattice, the Ising-type, XY -type, and Heisenberg-type
spin systems commonly undergo a second-order antiferro-
magnetic transition at a finite temperature TN , but their critical
properties such as the exponents of the power-law behaviors
in various physical quantities depend on � [9]. Since, as
exemplified by the critical slowing down, the spin dynamics is
generally affected by the phase transition [10], characteristic
transport phenomena may appear near TN .

In our previous paper, we numerically demonstrated that
in two dimensions, the difference in the ordering properties
is reflected in the spin-current transport, while not for the
thermal current. In the XY case, the longitudinal spin con-
ductivity σ s

μμ exhibits a divergent enhancement toward the
KT topological transition associated with binding-unbinding
of magnetic vortices, whereas in the Ising and Heisenberg
cases, it only shows almost monotonic temperature depen-
dencies [6]. Our result, i.e., the enhancement of σ s

μμ at the
KT transition temperature, is supported by a later analytical
approach [11], and a similar divergent enhancement can also
be found in the frustrated triangular-lattice Heisenberg antifer-
romagnet [12], where a KT-like binding-unbinding transition
of the Z2 vortices is expected to occur [13–16]. Then, the
question is how the critical phenomena in three dimensions
are reflected in the transport properties. In this paper, we
investigate temperature dependencies of the conductivities of
the spin and thermal currents in Ising-type (� > 1), XY -type
(� < 1), and Heisenberg-type (� = 1) antiferromagnets on
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FIG. 1. Temperature dependence of the spin conductivity σ s
μν (the first and second panels from the top, corresponding to the longitudinal

and transverse conductivities, respectively) and the thermal conductivity κμν (the third and fourth panels from the top, corresponding to the
longitudinal and transverse conductivities, respectively) near the antiferromagnetic transition temperature TN in (a) Ising-type (� = 1.05),
(b) XY -type (� = 0.95), and (c) Heisenberg-type (� = 1) spin systems. σ s

μν is a dimensionless quantity and κμν is measured in units of |J|. In
(a)–(c), dashed lines indicate TN/|J| � 1.574, 1.472, and 1.443, respectively (see Fig. 9 in Appendix A).

the cubic lattice by means of the hybrid Monte Carlo (MC)
and spin-dynamics simulations.

Our result near the antiferromagnetic transition tempera-
ture TN is summarized in Fig. 1, where the upper (lower)
two panels show the temperature dependence of the spin
conductivity σ s

μν (the thermal conductivity κμν). As readily
seen from the top panels in Fig. 1, in the XY and Heisen-
berg cases of � � 1, the longitudinal spin conductivity σ s

xx
(= σ s

yy = σ s
zz) shows a divergent enhancement on cooling to-

ward TN , whereas in the Ising case of � > 1, it only shows a
slight enhancement. Furthermore, although in the XY case the
divergence in σ s

xx is rapidly suppressed below TN , it remains
divergent even below TN in the Heisenberg case where σ s

xx
increases with increasing the system size L, suggesting σ s

xx →
∞ in the thermodynamic limit of L → ∞. In contrast to such
characteristic behaviors in the spin transport, the longitudinal
thermal conductivity κxx (= κyy = κzz) increases monotoni-
cally without showing a divergent anomaly in all three cases
of � > 1, � < 1, and � = 1 (see the third panels from the
top in Fig. 1), as is actually the case for experimental results
on relevant magnets [17,18]. The Hall responses σ s

xy and κxy

are absent over the whole temperature range (see the second
and fourth panels from the top in Fig. 1). The significant en-
hancement of σ s

xx toward TN turns out to be associated with the

spin-current relaxation time τs which gets longer toward TN ,
showing a power-law divergence characteristic of the critical
phenomena.

This paper is organized as follows: In Sec. II, the the-
oretical framework to calculate the transport coefficients in
magnetic insulators will be explained. Numerical results on
the spin and thermal transports will be discussed in detail in
Secs. III and IV, respectively, where the properties not only
near TN but also below TN will be addressed. We end this
paper with summary and discussion in Sec. V. For reference,
MC results on the fundamental static physical quantities in
the present XXZ model and the analytical results on the low-
temperature transport properties in the linear spin-wave theory
(LSWT) are shown in Appendixes A and B, respectively.

II. THEORETICAL FRAMEWORK

Since the expressions of the spin and thermal currents in
the XXZ model and the formulas to calculate their conductiv-
ities in the linear response theory have already been derived
elsewhere [6], here we will briefly summarize the procedure
how to calculate the spin and thermal conductivities σ s

μν and
κμν . It should be emphasized here that the spin dynamics
equation and the current expressions can be derived directly
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from the spin Hamiltonian Eq. (1) and, thereby, no assumption
has been made except the spin Hamiltonian.

A. Spin dynamics

For the Hamiltonian Eq. (1), the spin dynamics, i.e., the
time evolution of the spins, is determined by the following
equation of motion:

dSi

dt
= Si × Heff

i ,

Heff
i = J

∑
j∈N (i)

(
Sx

j , Sy
j ,�Sz

j

)
, (2)

where N (i) denotes all the NN sites of i. Since Eqs. (2) are
a classical analog of the Heisenberg equation for the spin op-
erator, all the static and dynamical magnetic properties purely
intrinsic to the Hamiltonian Eq. (1) should be described by the
combined use of Eqs. (1) and (2). Equations (2) correspond
to the Landau-Lifshitz-Gilbert equation [19] without a phe-
nomenological damping term. Note that as our starting point
is the spin Hamiltonian Eq. (1) without couplings to other
degrees of freedom such as phonons and conduction electrons,
the extrinsic damping term does not appear in Eqs. (2). Thus,
the spin and current relaxations are due to thermal fluctuations
whose nature is determined by the Hamiltonian Eq. (1).

B. Conductivities of spin and thermal currents

In general, a conserved physical quantity of the sys-
tem O = ∫

dr O(r, t ) should satisfy the continuity equa-
tion ∂

∂t O(r, t ) + ∇ · jO(r, t ) = 0 with associated local current
density jO(r, t ), so one has∫

dr r
∂

∂t
O(r, t ) = −

∫
dr r ∇ · jO(r, t ) =

∫
dr jO(r, t ).

(3)
Thus, the net current JO(t ) is given by [20]

JO(t ) =
∫

dr jO(r, t ) =
∫

dr r
∂

∂t
O(r, t ). (4)

In the present XXZ model, the z component of the magnetiza-
tion Mz = ∑

i Sz
i and the total energy H = ∑

i Hi with Hi =
−J
2

∑
j∈N (i) (Sx

i Sx
j + Sy

i Sy
j + �Sz

i Sz
j ) are conserved, so the as-

sociated currents, namely, the spin and thermal currents (Jz
s

and Jth) are given by [6]

Jz
s(t ) =

∑
i

ri
dSz

i

dt
= J

∑
〈i, j〉

(ri − r j )(Si × S j )
z, (5)

Jth(t ) =
∑

i

ri
−J

2

∑
j∈N (i)

d

dt

(
Sx

i Sx
j + Sy

i Sy
j + �Sz

i Sz
j

)

= J2

4

∑
i

∑
j,k∈N (i)

(r j − rk )
{
(S j × Sk )zSz

i

+�
[
(S j × Sk )xSx

i + (S j × Sk )ySy
i

]}
, (6)

where Eqs. (2) have been used in replacing the time derivative
dSα

i
dt with a product Sβ

j Sγ

k . It turns out that Jz
s and Jth are

related to the vector spin chirality Si × S j and the scalar spin
chirality Si · (S j × Sk ), respectively [21–30]. We note that in
the presence of the magnetic anisotropy, only the uniaxial z

antiferromagnet

js

XY

z

Vspin-current 
injection

current c
tiont

Ising inverse
spin-Hall 
effect

FIG. 2. Possible experimental setup for measuring the longitudi-
nal spin conductivity σ s

μμ in a bulk antiferromagnet (yellow region),
where the spin current jz

s (blue arrow) has its spin polarization parallel
to the uniaxial direction (easy and hard axes in the Ising and XY
cases, respectively). The spin current is injected from a ferromagnet
or a metal (gray region) by using a spin pumping or the spin-Hall
effect, respectively, and is detected as an electric signal in a metal
such as Pt (sky-blue region) by using the inverse spin-Hall effect
[31].

component of the magnetization is conserved, so the asso-
ciated spin current jz

s has its polarization along the uniaxial
direction, i.e., easy and hard axes in the Ising and XY cases,
respectively (see Fig. 2).

In general, the spin and thermal currents are obtained as
responses of the magnetic-field and temperature gradients,
respectively [6,23,24]. In real spin-current measurements,
however, as shown in Fig. 2, the spin current may be injected
into the bulk antiferromagnet from a ferromagnet or a metal by
using a spin pumping or the spin-Hall effect, respectively [31].
The spin conductivity σ s

μμ could be measured by detecting
the transmitted spin current in the opposite side as an elec-
tric signal via the inverse spin-Hall effect. Within the linear
response theory [32], the spin and thermal conductivities in
bulk magnets are given by

σ s
μν = 1

T L3

∫ ∞

0
dt

〈
Jz

s,ν (0) Jz
s,μ(t )

〉
,

κμν = 1

T 2 L3

∫ ∞

0
dt 〈Jth,ν (0) Jth,μ(t )〉, (7)

where L is a linear system size and 〈O〉 denotes the thermal
average of a physical quantity O. In the Heisenberg case of
� = 1, where the spin space is isotropic, not only the z com-
ponent of the magnetization but also the x and y components
are conserved, so one can also define the spin currents Jx

s and
Jy

s as well as Jz
s, all of which are equivalent to one another

because of the isotropic nature of the spin space. Thus, in the
Heisenberg case, we calculate the spin conductivity averaged
over the three spin components

σ s
μν = 1

T L3

1

3

∑
α=x,y,z

∫ ∞

0
dt

〈
Jα

s,ν (0) Jα
s,μ(t )

〉
(8)

instead of Eq. (7).
Now, the problem is reduced to calculate the time corre-

lations of the spin and thermal currents 〈Jz
s,ν (0) Jz

s,μ(t )〉 and
〈Jth,ν (0) Jth,μ(t )〉 at various temperatures. For the present cu-
bic lattice, the total number of spin Nspin and system size L are
related by L3 = Nspin a3 with lattice constant a. As the time t
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is measured in units of |J|−1, it turns out that σ s
μν and κμν have

the dimension of 1/a and |J|/a, respectively. Throughout this
paper, we take a = 1 for simplicity.

C. Numerical method

The time evolutions of Jz
s and Jth are determined micro-

scopically by the spin-dynamics Eqs. (2). By numerically
integrating Eqs. (2), we calculate the time correlations
〈Jz

s,ν (0) Jz
s,μ(t )〉 and 〈Jth,ν (0) Jth,μ(t )〉 at each time step. In the

numerical integration of Eqs. (2), we use the second-order
symplectic method which guarantees the exact energy conser-
vation [33]. We have partly checked that the results obtained
here are not altered if the fourth-order Runge-Kutta method
is used instead. To properly evaluate the integral over time
in Eq. (7), we perform long-time integrations typically up to
t = 10 |J|−1 at high temperatures above TN and 600 |J|−1 at
the lowest temperature with the time step δt = 0.01 |J|−1 until
the time correlations 〈Jz

s,ν (0) Jz
s,μ(t )〉 and 〈Jth,ν (0) Jth,μ(t )〉 are

completely lost.
To incorporate temperature effects, we use temperature-

dependent equilibrium spin configurations as the initial states
for the equations of motion Eqs. (2), and the thermal average
is taken as the average over initial equilibrium spin configura-
tions generated in the MC simulations. In this paper, at each
temperature T , we prepare 8000 equilibrium spin configura-
tions by picking up a spin snapshot in every 100 MC sweeps
after 105 MC sweeps for thermalization in eight independent
runs, where our one MC sweep consists of the one heat-bath
sweep and successive ten over-relaxation sweeps.

By analyzing the system-size dependencies of the spin
conductivity σ s

μν and the thermal conductivity κμν at given
temperatures, we discuss the temperature dependencies of σ s

μν

and κμν in the thermodynamic limit (L → ∞) of interest.
In the present cubic lattice where x, y, and z directions are
equivalent to one another, the relations σ s

xx = σ s
yy = σ s

zz and
κxx = κyy = κzz trivially hold, and such a situation is also the
case for the transverse conductivities σ s

μν and κμν with μ �= ν.
Thus, in this paper, we only discuss the xx and xy components,
σ s

xx, σ s
xy, κxx, and κxy.

In this paper, the magnetic anisotropy � is only one sys-
tem parameter: � > 1, � < 1, and � = 1 correspond to the
Ising-type, XY -type, and Heisenberg-type spin systems, re-
spectively. Throughout this paper, the parameter values of
� = 1.05 and � = 0.95 are used for the Ising and XY cases,
respectively, as typical values slightly deviating from � = 1
for the isotropic Heisenberg case. From the MC simulations
(see Appendix A), TN in each case can be estimated as
TN/|J| � 1.574 for � = 1.05, TN/|J| � 1.472 for � = 0.95,
and TN/|J| � 1.443 for � = 1.

III. SPIN CONDUCTIVITY σs
μν

In this section, we will discuss the association between the
spin transport and the antiferromagnetic transition, based on
numerical results obtained in the Ising-type (� = 1.05), XY -
type (� = 0.95) and Heisenberg-type (� = 1) spin systems.
The main focus is on how the differences in the universality
class and the critical magnetic fluctuation are reflected in the
spin conductivity σ s

μν .

L=8
L=16
L=32
L=48

 0  2  4  6 8 10
t 

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

< 
J 

   
(0

) J
   

 (t
) >

/L
z

z
s,x

s,x

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0  2  4  6 8 10
t 

 0  2  4  6 8 10
t 

 0  2  4  6 8

 0.1

 0.01

 0  2  4  6 8

 0.1

 0.01

 0  2  4  6 8

 0.1

 0.01

 0  2  4  6 8

 0.1

 0.01

 0  2  4  6 8

 0.1

 0.01

 0  2  4  6 8

 0.1

 0.01

T/|J|= 1.7 T/|J|= 1.7 T/|J|= 1.7

L=8
L=16
L=32
L=48

L=8
L=16
L=32
L=48

T/|J|= 1.2 T/|J|= 1.2 T/|J|= 1.2

T/|J|= 1.58 T/|J|= 1.48 T/|J|= 1.45

(a) Ising, Δ=1.05 (b) XY, Δ=0.95 (c) Heisenberg, Δ=1

3
< 

J 
   

(0
) J

   
 (t

) >
/L

z
z

s,x
s,x

3
< 

J 
   

(0
) J

   
 (t

) >
/L

z
z

s,x
s,x

3
FIG. 3. The time correlation function of the spin current

〈Jx
s,x (0) Jz

s,x (t )〉/L3 at T = 1.7|J| > TN (top), T ∼ TN (middle), and
T = 1.2|J| < TN (bottom) in the (a) Ising-type (� = 1.05 and
TN/|J| � 1.574), (b) XY -type (� = 0.95 and TN/|J| � 1.472), and
(c) Heisenberg-type (� = 1 and TN/|J| � 1.443) spin systems. In
the middle panels, T/|J|’s in (a)–(c) are 1.58, 1.48, and 1.45, re-
spectively. Time t and 〈Jz

s,x (0) Jz
s,x (t )〉/L3 are measured in units of

|J|−1 and |J|2, respectively. In the middle and bottom panels, the inset
shows a semilogarithmic plot of the main panel.

As mentioned in Sec. I, the Hall response corresponding
to the transverse conductivity σ s

xy is absent over the whole
temperature range—we will focus on the longitudinal spin
conductivity σ s

xx as a representative example of the three
equivalent σ s

xx, σ s
yy, and σ s

zz. We will show that the longitudinal
spin conductivity σ s

xx exhibits a divergent enhancement toward
TN in the XY and Heisenberg cases, while not in the Ising
case. Although our main interest is in the spin transport near
TN , for completeness, we will also discuss its low-temperature
behavior below TN , where the spin waves or magnons should
carry the current.

As the fundamental information of the temperature depen-
dence of σ s

μν consists in the time correlation of the spin current
〈Jz

s,ν (0) Jz
s,μ(t )〉 except the trivial T −1 factor [see Eq. (7)], we

will start from the temperature dependence of 〈Jz
s,x (0) Jz

s,x (t )〉.

A. Time correlation function

Figure 3 shows the time correlation function normalized
by the system size 〈Jz

s,x (0) Jz
s,x (t )〉/L3 at T > TN (top panels),

T ∼ TN (middle panels), and T < TN (bottom panels) in the
(a) Ising-type (� = 1.05), (b) XY -type (� = 0.95), and (c)
Heisenberg-type (� = 1) spin systems. At the high temper-
ature T/|J| = 1.7 sufficiently above TN , the time correlation
rapidly decays in all three types of spin systems (see the top
panels in Fig. 3). With decreasing temperature, differences
among the three cases become clearer. At a temperature close
to but slightly above TN , the relaxation time gets longer with
increasing system size L in the XY and Heisenberg cases,
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whereas in the Ising case, it is saturated for larger sizes (see
the middle panels in Fig. 3). This suggests that in the ther-
modynamic limit of L → ∞, the relaxation time is very long
in the XY and Heisenberg cases, while not in the Ising case.
As one can see from the bottom panels in Fig. 3, at low tem-
perature T/|J| = 1.2 below TN , the time correlation function
commonly shows an oscillating behavior or a dip structure in
a short-time scale, and in a long-time scale, it slowly decays in
the Ising and Heisenberg cases, whereas in the XY case, the
time correlation is completely lost (see the semilogarithmic
plots shown in the insets). The slowly decaying long-time tail
is system-size dependent in the Heisenberg case, while not
in the Ising case. As will be explained below, these features
of the spin-current relaxation are reflected in the temperature
dependence of the spin conductivity σ s

xx.

B. Longitudinal spin conductivity σs
μμ near TN

We will first discuss overall qualitative features of σ s
μν

near TN . As shown in the upper two panels in Fig. 1, al-
though the transverse Hall response σ s

xy is absent in all three
types of spin systems, the longitudinal spin conductivity σ s

xx
exhibits characteristic temperature dependencies depending
on the value of the magnetic anisotropy �. In the Ising
case of � = 1.05, σ s

xx’s for larger L’s are almost system-
size independent as expected from the almost L-independent
time-correlation function in Fig. 3(a), so they correspond to
the thermodynamic-limit (L → ∞) value which only shows
a slight enhancement near TN . In the XY case of � = 0.95,
σ s

xx exhibits a divergent sharp peak toward TN and becomes
vanishingly small below TN . Since the peak height increases
with increasing system size L, σ s

xx should diverge at TN in the
thermodynamic limit. In the Heisenberg case of � = 1, σ s

xx
also exhibits a similar divergent behavior toward TN , but even
below TN it remains system-size dependent and increases with
increasing L, suggesting that in the thermodynamic limit, σ s

xx
may be infinite over the low-temperature region below TN .

Below in this subsection, we will focus on the increasing
behavior of σ s

xx toward TN on cooling from above. The top
panels in Fig. 4 show the log-log plot of σ s

xx as a function
of (T − TN )/|J| in the (a) Ising, (b) XY , and (c) Heisenberg
cases. The regular plot of Fig. 4 in a wider temperature range
is shown in Fig. 5 which will be discussed in the next sub-
section. In the log-log plot of σ s

xx in Fig. 4, the larger-size
data for the XY and Heisenberg cases increase toward TN

almost linearly as indicated by dotted lines, suggestive of
the power-law divergence of the form cσ (T − TN )−xσ . By
fitting the size-independent data with this functional form, we
obtain the exponent xσ as xσ = 0.49 and 0.41 for the XY and
Heisenberg cases, respectively. In the Ising case, on the other
hand, the σ s

xx value is almost saturated on approaching TN , so
σ s

xx is nondivergent.
Noting that the Sx and Sy spin components play an es-

sential role for the spin current Jz
s in the form of (Si × S j )z

[see Eqs. (5)], we could understand the origin of the above
difference between the Ising and other two cases as follows: In
the XY and Heisenberg cases, the spin fluctuations in the SxSy

plane perpendicular to the polarization of the spin current (see
Fig. 2) become critical, leading to the significant enhancement
of σ s

xx, while not in the Ising case where only the longitudinal

 0.01

 0.1

 1

 0.1

 1

 0.1

 1

 0.01  0.1  1  0.01  0.1  1  0.01  0.1  1

(a) Ising, Δ=1.05 (b) XY, Δ=0.95 (c) Heisenberg, Δ=1

< 
|J

   
(0

)| 
 >

/L
s,x

2
3

σ    xx

τ    s

z
(T-T )/|J|N (T-T )/|J|N (T-T )/|J|N

L=8
L=16
L=32
L=48

L=8
L=16
L=32
L=48

L=8
L=16
L=32
L=48

s

FIG. 4. The log-log plot of the longitudinal spin conductivity
σ s

xx (top), the equal-time correlation function of the spin current
〈|Jz

s,x (0)|2〉/L3 (middle), and the spin-current relaxation time τs (bot-
tom) as a function of (T − TN )/|J| in the (a) Ising-type, (b) XY -type,
and (c) Heisenberg-type spin systems. A dotted line represents a
power function of (T − TN ) obtained by fitting the size-independent
data in the temperature range of TN < T < 1.7 |J| (for details, see
the text).

mode along the Sz direction, which should be irrelevant to
the spin current Jz

s, develops. The slight enhancement of σ s
xx

near TN in the Ising case of � = 1.05 would be due to the
remnant Heisenberg nature which is gradually smeared out on
approaching TN , showing a crossover to the Ising universality
class. Thus, it should be suppressed for larger values of the
magnetic anisotropy �, as is actually the case for the associ-
ated two-dimensional system (see Fig. 8 in Ref. [6]).

Now, we shall move on to the origin of the power-law
divergence of σ s

xx in the XY and Heisenberg cases. Since
σ s

xx is obtained by integrating the time-correlation function
〈Jz

s,x (0) Jz
s,x (t )〉/L3 over time, 〈|Jz

s,ν (0)|2〉/L3 as well as the
spin-current relaxation time τs should be important. In Fig. 3,
the time correlation 〈Jz

s,ν (0) Jz
s,μ(t )〉/L3 decays exponentially

in the form of e−t/τs , so we could assume 〈Jz
s,x (0) Jz

s,x (t )〉/L3 �
(〈|Jz

s,x (0)|2〉/L3) e−t/τs . Then, by carrying out the integral over
time in Eq. (7), one can estimate the longitudinal spin con-
ductivity as σ s

xx � T −1 τs 〈|Jz
s,x (0)|2〉/L3. Bearing this relation

in our mind, we will discuss the origin of the power-law
divergence.

The middle and bottom panels in Fig. 4 show the log-
log plot of 〈|Jz

s,x (0)|2〉/L3 and τs, respectively, as a function
of (T − TN )/|J|. One can see that τs and σ s

xx show similar
temperature and system-size dependencies (compare top and
bottom panels in Fig. 4) and that the temperature dependence
of 〈|Jz

s,x (0)|2〉/L3 is relatively weak. In the XY and Heisenberg
cases, τs shows a power-law divergence similarly to σ s

xx, as
indicated by dotted lines in the bottom panels in Fig. 4, where
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FIG. 5. The temperature dependence of the longitudinal spin
conductivity σ s

xx (top), the equal-time correlation function of the spin
current 〈|Jz

s,x (0)|2〉/L3 (middle), and the spin-current relaxation time
τs (bottom) in the (a) Ising-type, (b) XY -type, and (c) Heisenberg-
type spin systems. In (a)–(c), dashed lines indicate TN/|J| � 1.574,
1.472, and 1.443, respectively. Top panels are the same as those in
Fig. 1 except the temperature range; in this figure, the temperature
range is extended to a sufficiently low temperature below TN .

the dotted lines are obtained by fitting the size-independent
τs data in the temperature range of TN < T < 1.7|J| with a
power-law function cτ (T − TN )−xτ . The obtained exponent
of xτ = 0.59 (0.69) in the XY -type (Heisenberg-type) spin
system is relatively close to the exponent for the spin con-
ductivity xσ = 0.49 (0.41), suggesting that the power-law
divergence of the spin conductivity σ s

xx is attributed to the
spin-current relaxation time τs which gets longer toward TN

to eventually diverge. In each spin system, a slight deviation
between the two exponents would be due to the nondivergent
temperature dependence of 〈|Jz

s,x(0)|2〉/L3 and the trivial T −1

factor appearing in σ s
xx. If one can evaluate σ s

xx and τs in
the temperature region further close to TN where the critical
divergence becomes much clearer, further close values of the
exponents could be obtained, but it needs further larger-size
simulations.

As the power-law divergences of σ s
xx and τs are numeri-

cally confirmed, the next question is how their exponents are
related to the critical exponents associated with the three-
dimensional Néel transition. In the three-dimensional Ising,
XY , and Heisenberg universality classes, the critical expo-
nents ν’s characterizing the divergence of the spin correlation
length ξs ∼ (T − TN )−ν are known to be ν = 0.630, 0.671,
and 0.711, respectively [9,34,35]. The dynamical critical ex-
ponent z characterizing the divergence of the spin correlation
time τ ∼ ξ z

s ∼ (T − TN )−z ν generally depends on the sign of
J and is given by z � 2.18 (z = 3/2) for the antiferromagnetic
Ising (Heisenberg) system [36–38], which corresponds to the
z value for Model C (G) in Ref. [10]. In the XY case, z = 1.5

is expected for ferromagnetic J > 0 [10,39,40], but the corre-
sponding value for antiferromagnetic J < 0 is not available.
Thus, for the moment, we assume that the value of z = 1.5
is also satisfied for J < 0. Then, the net exponent zν for the
timescale of the critical slowing down is calculated as zν �
1.0 and 1.06 in the XY and Heisenberg cases, respectively.
The zν values are not so far from the associated exponents
for the spin-current relaxation time, 0.59 and 0.69, and the
spin conductivity, 0.49 and 0.41, but we cannot rule out the
possibility that the timescales of the spin itself and the spin
current may be different. Actually, it is indicated that in the
XY and Heisenberg cases, the critical behaviors in the spin
conductivity are roughly described by ξ 2−z

s ∼ (T − TN )−0.34

[40] and ξ 1/2
s ∼ (T − TN )−0.36 [36], respectively, whose ex-

ponents and our result also do not differ so much. Although it
is difficult to provide a quantitative argument on the critical
exponent for the spin conductivity σ s

xx or the spin-current
relaxation time τs, it is certain that σ s

xx and τs diverge toward
TN due to the transverse spin fluctuation associated with the
critical phenomena.

Although σ s
xx’s in both the XY -type and Heisenberg-type

spin systems exhibit the divergence at TN , their low-
temperature properties below TN are quite different. As will
be explained below, in the former anisotropic case, σ s

xx is
rapidly suppressed to zero, whereas in the latter isotropic case,
σ s

xx likely remains divergent over the wide temperature range
below TN .

C. Longitudinal spin conductivity σs
μμ below TN

Below TN where the long-range antiferromagnetic order is
developed, the spin waves or magnons should be relevant to
the spin and thermal transport. In the present classical spin
model, quantum effects, which in real materials govern the
low-temperature magnon excitation in the form of the Bose
distribution function, are inherently absent. In this respect, the
transport properties of the classical spin systems in the T → 0
limit should be unrealistic. On the other hand, at moderate
temperatures below TN where the quantum effect is masked
by the thermal fluctuation, the classical description may work
well. In this subsection, bearing this temperature range in our
mind, we will discuss the spin transport below TN . Before
discussing the numerical result, we will summarize the ana-
lytical result obtained in the LSWT for the present classical
spin system (for details, see Appendix B).

First, the magnon excitation is gapless in the XY and
Heisenberg cases of � � 1, while not in the Ising case of
� > 1 where the easy-axis magnetic anisotropy yields the
excitation gap [see Eq. (B4) in Appendix B 1]. It turns out
that in the Ising and Heisenberg cases of � � 1, the equal-
time correlation of the magnon-spin-current 〈|Jz

s,x (0)|2〉/L3

gradually decreases with decreasing temperature, showing a
T 2 dependence [see Eq. (B12) in Appendix B 2], whereas in
the XY case of � < 1 it vanishes because the leading-order
magnon spin current is absent [see Eq. (B5) in Appendix B 1].
Concerning the longitudinal spin conductivity σ s

xx mediated
by the magnons [see Eq. (B24) in Appendix B 3], it is roughly
proportional to T/α in the Ising case, where α denotes the
magnon damping of its origin consisting in the spin Hamilto-
nian Eq. (1), and is known to show a T 2 dependence at least
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in the classical isotropic case [41]. Thus, for a weak Ising
anisotropy, σ s

xx ∝ T −1 is expected. In the XY case, σ s
xx is zero

because the leading-order magnon spin current is absent from
the beginning. In the Heisenberg case, σ s

xx involves a loga-
rithmic divergence, so σ s

xx is infinite over the low-temperature
ordered phase where the magnons are well-defined.

Now, we will discuss the numerical result for T <

TN . Figure 5 shows the temperature dependence of σ s
xx,

〈|Jz
s,x (0)|2〉/L3, and τs over the wide temperature range in-

cluding a sufficiently low temperature below TN . Note that
zoomed views of the top panels near TN correspond to the top
panels in Fig. 1. In the bottom panels in Figs. 5(b) and 5(c),
there are no data points in the wide and narrow temperature
regions just below TN , respectively. In the former case, the
time correlation decays too fast, so we cannot evaluate such a
very short τs within our precision, whereas in the latter case,
the decay function does not look like a simple exponential
form and thus τs cannot uniquely be determined in this narrow
temperature region.

In the Ising case shown in Fig. 5(a), on cooling across
TN , the spin conductivity σ s

xx is first suppressed just below
TN and then starts increasing toward T = 0. Below TN , since
〈|Jz

s,x (0)|2〉/L3 is a decreasing function of T , the increasing
behavior of σ s

xx is due to τs, which gets longer toward T = 0
[see the bottom panel of Fig. 5(a)]. As the relation σ s

xx �
T −1 τs 〈|Jz

s,x (0)|2〉/L3 holds, these numerical results are quali-
tatively consistent with the analytical results for a weak Ising
anisotropy, 〈|Jz

s,x (0)|2〉/L3 ∝ T 2, σ s
xx ∝ T −1, and τs ∝ T −2. A

similar lower-temperature behavior can also be seen in the
associated two-dimensional system with the same anisotropy
parameter of � = 1.05 [6]. For larger �, σ s

xx is gradually
suppressed in the two-dimensional system as the excitation
gap becomes larger [6]. Such a situation would also be the
case for the present three-dimensional system.

In the XY case shown in Fig. 5(b), the spin conductivity
σ s

xx diverges on cooling toward TN , and once across TN , it
rapidly drops down to zero. Such a steep decrease can also
be seen in 〈|Jz

s,x (0)|2〉/L3 and τs [see the middle and bot-
tom panels of Fig. 5(b)], which is due to the fact that the
leading-order magnon spin current is absent. In the associated
two-dimensional XY -type spin system [6], the overall feature
is quite similar to the present three-dimensional system except
for the critical behavior above the transition where in two
dimensions, the topological objects of vortices govern the
physics [7].

In the isotropic Heisenberg case shown in Fig. 5(c),
although 〈|Jz

s,x(0)|2〉/L3 is system-size independent and grad-
ually decreases toward T = 0 (see the middle panel) as
expected for the magnon spin current, both σ s

xx and τs are
strongly size dependent and their finite size data basically
increase with decreasing temperature. Furthermore, at a fixed
temperature below TN , both σ s

xx and τs increases with increas-
ing system size L. If σ s

xx continues to increase even for larger
L, this means that in the thermodynamic limit of L → ∞,
σ s

xx is divergent everywhere in the low-temperature ordered
phase below TN . Figure 6 shows the finite-size scaling plot
of σ s

xx shown in the top panel of Fig. 5(c). As readily seen,
σ s

xx/Lxσ /ν can basically be scaled by a universal function
f ((T/TN − 1)L1/ν ), although the scaling is not so good for
T < TN . In the L → ∞ limit, f (x) tends to go to zero for

 0
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 0.04
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FIG. 6. The finite-size scaling plot of the longitudinal spin
conductivity σ s

xx in the Heisenberg case of � = 1, where the well-
established value of ν = 0.711 and the result of the present paper
xσ = 0.41 are used together with the transition temperature TN/|J| =
1.443. All the data in the top panel of Fig. 5(c) are used in this scaling
plot.

TN < T (x → ∞), while not for T < TN (x → −∞), sug-
gesting that σ s

xx = Lxσ /ν f ((T/TN − 1)L1/ν )|L→∞ is infinite for
any T < TN . The analytical calculation also supports this
scenario. Thus, it is most likely that σ s

xx is infinite in the low-
temperature long-range ordered phase, with ξs being infinite.
We note that in the associated two-dimensional square-lattice
system, σ s

xx is proportional to ξs which exponentially increases
toward T = 0 but is finite at any finite temperature due to the
dimensionality of the system [6].

IV. THERMAL CONDUCTIVITY κμν

In this section, we will discuss the thermal conductivity
κμν . As readily seen from the bottom panels of Fig. 1, the
Hall response κxy is absent over the whole temperature range,
similarly to the transverse spin conductivity σ s

xy, so, here-
after, we will focus on the longitudinal thermal conductivity
κxx (= κyy = κzz). We will show that in contrast to the spin
conductivity σ s

xx, the thermal conductivity κxx only shows a
monotonic increase on cooling across TN . As κxx is calculated
from the time correlation function 〈Jth,x(0) Jth,x(t )〉/L3 [see
Eq. (7)], we shall start from the temperature dependence of
〈Jth,x (0) Jth,x (t )〉/L3.

A. Time-correlation function

Figure 7 shows the time-correlation function
〈Jth,x(0) Jth,x(t )〉/L3 at various temperatures, where the
same parameter sets as those in Fig. 3 have been used.
There is no qualitative difference among the three cases,
Ising, XY , and Heisenberg spin systems: the relaxation time
of the thermal current gradually increases with decreasing
temperature. Below TN (see the bottom panels of Fig. 7),
〈Jth,x(0) Jth,x(t )〉/L3 shows a weak anomaly in the short-time
scale, which might be related to the oscillating behavior in the
spin-current relaxation shown in the bottom panels in Fig. 3.
Since near TN , a long-time tail is commonly absent for the
thermal-current relaxation (see the insets in Fig. 7), a critical
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anomaly is also absent in the associated thermal conductivity
κxx, as will be explained below.

B. Longitudinal thermal conductivity κμμ near TN

As shown in the third panels from the top in Fig. 1, the
longitudinal thermal conductivity κxx monotonically increases
on cooling with a slope steepening near TN in all the Ising, XY ,
and Heisenberg spin systems. Thus, in view of the main focus
of this paper, our conclusion is that the strong association
between the thermal conductivity and the phase transition can-
not be seen in three dimensions as well as in two dimensions
[6,12]. The present result of the nondivergent behavior of κxx

near TN is consistent with the experimental observation that in
the antiferromagnets FeF2 and RbMnF3, which belong to the
three-dimensional Ising and Heisenberg universality classes,
respectively, κxx only shows a nondivergent broad peak stem-
ming from spin-phonon scatterings [17,18], which validates
the present theoretical approach to calculate the transport
coefficients in purely magnetic systems without coupling to
other degrees of freedom such as phonons and electrons.

Since the thermal conductivity of particles is often ex-
pressed as κμμ ∼ C v l with a particle velocity v and a
mean-free path l , one may naively expect a characteristic be-
havior in κμμ similar to the specific heat C. In the present case,
however, the quasiparticle of the magnon is not well-defined
for TN < T and the above expression cannot directly be ap-
plied in the temperature range across TN , so the temperature
dependence of κμμ does not have to be the same as that of C.
We note that this does not mean κμμ is always insensitive to a
magnetic transition. Considering that in liquid 4He [42], κμμ

diverges at the λ transition belonging to the three-dimensional
XY universality class, the behavior of κμμ at the transition

might depend on the sign of the exchange interaction, as in
the case of the dynamical critical exponent. Our conclusion is
that at least in the conventional antiferromagnetic insulators,
there is no clear signature of the Néel transition in κμμ.

In the low-temperature long-range ordered phase below
TN , the magnons should carry the thermal current, as in the
case of the spin current. Since in the present classical spin
system, the quantum effect in the form of the Bose distribution
function is inherently absent, the low-temperature limit of the
classical-spin thermal transport would not directly be related
to realistic experimental situations. Nevertheless, to clarify the
fundamental properties of the present classical system, we will
discuss the low-temperature behavior of κxx below TN .

C. Longitudinal thermal conductivity κμμ below TN

As in the case of the spin conductivity σ s
xx, the temperature

dependence of the longitudinal thermal conductivity κxx orig-
inates from that of the time correlation function of the thermal
current 〈Jth,x(0) Jth,x(t )〉/L3 except the trivial T −2 factor [see
Eq. (7)]. By using the equal-time correlation 〈|Jth,x(0)|2〉/L3

and the relaxation time of the thermal current τth which can
be deduced by fitting 〈Jth,x(0) Jth,x(t )〉/L3 with the exponen-
tial form e−t/τth , one could write the thermal conductivity as
κxx � T −2 τth 〈|Jth,x(0)|2〉/L3. Below, we will discuss the T
dependence of κxx, 〈|Jth,x(0)|2〉/L3, and τth toward T = 0.

Before going to the numerical result, we will briefly sum-
marize the analytical result on the temperature dependence of
the above quantities obtained in the LSWT. For the magnon
thermal current, 〈|Jth,x(0)|2〉/L3 exhibits a T 2 dependence [see
Eq. (B9) in Appendix B 2], canceling the trivial T −2 factor in
κxx, so κxx is roughly proportional to the inverse of the magnon
damping α [see Eq. (B21) in Appendix B 3] and, thereby,
the thermal-current relaxation time τth is related to α via
τth ∝ 1/α. Since at least in the Heisenberg case, the magnon
damping α is proportional to T 2, it follows that τth ∝ T −2

and κxx ∝ T −2. Bearing these temperature dependencies in
our mind, we will discuss the numerical result.

Figure 8 shows the log-log plot of κxx (top), 〈|Jth,x(0)|2〉/L3

(middle), and τth (bottom) in the Ising, XY , and Heisenberg
cases. One can see from the top panels in Fig. 8 that in
the moderate temperature range below TN , 0.7 � T/|J| � 1.4,
κxx linearly increases toward T = 0 in this log-log plot, sug-
gesting a power-law behavior in this temperature range. By
fitting the size-independent numerical data in this region with
a power-law function c T −x, we obtain the exponent x as
x = 3.4, 4.0, and 4.1 in the Ising, XY , and Heisenberg cases,
respectively, and the fitting results are indicated by dotted
lines in Fig. 8. At further low temperatures, the increasing
behavior of κxx is slightly suppressed and the exponent x tends
to become smaller. Since 〈|Jth,x(0)|2〉/L3 decreases roughly
following the T 2 dependence expected for the magnon ther-
mal current (see the middle panels in Fig. 8), the increasing
behavior of κxx should originate from the thermal-current
relaxation time τth. Indeed, as one can see from the top and
bottom panels in Fig. 8, κxx and τth exhibit almost the same
temperature dependence, and the exponents of the power-law
behavior of τth, which are obtained by the same fitting proce-
dure as x = 3.5, 3.9, and 3.9 in the Ising, XY , and Heisenberg
cases, respectively, are almost the same as those for κxx.
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function of the form c T −x , where the exponent x obtained by fitting
the low-temperature data is explicitly written in the figure.

Compared with the analytically expected behavior of κxx ∝
τth ∝ 1/α ∝ T −2, the numerical result of κxx ∝ τth ∝ T −4 has
a roughly twice larger exponent. This difference might be due
to the temperature range we consider; the LSWT is basically
applicable to the lower-temperature region where the leading-
order magnon contribution is important, whereas the fitting
result of T −4 is obtained in the moderate temperature range
below TN . The deviation from the T −4 behavior at further
low temperatures (see the top and bottom panels of Fig. 8)
might be a signature of a crossover to the T −2 dependence. In
the associated two-dimensional Ising system, such a crossover
behavior below TN can also be seen for the small value of
� = 1.05, and for larger �, the low-temperature κxx is grad-
ually suppressed due to the larger excitation gap [6]. In the
present three-dimensional system, the exponent of 3.5 for the
Ising system is slightly smaller than the ones for the XY and
Heisenberg systems where the magnon excitation is gapless,
which could be due to the gap opening.

V. SUMMARY AND DISCUSSION

We have theoretically investigated the spin and thermal
transport near the Néel transition temperature TN in three-
dimensional antiferromagnets by performing the hybrid MC
and spin-dynamics simulations for the classical XXZ model
on the cubic lattice in which the anisotropy of the exchange
interaction � ≡ Jz/Jx plays a role to control the universality
class of the system. It is found that although the ther-

mal conductivity κμμ is insensitive to the transition, being
consistent with the experimental observations [17,18], the
longitudinal spin conductivity σ s

μμ is enhanced near TN with
its temperature dependence being affected by the magnetic
anisotropy �: in the XY (� < 1) and Heisenberg (� = 1)
cases, σ s

μμ diverges toward TN on cooling, while not in the
Ising case (� > 1), suggesting that the magnetic fluctua-
tion perpendicular to the polarization of the spin current
is essential for the spin transport. The origin of the diver-
gence in σ s

μμ consists in the spin-current relaxation time τs

which gets longer on approaching TN from above, and both
σ s

μμ and τs exhibit almost the same power-law divergences
characteristic of critical phenomena. It is also found that
in contrast to the XY case where the divergence in σ s

μμ is
rapidly suppressed below TN , σ s

μμ likely remains divergent
even below TN in the Heisenberg case of � = 1, pointing
to the emergence of a ballistic/superdiffusion spin transport
which has mainly been discussed in one-dimensional spin
chains [43–45].

The above result for the three-dimensional system is qual-
itatively similar to that for the associated two-dimensional
system, i.e., the classical antiferromagnetic XXZ model on
the square lattice [6]. The common feature of the two systems
is that in a situation where the transverse magnetic fluctua-
tions are relevant to a phase transition, the longitudinal spin
conductivity σ s

μμ diverges at the transition temperature. This
inversely suggests that the divergent enhancement of σ s

μμ

indicates a certain kind of a phase transition even if there
is no clear anomaly in the static physical quantities such as
the specific heat and magnetic susceptibility, as is actually the
case for the KT transition in XY antiferromagnets [6] and the
Z2-vortex transition in frustrated Heisenberg antiferromag-
nets [12]. Thus, the spin current should serve as a probe of
a transition in magnetic materials.

Now we address experimental implications of our result. In
the spin-current measurements done on the antiferromagnets
CoO and NiO in basically the same setting as that shown
in Fig. 2 [2], the spin current injected from the Y3Fe5O12

side by using the spin pumping is detected in the Pt side
via the inverse spin-Hall effect, and the enhancement of the
spin-current signal has been observed near TN . It seems that
CoO has an Ising-type easy-axis anisotropy [46–49], whereas
NiO has a biaxial anisotropy with a favorable direction in
a XY -like easy plane [46,50,51]. In the present theoretical
work, we consider the situation where the spin polarization
of the spin current is parallel to the uniaxial direction of the
magnetic anisotropy (easy and hard axes in the Ising and XY
cases, respectively) because the magnetization is conserved
for this polarization direction and, thereby, the spin current is
theoretically well-defined. Since the detailed information of
the relative angle between the anisotropy axes of CoO and
NiO and the polarization of the injected spin current is not
available, at present we cannot judge whether our result is
consistent with the experimental observation or not. If one
could perform a similar experiment on XY and Heisenberg
antiferromagnets such as SmMnO3 [52] and RbMnF3 [53],
controlling the relative angle between the spin-current polar-
ization and the anisotropy axis, the significant enhancement of
the spin conductivity σ s

μμ is expected to be observed at TN . In
particular, for the ideally isotropic antiferromagnet RbMnF3
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belonging to the three-dimensional Heisenberg universality
class due to a very tiny magnetic anisotropy of the order of
10−6 [53–57], the high spin conductivity might persist even
below TN , as suggested from the present paper.

Here, we comment on additional effects which are not
incorporated in the present paper but might be important
in real experiments. First, in the setting shown in Fig. 2,
effects of the interfaces between the antiferromagnet and both-
side materials are not negligible. To capture the bulk signal
undisturbed by the interface contribution, nonlocal measure-
ments for thick antiferromagnets would be necessary [58].
In addition, the efficiency of the spin-current injection and
detection is determined by the spin-mixing conductance at
the interfaces [58–61], being accompanied by a tempera-
ture dependence [59]. Thus, a material combination having
a relatively weak temperature dependence in the spin-mixing
conductance would be better to see the change in the bulk σ s

xx.
Another factor which may possibly affect the conductivity
measurement is the existence of phonons. In contrast to the
thermal conductivity involving both magnetic and phonon
contributions, however, the spin conductivity should be of
purely magnetic origin unless a spin-phonon coupling is
strong enough, with its high sensitivity to the critical phenom-
ena associated with the magnetic transition.

Although our focus in the present paper is on antiferro-
magnets, a divergent enhancement of the spin conductivity
at a ferromagnetic transition is also indicated in the three-
dimensional Heisenberg ferromagnet [62]. In the ferromag-
netic case, the dynamical critical exponents for the XY and
Heisenberg systems are known to be z � 1.5 and z � 5/2, re-
spectively [37,38]. Such a large difference in z may distinctly
be reflected in the temperature dependence of the longitudinal
spin conductivity σ s

μμ, shedding light on the association be-
tween the dynamical critical exponent z and the exponent for
the power-low divergence of σ s

μμ. We will leave this issue for
our future work.
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APPENDIX A: ORDERING PROPERTIES OF THE
CLASSICAL ANTIFERROMAGNETIC XXZ MODEL

ON THE CUBIC LATTICE

Fundamental ordering properties of the classical antifer-
romagnetic XXZ model on the cubic lattice Eq. (1) can be
examined by means of the MC simulation. In our MC simula-
tions, at each temperature, we perform 2×105 MC sweeps and
the first half is discarded for thermalization, where one MC
sweep consists of the one heat-bath sweep and successive ten
over-relaxation sweeps. Observations are done in every MC
sweep, and the statistical average is taken over eight indepen-
dent runs starting from different initial spin configurations. In
the Ising-type, XY -type, and Heisenberg-type spin systems,
the antiferromagnetic order parameters, the associated spin-

correlation lengths, and the Binder ratios are, respectively,
expressed as mz

AFM, ξ z
s , and gz

s, mxy
AFM, ξ

xy
s , and gxy

s , and mAFM,
ξs, and gs which are defined by

mz
AFM =

√〈
Gz

2(Q)
〉
,

mxy
AFM =

√〈
Gx

2(Q) + Gy
2(Q)

〉
,

mAFM =
√〈

Gx
2(Q) + Gy

2(Q) + Gz
2(Q)

〉

ξ z
s = 1

2 sin(π/L)

√ 〈
Gz

2(Q)
〉

〈
Gz

2(Q + kmin)
〉 − 1,

ξ xy
s = 1

2 sin(π/L)

√√√√ 〈∑
α=x,y Gα

2 (Q)
〉

〈∑
α=x,y Gα

2 (Q + kmin)
〉 − 1,

ξs = 1

2 sin(π/L)

√√√√ 〈∑
α=x,y,z Gα

2 (Q)
〉

〈∑
α=x,y,z Gα

2 (Q + kmin)
〉 − 1,

gz
s = 2

(
1 − 1

2

〈
Gz

2(Q)2
〉

〈
Gz

2(Q)
〉2
)

,

gxy
s = 3

2

(
1 − 1

3

〈[Gx
2(Q) + Gy

2(Q)
]2〉〈

Gx
2(Q) + Gy

2(Q)
〉2

)
,

gs = 5

2

(
1 − 3

5

〈[
Gx

2(Q) + Gy
2(Q) + Gz

2(Q)
]2〉

〈
Gx

2(Q) + Gy
2(Q) + Gz

2(Q)
〉2

)
,

Gα
2 (q) =

∣∣∣ 1

Nspin

∑
i

Sα
i ei q·ri

∣∣∣2,
Q = (π, π, π ), kmin = (2π/L, 0, 0).

Note that the ordering vector Q = (π, π, π ) describes the
two-sublattice antiferromagnetic order.

Figure 9 shows the temperature dependencies of the spe-
cific heat C, the antiferromagnetic order parameter, the ratio of
the spin correlation length to the system size L, and the Binder
ratio for the Ising-type (� = 1.05), XY -type (� = 0.95), and
Heisenberg-type (� = 1) spin systems. In all three cases,
the order parameters mz

AFM, mxy
AFM, mAFM start growing up at

the antiferromagnetic transition temperatures TN indicated by
specific-heat sharp peaks (see the upper two panels in Fig. 9).
The TN can accurately be determined as a cross point of differ-
ent size data for the spin-correlation length ratio and Binder
ratio. From the crossing points (see the lower two panels in
Fig. 9), we estimate TN as TN/|J| � 1.574, 1.472, and 1.443
for � = 1.05, 0.95, and 1, respectively. Since exactly speak-
ing, the crossing point depends on the choice of two different
sizes, careful analysis of the system-size dependence of the
crossing points is necessary to further accurately determine
the transition temperature. Nevertheless, in the Heisenberg
case of � = 1, the obtained value of TN/|J| = 1.443 is close
to the so-far-reported best estimate of 1.457 [34]. In the other
two cases of � = 1.05 and 0.95, the corresponding estimates
are not available.
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(a) Ising, Δ=1.05 (b) XY, Δ=0.95 (c) Heisenberg, Δ=1
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FIG. 9. MC results for the classical XXZ model on the cubic lattice Eq. (1). (a) Ising-type (� = 1.05), (b) XY -type (� = 0.95), and
(c) Heisenberg-type (� = 1) spin systems. From top to bottom, the specific heat C, the antiferromagnetic order parameter, the ratio of the spin
correlation length to the system size, and the Binder ratio are shown as a function of temperature. In lower two panels, an inset shows a zoomed
view of each main panel near the magnetic transition temperature TN/|J| indicated by a dashed line. In (a)–(c), the transition temperatures are
estimated as TN/|J| � 1.574, 1.472, and 1.443, respectively.

APPENDIX B: ANALYTICAL CALCULATIONS BASED
ON THE LINEAR SPIN-WAVE THEORY

In the low-temperature long-range-ordered phase, the mag-
netic excitations can be well described by the LSWT, so we
analytically investigate the temperature dependence of κμν

and σ s
μν based on the LSWT. Previously, we derived the corre-

sponding result in the two-dimensional square-lattice system
[6]. Since the difference between two and three dimensions
consists in only in the dispersion relation and the momentum
space integral, the formal expressions for various quantities
before the q summation are basically the same as those in the
two-dimensional system.

1. Magnon representation

The magnon representation of the Hamiltonian Eq. (1) and
the spin and thermal currents in Eqs. (5) and (6) can be derived
by using the spin-wave expansions. In the Ising case of � > 1,
the quantization axis of spin is in the Sz direction, and in the
Heisenberg case of � = 1 where the quantization axis can be
arbitrary, we chose it in the Sz direction for simplicity. In the
XY case of � < 1, where the Sx and Sy components of spins
are ordered, we take the quantization axis in the Sx direction.

To easily diagonalize the Hamiltonian Eq. (1) for � � 1 (� <

1), we introduce the transformation from the laboratory frame
to the rotated frame, with Sy (Sz) being the rotation axis,⎧⎪⎨

⎪⎩
Sz(x)

i = S̃z(x)
i cos(θi ) − S̃x(y)

i sin(θi )
Sx(y)

i = S̃z(x)
i sin(θi) + S̃x(y)

i cos(θi)
Sy(z)

i = S̃y(z)
i ,

where θi = Q · ri and Q = (π, π, π ) is the ordering vector of
the two-sublattice antiferromagnetic order. By further using
the Holstein-Primakoff transformation⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S̃z(x)
i = S − â†

i âi

S̃x(y)
i + iS̃y(z)

i = √
2S
(

1 − â†
i âi

2S

) 1
2
âi = √

2S âi + O(S− 1
2 )

S̃x(y)
i − iS̃y(z)

i = √
2Sâ†

i

(
1 − â†

i âi

2S

) 1
2 = √

2S â†
i + O(S− 1

2 ),

(B1)
with â†

i and âi being, respectively, the bosonic creation and
annihilation operators and the Fourier transformation of these
operators,

â†
i = 1√

L3

∑
q

â†
qe−iq·ri , âi = 1√

L3

∑
q

âqeiq·ri , (B2)
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we obtain

H = 1

2

∑
q

[Aq(â†
qâq + âqâ†

q) − Bq(â†
qâ†

−q + âqâ−q)]

+ const.

in the lowest order in the 1/S expansion. Here, the coefficients
Aq and Bq are given by

Aq = −6JS

{
� (� � 1)
1 − 1

2 (1 − �)γq (� < 1),

Bq = −6JS

{
γq (� � 1)
1
2 (1 + �)γq (� < 1),

γq = 1
3 [cos(qx ) + cos(qy) + cos(qz )]. (B3)

The above Hamiltonian for the âq magnons can be diagonal-
ized with the help of the Bogoliubov transformation,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
âq = Uq b̂q + Vq b̂†

−q

Uq = U−q = 1
2

[(
Aq+Bq

Aq−Bq

)1/4
+
(

Aq−Bq

Aq+Bq

)1/4]
Vq = V−q = 1

2

[(
Aq+Bq

Aq−Bq

)1/4
−
(

Aq−Bq

Aq+Bq

)1/4]
,

where b̂†
q and b̂q are the creation and annihilation operators

for magnons, and we obtain

H �
∑

q

εq b̂†
qb̂q, εq =

√
A2

q − B2
q,

where we have dropped constant and higher-order terms. In
the XY and Heisenberg cases of � � 1, the magnon excita-
tion is gapless, while in the Ising case of � > 1, it has the
excitation gap of �gp = 6|J|S√

�2 − 1, which can be seen
from the following expression of εq near q = 0:

εq � 6|J|S

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
�2 − 1 + 1

3 |q|2 (� > 1)√
1
3 |q| (� = 1)√
1
6 (1 + �) |q| (� < 1).

In the gapless cases of � � 1, the magnon dispersion shows
a q-linear dependence, so the magnon velocity vq = ∇qεq
becomes const × q̂ for the gapless mode.

In the same 1/S expansion, the thermal and spin currents
in Eqs. (6) and (5) can be expressed with the use of the b̂q
magnons as follows:

Jth = (6|J|S)2
∑

q

ε̃q ṽq b̂†
qb̂q, (B4)

Jz
s =

⎧⎪⎪⎨
⎪⎪⎩

3|J|S ∑q ṽq

[
Aq

Bq
(b̂†

qb̂†
−q+Q + b̂qb̂−q+Q)

−(b̂†
qb̂q+Q + b̂qb̂†

q+Q)
]

(� � 1)

O
(
S1/2

)
(� < 1),

(B5)

with

ε̃q = εq

6|J|S , ṽq = ∇qε̃q. (B6)

In contrast to the thermal current Jth having the common
magnon representation, the spin current takes different forms
depending on the value of �. Of particular importance is

that the spin currents in the XY (� < 1) and other (� � 1)
cases are of the order of O(S1/2) and O(S1), respectively,
which suggests that Jz

s in the XY case is negligibly small as
it is a higher order contribution in the 1/S expansion. Such
a difference between � � 1 and � < 1 cases stems from the
fact that in the former and latter cases, the quantization axis
of spin is parallel and perpendicular to the spin polarization
of the spin current, respectively. Remember that, although
the spin current has its foundation on the conservation of the
magnetization, only the z component of the magnetization is
conserved in the XXZ model Eq. (1) with � �= 1.

2. Equal-time correlation function

As the magnon Hamiltonian Eq. (B4) is already diagonal-
ized, the partition function can easily be calculated as

Z = Tr

[
exp

(
− 1

T

∑
q

εqb̂†
qb̂q

)]
=
∏

q

[− fB(−εq)],

with the Bose distribution function fB(x) = (ex/T − 1)−1.
Then, the equal-time correlation function 〈Jth,ν (0) Jth,μ(0)〉 for
the thermal current whose magnon representation is given by
Eq. (B4) can be calculated as

〈Jth,ν (0) Jth,μ(0)〉 =
∑
q,q′

εqεq′vq,μvq′,ν〈b̂†
qb̂qb̂†

q′ b̂q′ 〉

= δμ,ν

∑
q

[εq vq,μ]2 fB(εq)[1 + 2 fB(εq)],

(B7)

where we have used the formula 〈b̂†
qb̂qb̂†

q′ b̂q′ 〉 = T 2

Z
∂2 Z

∂εq∂εq′ .

By taking the classical limit of

fB(x) → T

x
, (B8)

we obtain the equal-time correlation for the classical spins
〈Jth,ν (0) Jth,μ(0)〉cl as〈

Jth,ν (0) Jth,μ(0)
〉
cl = δμ,ν T 2 2

∑
q

[vq,μ]2. (B9)

At this point, the T 2 dependence of 〈Jth,ν (0) Jth,μ(0)〉cl is

clear. For completeness, we shall check whether
∑

q [vq,μ]
2

converges or not. Since in three dimensions, the q summation
is written as∑

q

� L3

(2π )3

∫ 2π

0
dφq

∫ 1

−1
d cos(θq)

∫ π

0
q2 dq, (B10)

the problem is whether the q integral of a physical quan-
tity diverges or not in the q → 0 limit. In the case of∑

q [vq,μ]
2
, vq,μ does not diverge at q = 0 from the beginning,

so
∑

q [vq,μ]
2

converges, justifying the the T 2 dependence of
〈Jth,ν (0) Jth,μ(0)〉cl.

In the same manner, the temperature dependence of the
equal-time correlation function for the spin current can be
examined. Since in the XY case of � < 1, the spin current
is absent within the leading-order magnon contribution [see
Eq. (B5)], we only consider the � � 1 case, in which, after
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some manipulations, we have

〈
Jz

s,ν (0) Jz
s,μ(0)

〉 = −1

4

∑
q,q′

vq,νvq′,μ

{
(δq,q′ + δq,q′+Q)[ fB(εq) fB(−εq+Q) + fB(−εq) fB(εq+Q)]

−Aq

Bq

Aq′

Bq′
(δq,q′ + δq,−q′+Q)[ fB(εq) fB(ε−q+Q) + fB(−εq) fB(−ε−q+Q)]

}
. (B11)

Now, we take the classical limit of Eq. (B11). As the relations
A±q+Q = Aq, B±q+Q = −Bq, and v±q+Q = ±vq are satisfied
for � � 1, the classical limit Eq. (B8) yields

〈
Jz

s,ν (0) Jz
s,μ(0)

〉
cl = δμ,ν T 2

∑
q

[vq,μ]2

(
1 + A2

q

B2
q

)
1

ε2
q
. (B12)

In the q → 0 limit, Bq → −6JS and 1/ε2
q → 1/(�2 −

1 + 1
3 q2) [see Eqs. (B3)] and , so even for � = 1,∑

q [vq,μ]
2
(1 + A2

q

B2
q
) 1
ε2

q
∝ ∫ π

0 q2 1
q2 dq is nondivergent. Thus,

for � � 1, 〈Jz
s,ν (0) Jz

s,μ(0)〉cl exhibits the T 2 dependence sim-
ilarly to 〈Jth,ν (0) Jth,μ(0)〉cl.

3. Spin and thermal conductivities

In the classical spin systems, the conductivities κμν and
σ s

μν are obtained from the time-correlation of the associated
currents [see Eq. (7)]. To calculate the time correlation, it is
convenient to start from the quantum mechanical system and
take the classical limit of Eq. (B8) afterward. In the quan-
tum mechanical system, the dynamical correlation function
La,b

μν (ω) can be expressed in the following form [63]:

La,a
μν (ω) = −Qa,R

μν (ω) − Qa,R
μν (0)

iω
,

Qa,R
μν (ω) = Qa

μν (ω + i0), (B13)

Qa
μν (iωn) = − 1

L3

∫ 1/T

0
〈Tτ Ja,μ(τ )Ja,ν (0)〉 eiωn τ dτ.

Here, Qa
μν (iωn) is a response function and ωn = 2πnT is the

bosonic Matsubara frequency. Then, the thermal conductivity
κμν and the spin conductivity σ s

μν are given by

κμν = 1

T
i
d Qth,R

μν (ω)

d ω

∣∣∣
ω=0

,

σ s
μν = i

d Qs,R
μν (ω)

d ω

∣∣∣
ω=0

. (B14)

We first calculate the magnon thermal conductivity κμν for
which the response function Qth

μν (iωn) is given by [63]

Qth
μν (iωn) = −1

L3

∑
q

ε2
qvq,μ vq,ν T

∑
ωm

Dq(iωm)Dq(iωm + iωn)

= −1

L3

∑
q

ε2
qvq,μ vq,ν

∫ ∞

−∞

dx

2π i

[
DR

q (x) − DA
q (x)

]
×[

DR
q (x + iωn) + DA

q (x − iωn)
]

fB(x), (B15)

where DR
q (x) (DA

q (x) = [DR
q (x)]

∗
) is the retarded (advanced)

magnon Green’s function obtained by analytic continuation

iωm → ω + i0 in the temperature Green’s function Dq(iωm)
defined by

Dq(τ ) = −〈Tτ b̂q(τ )b̂†
q(0)〉 = T

∑
ωm

Dq(iωm) e−iωmτ . (B16)

With the use of Eqs. (B14), the thermal conductivity in the
quantum system is formally expressed as

κμν = T −1

4πL3

∫ ∞

−∞
dx

∑
q

ε2
q vq,μ vq,ν f ′

B(x)
[
DR

q (x) − DA
q (x)

]2
.

(B17)
Here, the magnon Green’s function DR

q (x) is given by

DR
q (x) = 1

x − εq + iα x
= [

DA
q (x)

]∗
, (B18)

where the dimensionless coefficient α represents the magnon
damping [64]. In the present system where the Hamiltonian
Eq. (1) involves only the spin variable, the damping α is
brought by the magnon-magnon scatterings. The temperature
dependence of α will be discussed below.

In the classical spin system with f ′
B(x) = −T/x2 [see

Eq. (B8)], by substituting Eq. (B18) into Eq. (B17), we obtain
the following expression for the thermal conductivity in the
classical spin systems κcl

μν as

κcl
μν = 1

2L3

1 + α2

α

∑
q

1

εq
vq,μ vq,ν , (B19)

where the equation∫ ∞

−∞

dx

[(x − εq)2 + (αx)2]2
= π

2

1 + α2

ε3
qα

3
(B20)

has been used. As the q summation
∑

q
1
εq

vq,μ vq,ν turns
out to converge even in the gapless cases of � � 1 where
the summation is proportional to δμ,ν

∫ π

0 q2 1
q dq, κcl

μν can be
expressed as

κcl
μν � δμ,ν

1 + α2

α
× const, (B21)

irrespective of the value of �. In the lower temperature re-
gion where the magnon damping is sufficiently small such
that α � 1, it follows that κcl

μν ∝ 1/α, which agrees with the
results obtained in other theoretical approaches [64,65]. Thus,
in all three (� > 1, � = 1, and � < 1) cases, the temperature
dependence of κcl

μμ ∝ 1/α is governed by the magnon damp-
ing factor α.

The damping of the antiferromagnetic magnon due to mul-
timagnon scatterings has already been calculated by using
Feynman diagram techniques in Refs. [41]. The temperature
dependence of α in the classical Heisenberg antiferromagnet

224407-13



KAZUSHI AOYAMA PHYSICAL REVIEW B 106, 224407 (2022)

essentially follows the T 2 form, i.e., α ∝ T 2, which re-
sults from the leading-order scattering process involving four
magnons. In the XY -type and Ising-type classical spin sys-
tems, although the concrete expression of α is not available,
the same temperature dependence α ∝ T 2 is expected because
the same types of the Feynman diagrams (the same leading-
order scattering processes) contribute to the magnon damping.
Of course, there must be quantitative differences among
the three cases. In particular, for the Ising-type anisotropy
of � > 1, the magnon excitation is gapped, so the phase
space satisfying the energy conservation in the calculation

of the relevant Feynman diagrams would be shrunk with in-
creasing �, resulting in a smaller value of α. Apart from
such a quantitative difference which may become serious
for strong Ising-type anisotropies, the longitudinal thermal
conductivity κcl

μμ in the classical limit should behave as
κcl

μμ ∝ 1/α ∝ 1/T 2 in all three (� > 1, � = 1, and � < 1)
cases.

We next calculate the spin conductivity σ s
μν based on

Eqs. (B14). As in the case of κμν , starting from the magnon
representation of the spin current in Eq. (B5), we can write the
response function Qs

μν (iωn) as

Qs
μν (iωn) = −1

4L3

∑
q,q′

vq,μ vq′,ν

{
(δq,q′ + δq,q′+Q)F+

q (iωn) + Aq

Bq

Aq′

Bq′
(δq,q′ + δq,−q′+Q)F−

q (iωn)

}
,

F±
q (iωn) = T

∑
ωm

Dq(iωm)[DQ±q(iωn ± iωm) + DQ±q(−iωn ± iωm)]

=
∫ ∞

−∞

dx

2π i
fB(x)

{[
DR

Q±q(±x + iωn) + DA
Q±q(±x − iωn)

][
DR

q (x) − DA
q (x)

] ± [
DR

Q±q(±x) − DA
Q±q(±x)

]
×[

DR
q (x + iωn) + DA

q (x − iωn)
]}

. (B22)

Then, the spin conductivity σ s
μν is formally written as

σ s
μν = 1

8πL3

∫ ∞

−∞
dx

∑
q,q′

vq,μ vq′,ν f ′
B(x)

[
DR

q (x) − DA
q (x)

]

×
{

(δq,q′ + δq,q′+Q)
[
DR

q+Q(x) − DA
q+Q(x)

]

−Aq

Bq

Aq′

Bq′
(δq,q′ + δq,−q′+Q)

[
DR

−q+Q(x) − DA
−q+Q(x)

]}
.

(B23)

In the same manner as that for κμν , we will derive the spin con-
ductivity in the classical limit σ s,cl

μν . By substituting Eq. (B18)
into Eq. (B23), taking the classical limit of f ′

B(x) = −T/x2,
and using Eq. (B20) and the formula∫ ∞

−∞

dx

[(x − εq)2 + (αx)2][(x + εq)2 + (αx)2]
= π

2

1

ε3
qα

,

we have

σ s,cl
μν = 1

2L3
T
∑

q

vq,μ vq,ν

1

ε3
q

[
1 + α2

α
+ α

A2
q

B2
q

]
. (B24)

In the Ising case of � > 1, the q summation
∑

q vq,μ vq,ν
1
ε3

q

converges, while not in the Heisenberg case of � = 1 because

the q summation involves
∫ π

0 q2 1
q3 dq, which yields the loga-

rithmic divergence. Thus, we could summarize the result as
follows:

σ s,cl
μν � δμ,ν

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T

[
c1α + c2

1

α

]
(� > 1)

T c3

∫ π

0

1

q
dq (� = 1)

0 (� < 1),

with constants c1, c2, and c3. In contrast to the thermal con-
ductivity κcl

μν , the spin conductivity σ s,cl
μν reflects the difference

in the ordering properties. First, in the XY case of � < 1, σ s,cl
μν

is zero because the spin current is absent within the leading-
order magnon contribution [see Eq. (B5)]. In the Ising case
of � > 1, the temperature dependence of σ s,cl

μμ is determined
by that of T/α at sufficiently low temperatures where α � 1
is expected. Since, for relatively weak anisotropies, α ∝ T 2

is expected to be satisfied, the longitudinal spin conductivity
should exhibit the following temperature dependence: σ s,cl

μμ ∝
T/α ∝ T −1. In the Heisenberg case of � = 1, due to the log-
arithmic divergence, the longitudinal spin conductivity should
remain infinite over the low-temperature ordered phase where
the LSWT is applicable.
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