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Spontaneous antiferromagnetic skyrmion/antiskyrmion lattice and spiral spin-liquid states in the
frustrated triangular lattice
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Magnetic skyrmions are topological quasiparticles of great interest for data storage applications because of
their small size, high stability, and ease of manipulation via electric current. Antiferromagnetic (AF) skyrmions,
with new features and huge benefits (ultrasmall skyrmion sizes, no transverse deflection and efficient manipula-
tion), have recently become the subject of intense focus. Here we show that a spontaneous antiferromagnetic
skyrmion/antiskyrmion lattice (AF-SkL/ASkL) emerges in the classical Heisenberg antiferromagnet on the
triangular-lattice under magnetic fields, taking only exchange interactions up to third nearest neighbors (J1-J2-J3).
By means of the Luttinger-Tisza approximation and large-scale Monte Carlo simulations (combining parallel-
tempering and over-relaxation with the Metropolis algorithm), we present a rich J2-J3 magnetic phase diagram
including exotic multiple-q phases, degenerate states, and a spontaneous AF-SkL/ASkL lattice at intermediate
magnetic fields. In addition, we show that at zero magnetic field, exotic spin-liquid states with ringlike degener-
acy emerge at intermediate temperatures, which are broken by thermal fluctuations selecting different multiple-q
states. These findings greatly enrich the research on antiferromagnetic skyrmions in centrosymmetric materials
or lattices including relatively weak Dzyaloshinskii-Moriya interaction.
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I. INTRODUCTION

Since the experimental discovery of magnetic skyrmion
crystals in MnSi [1], magnetic skyrmions—noncoplanar spin
configurations with nonzero topological number—have at-
tracted great research interest due to their high stability and
particle-like behavior. Their particular topological properties,
small size, and unique dynamic behavior render these mag-
netic textures promising candidates for potential applications
to next-generation spintronics devices [2–4]. In this context,
antiferromagnetic skyrmions [5] have become the focus of in-
tense work, since in these textures the “skyrmion Hall effect”
[6,7] should be suppressed [8,9]. This has been further sup-
ported by experimental evidence in ferrimagnetic skyrmions
[10] and antiferromagnetic bubbles [11]. Antiferromagnetic
skyrmion-like textures have been realized in synthetic antifer-
romagnets [12] and materials α − Fe2O3 [13] and MnSc2S4

[14,15].
In a large number of cases, periodic arrays of mag-

netic skyrmions are stabilized when an external magnetic
field is applied in noncentrosymmetric systems displaying
the antisymmetric Dzyaloshinskii-Moriya interaction (DMI)
[16,17]. In these systems, a ferromagnetic exchange interac-
tion competes with DMI, which induces stability of periodic
arrangement of helical spin structures. In addition to this,
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recent studies have revealed that not only skyrmions but also
other topological spin textures [18], such as antiferromag-
netic skyrmion lattices [19–26], can be stabilized even in
centrosymmetric lattices through different mechanisms as ex-
change frustration [27], bond-dependent exchange anisotropy
[14,28–34], the Ruderman-Kittel-Kasuya-Yosida interaction
in itinerant magnets [35], higher-order exchange interactions
[36], etc. It has been shown that in these types of antifer-
romagnetic skyrmion lattices, formed for example by three
interpenetrated triangular sublattices, an external magnetic
field may tune the topological Hall effect [37]. The purpose
of this investigation is to explore the first mechanism, where
skyrmion crystals may emerge by incorporating the effect of
thermal fluctuations in frustrated systems. In fact, the presence
of the skyrmion phase in centrosymmetric frustrated magnets
in the absence of the DMI was confirmed experimentally very
recently [38]. On the theoretical side, an example of this
phenomena was studied by Okubo et al. [27] in which the
authors show that at finite magnetic field and temperature in
the J1-J2 (or J1-J3) Heisenberg model on the triangular-lattice,
a specific configuration of magnetic frustration (ferromagnetic
J1, antiferromagnetic J(2,3) with J(2,3) � |J1|) induces a spon-
taneous ferromagentic skyrmion/antiskyrmion crystal. Here
antiskyrmions are magnetic structures analog to skyrmions,
but with opposite topological charge, and could thus be con-
sidered their “antiparticles” [39]. Antiskyrmions have been
realized in materials such as Schreibersite (Fe,Ni)3P [40], in
Fe/Gd-based multilayers [41], and have been known to be
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stabilized in models including spin-orbit coupling [42,43] and
layer-dependent DMI [44].

In addition to the skyrmion lattice formation in a frustrated
system [45], another fundamental concept that emerges in
these systems is that of spiral spin liquids (SSL). Here the
ground-state configurations form a continuous manifold in
reciprocal space that strongly governs the low-temperature
physics. Some examples of systems showing SSL are the
Heisenberg model on the square [46], honeycomb [47,48]
lattices, and an approximate version of this phase has been
experimentally identified in the spin-5/2 diamond lattice com-
pound MnSc2S4 [49] and more recently in the van der Waals
honeycomb magnet FeCl3 [50]. In general, it is well known
that degeneracy enhances quantum fluctuations [51]; there-
fore, classical spin liquids are excellent candidates to realize
the quantum version at low temperatures.

In the present study, we show that magnetic frustration
in the pure classical antiferromagnetic J1-J2-J3 Heisenberg
model on the triangular lattice induces the emergence of a
spontaneous antiferromagnetic AF-SkL/ASkL at moderate
values of J2/J1, J3/J1, and external magnetic field. Further-
more, at zero magnetic field two kinds of exotic spin-liquid
states [52] emerge according to the J3/J2 ratio. To this end,
we employ two complementary approaches: the Luttinger-
Tisza approximation (LTA) [53,54] to explore the T = 0 J2-J3

ground-state phase diagram and large-scale classical Monte
Carlo (MC) simulations of the spin Hamiltonian (combining
parallel tempering and over-relaxation with the Metropolis
algorithm) to incorporate thermal fluctuations and the effect
of an external magnetic field.

The rest of the paper is organized as follows. In Sec. II,
we introduce the frustrated spin model and we present the
T = 0 magnetic phase diagram at zero field. Then we discuss
the multiple-q and disordered states. In Sec. III, we show
our simulations analysis at finite temperature, identifying the
spin liquid and spontaneous AF-SkL/ASkL regions, which
are the central points of our results at zero and finite magnetic
field, respectively. In the first case, we focus on the J2 = 2J3

line, where the model exhibits two types of degenerate states
(spiral spin liquids). In the second case, we study the region
where spontaneous AF-SkL/ASkL phases are stabilized in a
“pocket” at finite temperature and magnetic field. Section IV
is devoted to the summary and conclusions.

II. MODEL AND ZERO TEMPERATURE PHASE DIAGRAM

We focus on the extended J1-J2-J3 classical antiferro-
magnetic Heisenberg model on the triangular lattice under
a magnetic field as the simplest model Hamiltonian which
incorporates different levels of frustration in this lattice ge-
ometry. The Hamiltonian is given by

H = J1

∑
〈i, j〉

Si · S j + J2

∑
〈〈i, j〉〉

Si · S j + J3

∑
〈〈〈i, j〉〉〉

Si · S j

−B
∑

i

Sz
i , (1)

where Si are unit-vector classical Heisenberg spins; J1, J2, and
J3 are the first-, second-, and third-nearest-neighbor exchange
interactions; 〈i, j〉, 〈〈i, j〉〉, and 〈〈〈i, j〉〉〉 indicate the sum over

first-, second-, and third-nearest-neighbor pairs; and B is the
magnitude of the external magnetic field in the z direction.
In this work, we are interested in exploring the effect of
competing frustrating interactions, so we take all exchange
interactions antiferromagnetic (i.e., J1,2,3 > 0). For simplicity,
we fix J1 = 1 as the scale through the rest of this work.

In the triangular lattice, for the nearest-neighbor anti-
ferromagnet (J2 = J3 = 0), at zero external field (B = 0)
the magnetic moments form a 120◦ spin structure with an
ordering wave vector q∗ = (4π/3, 0) and a trivial sixfold
degeneracy related to permutations of the spin triad. At finite
temperature and magnetic field, thermal fluctuations lift the
degeneracy of the ground state and stabilize collinear and
coplanar states [55,56].

The possible ground states of the model presented in
Eq. (1) at zero magnetic field have been discussed quali-
tatively in a earlier work by Messio et al. by means of a
variational approach [57]. Through this technique, three re-
gions in the J2 − J3 phase diagram were identified: a region
with coplanar magnetic order [which matches region A from
the phase diagram presented in Fig. 1(a)] and a region with
tetrahedral order (B) and a broad region where the results
suggested a possible spiral order (C, D, and E). In region A,
the magnetic structure in each

√
3 × √

3 triangular sublattice
is ferromagnetic, and the spins from each sublattice are copla-
nar. The corresponding structure factor is characterized by six
peaks in the K points from the Brillouin zone (BZ). For the
tetrahedral order (phase B), the magnetic unit cell is formed
by four spins in the direction from the center to the vertex of
a regular tetrahedron. In this order, there are six peaks in the
M points from the BZ.

Here we dive further into the model in Eq. (1), first ana-
lyzing in detail all the phases and possible multiple-q states
at B = 0 with the LTA; then, using MC simulations, we ex-
plore the emergent phases at B > 0, including a spontaneous
AF-SkL/ASkL at finite temperature.

A. Luttinger-Tisza approximation (T = 0, B = 0)

To explore the classical ground-state phase diagram in
the absence of magnetic field at zero temperature, we resort
to the Luttinger-Tisza approximation (LTA) (also known as
the spherical model) [53,54]. Within this scheme, instead of
imposing the local “strong constraint” |Si| = 1, one imposes
a global “weak constraint”

∑
i |Si|2 = N S2, where N is the

number of lattice sites. With this softer constraint, the model
Hamiltonian (1) can be diagonalized by a simple Fourier
transformation as Sα

q = 1√
N

∑
j Sα

j ei r j ·q, α = x, y, z is the spin
component and r j and q denote the position and pseudomo-
mentum, respectively. The Hamiltonian then becomes

H =
∑

q

J (q) Sq · S−q, (2)

where the sum in q runs over all wave vectors in the first
Brillouin zone and J (q) = ∑3

a=1 Ja
∑

δa
cos(q · δa) defines

the Fourier transforms of the exchange interactions. Here
a = 1, 2, 3 indicate first, second, and third neighbors, respec-
tively, and {δ1} ≡ {ê1,−ê1 + ê2,−ê2}, {δ2} ≡ {ê1 + ê2, ê1 −
2ê2,−2ê1 + ê2}, and {δ3} ≡ {2ê1, 2ê2, 2(−ê1 + ê2)}, where
ê1 = x̂ and ê2 = x̂/2 + √

3 ŷ/2 are unit vectors depicted in
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FIG. 1. LTA [(a)–(g)] and MC simulations [(h)–(q)] results. LTA: (a) J2-J3 phase diagram obtained from LTA, with five regions A–E
(separated by dotted lines). The inset shows the triangular lattice, lattice vectors ê1, ê2, and the J1, J2, J3 couplings. The zoomed area shows
phase E and its boundaries. SSL-1 and SSL-2, along the line J2 = 2J3, correspond to a line with degenerate ground states. Representative
ordering wave vectors distributions q∗ (red dots and colored lines) obtained from LTA are shown in panels (b) to (g), where the values of the
couplings are indicated on top and the first Brillouin zone is drawn. In panel (a) we indicate the high symmetry points �, K , and M. Each
panel corresponds to a different phase, panels (b) to (f) for phases A to E, and panel (g) presents the two nonequivalent manifolds of classically
degenerate spiral states SSL-1 (purple line) and SSL-2 (red line). MC simulations: Representative structure factors

√
Sq [panels (h)–(l)] and

their corresponding real space configurations [panels (m)–(q)] for five low temperature (T = 10−3) different phases, A–E, where the values of
the couplings match those chosen in the LTA. The insets show the spherical snapshots.

Fig. 1(a). The ground-state energy is associated with the low-
est value of J (q) which defines the ordering wave vector q∗.
Within this approximation, we find different solutions charac-
terized by the number and the position of q∗. By comparing
the ground-state energy of these ordered states, we construct a
phase diagram in the J2-J3 plane shown in Fig. 1(a). As shown
in the figure, we find seven different phases with different
distributions of the ordering wave vectors q∗. Among them,

it can be seen that two of the seven phases possess an infinite
degenerate q∗ number. We label these two phases SSL-1 and
SSL-2, while we denote the other five phases by the letters
A–E. We describe these findings as follows:

(i) Phases labeled as A and phase B are in the same re-
gion as the previous study [57], with ordering wave vectors,
shown in Figs. 1(b)–1(c), in the K and M points of the BZ.
Most importantly, LTA sheds light on the remaining region
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in the J2 − J3 phase space, defining three separate phases,
C, D, and E.

(ii) Phases C and D [Figs. 1(d) and 1(e)] present
three incommensurate and inequivalent q∗ orders, satisfying∑3

i=1 q∗
i = 0, and thus signaling potential triple-q phases with

nonzero temperature and magnetic field. The difference be-
tween these two phases lies in the position of the minima: in
the C phase; they lie in the symmetric lines connecting the K
and � points, while in the D phase in the lines connecting the
M and � points.

(iii) In phase E [Fig. 1(f)] there are 12 ordering wave
vectors at the border of the BZ.

(iv) Finally, we identify a special line J2 = 2J3 where de-
generate momentum vectors form spiral contours [Fig. 1(g)].
Along this line, for 1/4 < J2, the minimum energy solutions
correspond to q∗ satisfying the relation

J1 − J2 + 2 J2γq = 0 (3)

with γq = ∑
δ1

cos(q · δ1). As can be seen from the previous
relation, the spiral wave vector is not uniquely fixed. For
1/4 < J2 < 1/3, we observe several spiral contours around
the K points (red lines). Increasing the value of J2 we arrive at
the special point J2 = 1/3 (J3 = 1/6) where all the contours
merge on a regular contour that touches the BZ boundary at
the M points (yellow lines). For J2 > 1/3 the spiral contour is
a single closed loop around the center in the first BZ (orange
lines). This picture is similar to what happens in the J1 = 2J2

case in the honeycomb lattice [47,58].
Therefore, we see that the LTA analysis indicates two

types of regions where exotic phenomena may arise when
considering the effect of thermal fluctuations under a mag-
netic field. On the one hand, there is the J2 = 2J3 > 1/4 line,
where the lowest bands show a semiextensive degeneracy,
suggesting possible spin-liquid behavior. Around this region
a quantum chiral spin liquid was found for S = 1/2 spins
[59]. On the other hand, there are two broad regions in pa-
rameter space where there are six incommensurate q∗ peaks,
where skyrmion-like phases may be stabilized. We explore
these possibilities through high performance simulations in
the following section.

III. FINITE-TEMPERATURE BEHAVIOR

Motivated by the promising results of the LTA, we wish
to investigate the possible emergence of the spin liquid and
triple-q (skyrmion-like) states at moderate temperatures under
magnetic fields, resorting to two complementary Monte Carlo
methods: parallel tempering [60] which has proved to be a
powerful tool in the study of the systems with a complex
energy surface and the Metropolis algorithm combined with
the over-relaxation method [61].

We run parallel tempering simulations for lattice sizes N =
L2 with L = 21–126, using 160–300 replicas (temperatures),
depending on the system size and the region of the phase dia-
gram. The temperature set is chosen to follow the geometrical
progression, as it improves the replica exchange acceptance
rates at low temperatures and with a sufficient number of
points still provides reasonable resolution at higher ones.
Since the problem is amenable to massive parallelization, the
simulations are implemented on general purpose graphical

processing units using CUDA, which allows us to simulate all
the replicas at different field values simultaneously. For each
replica we use 5–9 × 106 MC sweeps for equilibration and
half of that amount for calculating mean values. The replica
swapping to Metropolis sweep ratio is 1:1 and occurs after
each Metropolis sweep through the whole lattice.

In the second approach, MC simulations were performed
using the Metropolis algorithm combined with over-relaxation
(microcanonical) updates. We use an annealing scheme to
lower the temperature (T ) at fixed external magnetic field
(B). Simulations were performed for L = 12–72 and periodic
boundary conditions; 105–106 MC steps were used for initial
relaxation, and measurements were taken in twice as many
MC steps.

To determine the finite-temperature phase diagram, we
measure the specific heat C = 〈H2〉−〈H〉2

NT 2 , magnetization M =
1
N 〈∑i Sz

i 〉, magnetic susceptibility dM/dB, and the chiral or-
der parameter, i.e., the total scalar chirality, χQ = 〈 1

4π

∑
i χi〉

with χi = Si1 · (Si2 × Si3 ) where (i1, i2, i3) are the indices of
the three sites on every elementary triangle at the site i. In
addition, we compute the perpendicular S⊥

q , the longitudinal

S||
q , and the total Sq = S⊥

q + S||
q spin structure factors with

expressions given by

S⊥
q = 1

N

〈∣∣∣∣∣∣
∑

j

Sx
j e

iq·r j

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣
∑

j

Sy
j e

iq·r j

∣∣∣∣∣∣
2〉

, (4)

S||
q = 1

N

〈∣∣∣∣∣∣
∑

j

Sz
je

iq·r j

∣∣∣∣∣∣
2〉

, (5)

where the angle bracket 〈· · · 〉 represents the thermal average.

A. J1-J2-J3 model (B = 0)

1. A–E phases

First, we explore the low-temperature phases at zero mag-
netic field (B = 0) in order to compare the emergent (A–E)
phases with the LTA phase diagram from Fig. 1. Typical
real space textures and their corresponding structure factors
are presented in Figs. 1(h)–1(q). It is important to mention
that sharp spots observed in the total structure factor

√
Sq,

at the ordering wave vectors positions q∗, are not true Bragg
peaks because we are studying an isotropic two-dimensional
Heisenberg model. Thus, it is well known that observed sharp
spots are actually quasi-Bragg peaks associated with power-
law spin correlations [27,52]. In addition, we include an inset
showing a spherical snapshot, drawing the spins of the config-
uration from the center of the sphere. The colors indicate the
projection along the magnetic field (red is completely aligned
and blue antialigned). A first observation is that indeed the
low-temperature phases may also be classified in five types
of phases, as shown in the LTA analysis. Phase A matches
the LTA results: a coplanar three-spin arrangement with ferro-
magnetic sublattice order, characterized by a structure factor
with six symmetric peaks in the BZ [compare Fig. 1(b) and
Fig. 1(h)]. We show in Fig. 1(m) the typical spin configuration
and the spin structure factors showing sharp peaks at the
K points in the BZ. A different situation arises for re-
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FIG. 2. Specific heat [C, (a) and (e)] and order parameters �1,2 [(b) and (f)] as a function of temperature for three different system sizes
L = 48, 60, 72, averaged over 10 independent MC realizations per size, and high (T ∗∗) and low (T ∗) temperature structure factors (

√
Sq), for

two sets of parameters along the J2 = 2J3 degenerate line, J2 = 0.3 (left), and J2 = 0.5 (right). In the inset of panels (a) and (e), the full range
of C vs T is shown for one L = 60 realization, where temperatures (T ∗ and T ∗∗), corresponding to the depicted structure factors, are indicated
with arrows.

gion B. Here a single-q order, characterized by one of the
commensurate wave vector on the BZ edge (M point), with an-
tiferromagnetic stripes emerges; we show an example for one
realization in Fig. 1(n) with the corresponding structure factor
[Fig. 1(i)]. This arrangement has the same energy as the pro-
posed “tetrahedral” texture, but it is clearly more collinear and
therefore being favored by thermal fluctuations in an order-
by-disorder selection [62,63]. As for regions C and D (E),
a nontrivial helical-like single-q (double-q) order emerges
characterized by an incommensurate wave vector; typical
snapshots are shown in Figs. 1(o), 1(p) and 1(q). The structure
factor agrees with the LTA prediction: q-peaks are in the
K − � line for region C [compare Figs. 1(d) and 1(j)], in the
M − � line for phase D [compare Figs. 1(e) and 1(k)], and at
the border of the BZ for phase E [compare Figs. 1(f) and 1(l)].

2. Degenerate line J2 = 2J3 > 1/4

We now focus on the degenerate line J2 = 2 J3 in the phase
diagram in Fig. 1. For J2 � 1/4, following the LTA analysis,
this region may be divided into two types of possibly degen-
erate ground states for J2 < 1/3 and for J2 > 1/3. In the first
case, as shown in Fig. 1(g), at T = 0 the energy minima form
lines around the K points in the BZ, while in the second case
they form a closed loop centered in the � point of the BZ.
To inspect the effect of temperature, we study several vari-
ables for two sets of representative parameters along this line,
J2 = 0.3 and J2 = 0.5, in Figs. 2(a)–2(d) and Figs. 2(e)–2(h),
respectively.

First, we inspect the specific heat C as a function of temper-
ature, shown in Figs. 2(a) and 2(e) for three different system
sizes. We note that, in both cases, at a given temperature there
is a sharp peak in the specific heat and thus a possible phase

transition. Then, we analyze the intensity plots of the spin
structure factor

√
Sq just before the peak (at higher T ) and at

the lowest simulated temperature, presented in Figs. 2(c), 2(d)
2(g), and 2(h). The selected temperatures are indicated in the
C vs T curves in the insets of Figs. 2(a) and 2(e). For J2 = 0.3
(SSL-1 phase), at high temperature [Fig. 2(d)], the system
is in a disordered state with spiral and degenerate contour
around the K point. Decreasing the temperature further, there
is an entropic order-by-disorder (OBD) [64] selection of q∗
sharp peaks at the border of the BZ [Fig. 2(c)]. A similar
entropic phenomenon occurs in the SSL-2 phase (J2 = 0.3).
Here the system presents a degenerate contour around the
� point at higher temperature (consistent with the LTA results)
[Fig. 2(h)]; while at very low temperatures, after the peak in
the specific heat, a couple of sharp peaks at incommensurate
q∗ vectors indicate an OBD selection [Fig. 2(g)]. The spe-
cific heat at low temperatures remains slightly lower than 1
(in units of the Boltzmann constant), which is an indicator
of remnant soft modes that lower the free energy and thus
the specific heat per spin is lower than the expected by the
equipartition theorem [65–67].

The OBD selection is associated with the breaking of dis-
crete symmetries, whereas the continuous SO(3) symmetry
from the isotropic Hamiltonian remains unbroken, as stated
by the Mermin-Wagner theorem. Similar phenomena have
been found in the J1 − J2 classical model in the honeycomb
lattice [58]. To further study this transition, we build two order
parameters �a preserving the SO(3) symmetry but describing
the C3 lattice-rotational-symmetry breaking in the direction of
first (a = 1) and second (a = 2) nearest neighbors:

�a = 1

N

∣∣∣∣∣
∑

i

Si · [Si(a)
1

+ ωSi(a)
2

+ ω2Si(a)
3

]

∣∣∣∣∣, (6)
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where N is total number of sites, ω = ei 2π
3 , i(a)

1 , i(a)
2 , i(a)

3
correspond to the three nonequivalent first (a = 1) or second
(a = 2) nearest neighbors of spin Si, with relative positions δa

defined in Sec. II A. From the analysis of the structure factors
at low temperature [Figs. 2(c) and 2(g)], it can be seen that the
directions of the selected q∗ do not match exactly the first- or
second-nearest-neighbor directions but are a combination of
both of them, and thus we expect both �1,2 to have nonzero
values at low temperature. We then plot both these parame-
ters as a function of temperature in Figs. 2(b) and 2(f), for
system sizes L = 48, 60, 72, averaged over 10 independent
copies. We see that indeed the transition in the specific heat
is associated with a jump of �1,2 from zero to a finite value,
showing that there is a discrete symmetry breaking. We defer
the study of the nature of the transitions for future work.

Our findings show that in some geometries, the effect of
strong magnetic frustration remains robust, even at high tem-
peratures where thermal fluctuations are assumed to be large.
This was observed, for example, in the MnSc2S4 compound
[49]. Much more connected with our results, very recently,
a possible U (1) SSL state was predicted in the van der Waals
magnet FeCl3 [50], where magnetic sites Fe3+ (S = 5/2) form
honeycomb layers (ABC-stacked) along the c axis. In this
case, by neutron scattering measurements, the authors found
a continuous ring of scattering around � providing direct evi-
dence for the existence of a SSL state. This is a quite similar
situation to what happens in our SSL-2 phase (see Fig. 2,
right column). As a possible experimental realization, we
can mention layers of magnetic transition metals X (X = Co,
Cr, Fe, Mn), adsorbed onto a monolayer of transition metal
dichalcogenides (MoS2, WS2, or WSe2) [68].

B. Effect of an external magnetic field: Antiferromagnetic
skyrmion/antiskyrmion lattice

In general, topological spin configurations may be classi-
fied in terms of their topological charge Q and the helicity
γ [2]. For example, systems hosting magnetic skyrmions sta-
bilized by the the isotropic DMI, will support “Neel-type”
or “Bloch-type” skyrmions, depending on the direction of
Dzyaloshinsky-Moriya vector which is determined by crys-
tal symmetry. So, the DMI selects skyrmions with Q = −1
and fixed helicity as the energetically most favorable spin
configuration. However, systems with an isotropic exchange
interactions will support any value of both the topological
charge and the helicity. Here we will show that frustrated
exchange interactions are capable of stabilizing antiferromag-
netic skyrmions or antiskyrmions with topological charge
|Q| = 1 and “free” (not fixed) helicity.

In this section we study the possible realization of a
frustration-induced SkX state in the model in Eq. (1) at fi-
nite temperature and in the presence of a magnetic field. For
this reason, we first inspect the phases that include classical
solutions (at T = 0) with inconmensurable q∗ vectors, i.e.,
phases C and D. While in phase D, our simulations indi-
cate the stabilization of single-q and double-q phases, the
situation becomes completely different in phase C, where
exotic multiple-q phases are stabilized. We have also checked
that the zero-field particular double-q structure found at low

FIG. 3. (a) Temperature vs magnetic field phase diagram ob-
tained from simulations for J2 = 0.3, J3 = 0.16. A spontaneous
antiferromagnetic skyrmion/antiskyrmion lattice is stabilized in a
broad region, indicated in red. At larger fields, a double-q phase
(F) emerges. [(b)–(e)] Typical spin textures, spherical snapshots,
and corresponding transverse and longitudinal structure factors√

S⊥
q ,

√
S||

q for phases stabilized at T = 10−3 and different mag-

netic fields, B = 2 [(b) and (d), C phase] and B = 8.5 [(c) and (e),
F phase].

temperatures in phase E does not change significantly with
applied field. For these reasons, we focus here on the C phase.

As in the previous section, we performed MC simulations
for systems with N = L2 (L = 21–126) sites on a triangular
lattice with periodic boundary conditions (parallel tempering
and standard Metropolis + over-relaxation). To identify the
different phases, we calculate the specific heat C, the mag-
netization M, magnetic susceptibility dM/dB, and the scalar
chirality χQ, defined in the previous section, combining these
parameters to determine the phase boundaries.

We take as a representative point J2 = 0.3, J3 = 0.16. No-
tice the relative magnitude between couplings: Compared
with previous works with ferromagnetic nearest-neighbor ex-
change interactions [27], here the additional J2, J3 couplings
are significantly smaller than J1 and all the couplings are
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FIG. 4. Typical complete spin configurations for the antiferromagnetic antiskyrmion (a) and skyrmions [(b)–(d)] lattices stabilized for
J2 = 0.3, J3 = 0.16, T = 3 × 10−3, and B = 3.52. In panel (a) we show the corresponding spherical snapshot while in the insets of panel

(d) we show the structure factors
√

S⊥
q and

√
S||

q , presenting the characteristic triple-q structure. Panels (a1)–(d1) show one of the three
√

3 ×
√

3 sublattices displaying the presence of a ferromagnetic antiskyrmion/skyrmion lattice. A comparison between an antiskyrmion/skyrmion
obtained from simulations and an “ideal” one from an analytical parametrization is presented, to show the different topological charges Q
and helicities γ ; from left to right [(a1) to (d1)]: “Bloch” AF-ASkL (Q = 1, γ = −π/2), Bloch AF-SkL (Q = −1, γ = −π/2), intermediate
AF-SkL (Q = −1, γ = −π/4), and Néel AF-SkL (Q = −1, γ = 0) lattices.

antiferromagnetic. The temperature vs magnetic field phase
diagram is summarized in Fig. 3(a), where the boundaries
of the regions were obtained by combining different vari-
ables, mainly the specific heat and the scalar chirality. The
most remarkable feature is a finite region in temperature
and magnetic field where a spontaneous antiferromagnetic
skyrmion/antiskyrmion lattice is stabilized. This region is
surrounded by a single-q region, similarly to the one found
at zero magnetic field (C phase), which turns into a double-q
phase at higher magnetic fields (F phase). In Figs. 3(b)–3(e)
we show representative snapshots and their corresponding

longitudinal and transverse structure factors (
√

S||
q and

√
S⊥

q )

of the single-q (C) and double-q (F) phases, where the se-
lected q peaks in S⊥

q are a subset of the six minima found in
the LTA analysis for this region in parameter space [compare
with Fig. 1(d)] and in S||

q a uniform component at q = 0 is
induced by the applied field.

We now focus on the details of the emergent triple-q phase.
There are three remarkable characteristics in this phase. First,
as mentioned above, the real space structure is associated
with either skyrmions or antiskyrmions: There is a spon-
taneous symmetry breaking which can be seen in the sign
of the scalar chirality. Second, the textures are not simple
(ferromagnetic) skyrmion or antiskyrmion lattices: the anti-
ferromagnetic couplings induce antiferromagnetic skyrmion
and antiskyrmion lattices, formed by three interpenetrated√

3 × √
3 triangular sublattices [19,22,23]. Third, these anti-

ferromagnetic skyrmions or antiskyrmions do not have a fixed
helicity, they may be Bloch, Néel, or intermediate (between
Bloch and Néel type) [18,69,70]. Other types of interactions,
usually present in real materials, may also fix the helicity and

vorticity, such as spin anisotropy [71] and dipolar interactions
[72]. Typical snapshots of the full-lattice, one sublattice, and
the corresponding structure factor are presented in Fig. 4.
In Figs. 4(a1) to 4(d1) we compare one single topological
structure obtained from the simulations with an analytical
parametrization [73] where we have changed the values of the
topological charge Q and the helicity γ to show examples of
the different types of textures stabilized for the same set of
parameters.

This phase has clear signatures in different thermodynamic
quantities. In Fig. 5(a) we present the magnetization curve at
T = 10−3, where the inset shows the changes in the slope of
the curve indicating that the system enters different phases.
Specific heat curves as a function of temperature at three
different magnetic fields B = 1.0, 3.4, 6.0 are presented in
Fig. 5(b). The AF-SkL/ASkL phase at B = 3.4 is defined
as the region between the two peaks. Most importantly, in
Figs. 5(c) and 5(d) we present the behavior of the topological
parameter, the scalar chirality: mean value of its absolute
value as a function of magnetic field for three different tem-
peratures in Fig. 5(c), and the chirality for four different MC
realizations as a function of T for B = 3.5 in Fig. 5(d), where
it can be seen that indeed it takes either negative or positive
values, corresponding to either skyrmions or antiskyrmions
lattices. To confirm the stability of the AF-SkL/ASkL phase
with system size, in Fig. 5(e) we plot the specific heat and
the absolute value of the chirality per site for three different
system sizes at B = 3.5. In Fig. 5(f) we show, for B = 3.5
and T = 4 × 10−3, the dependence with system size of S⊥

q

and S‖
q measured along the line going through the peak posi-

tion and compare it with the LTA solution q∗LTA = (3.335, 0)
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FIG. 5. Thermodynamic variables calculated with MC simula-
tions for J2 = 0.3, J3 = 0.16. (a) Magnetization M (red) and its
derivative (blue) as a function of the magnetic field at T = 5 × 10−3.
The inset zooms on the dM/dB curve, showing a dip that indicates
the AF-SkL/ASkL region. (b) Specific heat as a function of tempera-
ture for three values of the magnetic field. The AF-SkL/ASkL phase
is found at B = 3.4, in the region between the two peaks. (c) Mean
value of the absolute value of the chirality as a function of the mag-
netic field for three different temperatures. (d) Chirality as a function
of temperature at B = 3.5 for four different MC realizations and L =
63. (e) Specific heat and chirality density as a function of tempera-
ture for three different system sizes (L = 63, 84, 126) for B = 3.5.
(f) Dependence of the peaks of the transverse (S⊥

q ) and longitudinal
(S||

q ) structure factors with system size in the AF-SkL/ASkL region
(B = 3.5, T = 4 × 10−3). The dashed vertical lines indicates the
LTA analytical solution q∗LTA = (3.335, 0).

(indicated with a vertical black dashed line). It can be seen
that, as the system size is increased, the peaks sharpen and
are closer to the LTA result. The behavior with system size
is also consistent with quasi-long-range order, as discussed in
Ref. [52].

As in the previous subsection, as possible material realiza-
tion hosting AF-SkL/ASkL phase we can mention the family
of materials Cr/MoS2, Fe/MoS2, and Fe/WSe2 with trian-
gular geometry, where recently was predicted that skyrmion
lattices could appear even for relatively weak DMI [68].

IV. SUMMARY and CONCLUSIONS

We have studied a pure antiferromagnetic isotropic model
in the triangular lattice where the combination of frustrat-
ing interactions, external magnetic field, and temperature
induces a variety of multiple-q and spiral spin-liquid phases.
We approach this study through two complementary tech-
niques. First, we explore the possible ground states using the
Luttinger-Tisza approximation, which is a strong analytical
tool to identify regions with possible exotic phases. Then
we resort to large-scale Monte Carlo simulations, combining
parallel tempering and the Metropolis algorithm with over-
relaxation, to study the effect of temperature.

At zero temperature and zero magnetic field, our LTA anal-
ysis shows seven distinct phases in the J2 − J3 space, which
we classify according to the position of the ordering wave
vectors q at the energy minima in the Brillouin zone. There are
two regions where our results match previous theoretical stud-
ies [57] and the energy minima lie in the K and M points of
the Brillouin zone. Then, further exploring parameter space,
we find two broad regions with possible triple-q topological
phases, with six incommensurate q minima. The difference
between these phases lies in the position of these minima: In
one case they lie in the line between the � and the K points
and in the other between � and M points. There is a fifth
small region where there are 12 energy minima in the borders
of the BZ between the K and M points. Moreover, there is
a particular line J2 = 2J3 > 1/4 where we find two types of
states with semiextensive degeneracy. For 1/4 < J2 = 2J3 <

1/3, the minima are closed lines that encircle the K points
in the Brillouin zone. For J2 = 2J3 > 1/3, the minima reside
in a ring centered at the � point. Therefore, this LTA study
suggests two types of possible exotic behavior with tempera-
ture: The incommensurate triple-q phases may give rise, with
the addition of an external field, to skyrmion-like nontrivial
topological textures, and the degenerate lines indicate possible
spiral spin liquids.

In order to study the emergent phenomena with thermal
fluctuations, we resort to large-scale Monte Carlo simula-
tions. At zero magnetic field, we first find that in the region
where the minima from LTA lay in the M points, there is an
order-by-disorder state selection to single-q states with anti-
ferromagnetic (and thus collinear) stripe ordering. Then, in
the incommensurate regions, we find single-q phases, where
the selected q are one of the triple-q minima found with the
LTA. An interesting behavior arises in the J2 = 2J3 > 1/4
line, where thermal fluctuations drive the system from two
types of spiral spin-liquids to single-q orderings.

Most importantly, we find that temperature and magnetic
field stabilize a spontaneous topological phase, where either
antiferromagnetic skyrmion or antiskyrmion lattices and non-
fixed helicity (Bloch, Néel, or intermediate) are found. We
show the signatures of this phase in observables such as the
magnetization and the specific heat and use the scalar chirality
as the parameter to illustrate the formation of either skyrmion
or antiskyrmions. These configurations are seen in reciprocal
space as triple-q phases with six incommensurate peaks lying
between the � and K points.

In conclusion, we see that the competition between
isotropic antiferromagnetic interactions in a frustrated lattice,
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with dominant nearest-neighbor exchange couplings, is also
a mechanism to stabilize antiferromagnetic skyrmion-like lat-
tices under external magnetic fields, without antisymmetric or
anisotropic additional interactions. Since the model retains ro-
tation symmetries in the plane perpendicular to the field, there
are different types of topological phases, combining two types
of crystals of quasiparticles (skyrmions or antiskyrmions),
which is reflected in the chirality, and different types of
helicities, Bloch, Néel, or intermediate. Beyond this model,
additional perturbative interactions which are usually present
in real materials, such as single-ion, bond anisotropy, and
dipolar interactions [72], may favor antiferromagnetic topo-
logical structures with fixed helicity and topological charge.
The effect of colective excitations, such as phasons [74,75],
may also play a role in the stabilization of these textures.

We trust that this work further contributes to the exploration
of nontrivial topological phases, and their realization in frus-
trated materials.
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Schneidewind et al., Nature (Lond.) 586, 37 (2020).

[15] H. D. Rosales, F. A. Gómez Albarracín, K. Guratinder, V.
Tsurkan, L. Prodan, E. Ressouche, and O. Zaharko, Phys. Rev.
B 105, 224402 (2022).

[16] I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958).
[17] T. Moriya, Phys. Rev. Lett. 4, 228 (1960).
[18] B. Göbel, I. Mertig, and O. A. Tretiakov, Phys. Rep. 895, 1

(2021).
[19] H. D. Rosales, D. C. Cabra, and P. Pujol, Phys. Rev. B 92,

214439 (2015).

[20] S. A. Osorio, H. D. Rosales, M. B. Sturla, and D. C. Cabra,
Phys. Rev. B 96, 024404 (2017).

[21] S. A. Osorio, M. B. Sturla, H. D. Rosales, and D. C. Cabra,
Phys. Rev. B 100, 220404(R) (2019).

[22] M. Mohylna, J. Buša, Jr., and M. Žukovič, J. Magn. Magn.
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Vogler, A. Semisalova, P. Che, A. Ullrich, T. Schmidt et al.,
Nat. Commun. 12, 2611 (2021).

[42] D. S. Kathyat, A. Mukherjee, and S. Kumar, Phys. Rev. B 104,
184434 (2021).

[43] A. Mukherjee, D. S. Kathyat, and S. Kumar, Phys. Rev. B 105,
075102 (2022).

[44] S. Hayami, Phys. Rev. B 105, 184426 (2022).
[45] A. O. Leonov and M. Mostovoy, Nat. Commun. 6, 8275

(2015).
[46] P. Chandra and B. Doucot, Phys. Rev. B 38, 9335

(1988).
[47] A. Mulder, R. Ganesh, L. Capriotti, and A. Paramekanti, Phys.

Rev. B 81, 214419 (2010).
[48] X.-P. Yao, J. Q. Liu, C.-J. Huang, X. Wang, and G. Chen, Front.

Phys. 16, 53303 (2021).
[49] S. Gao, O. Zaharko, V. Tsurkan, Y. Su, J. S. White, G. S. Tucker,

B. Roessli, F. Bourdarot, R. Sibille, D. Chernyshov et al., Nat.
Phys. 13, 157 (2017).

[50] S. Gao, M. A. McGuire, Y. Liu, D. L. Abernathy, C. Cruz, M.
Frontzek, M. B. Stone, and A. D. Christianson, Phys. Rev. Lett.
128, 227201 (2022).

[51] L. Balents, Nature (London) 464, 199 (2010).
[52] T. Shimokawa, T. Okubo, and H. Kawamura, Phys. Rev. B 100,

224404 (2019).
[53] J. Luttinger and L. Tisza, Phys. Rev. 70, 954 (1946).
[54] J. Luttinger, Phys. Rev. 81, 1015 (1951).
[55] M. Gvozdikova, P. Melchy, and M. Zhitomirsky, J. Phys.:

Condens. Matter 23, 164209 (2011).
[56] L. Seabra, T. Momoi, P. Sindzingre, and N. Shannon, Phys. Rev.

B 84, 214418 (2011).
[57] L. Messio, C. Lhuillier, and G. Misguich, Phys. Rev. B 83,

184401 (2011).

[58] S. Okumura, H. Kawamura, T. Okubo, and Y. Motome, J. Phys.
Soc. Jpn. 79, 114705 (2010).

[59] S.-S. Gong, W. Zheng, M. Lee, Y.-M. Lu, and D. N. Sheng,
Phys. Rev. B 100, 241111(R) (2019).

[60] R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 57, 2607
(1986).

[61] M. Creutz, Phys. Rev. D 36, 515 (1987).
[62] V. S. Maryasin and M. E. Zhitomirsky, Phys. Rev. Lett. 111,

247201 (2013).
[63] F. A. Gómez Albarracín and P. Pujol, Phys. Rev. B 97, 104419

(2018).
[64] D. Bergman, J. Alicea, E. Gull, S. Trebst, and L. Balents, Nat.

Phys. 3, 487 (2007).
[65] J. T. Chalker, P. C. W. Holdsworth, and E. F. Shender, Phys.

Rev. Lett. 68, 855 (1992).
[66] M. E. Zhitomirsky, Phys. Rev. B 78, 094423 (2008).
[67] F. A. Gómez Albarracín and H. D. Rosales, Phys. Rev. B 93,

144413 (2016).
[68] W. Fang, A. Raeliarijaona, P.-H. Chang, A. A. Kovalev, and

K. D. Belashchenko, Phys. Rev. Materials 5, 054401 (2021).
[69] S.-Z. Lin, A. Saxena, and C. D. Batista, Phys. Rev. B 91, 224407

(2015).
[70] K.-W. Kim, K.-W. Moon, N. Kerber, J. Nothhelfer, and K.

Everschor-Sitte, Phys. Rev. B 97, 224427 (2018).
[71] S. Hayami and Y. Motome, Phys. Rev. B 103, 054422 (2021).
[72] O. I. Utesov, Phys. Rev. B 105, 054435 (2022).
[73] S. A. Osorio, M. B. Sturla, H. D. Rosales, and D. C. Cabra,

Phys. Rev. B 99, 064439 (2019).
[74] G. Tatara and H. Fukuyama, J. Phys. Soc. Jpn. 83, 104711

(2014).
[75] X.-G. Wang, L. Chotorlishvili, G. Tatara, A. Dyrdał, G.-H. Guo,
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