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Nonlinear pumping induced multipartite entanglement in a hybrid magnon cavity QED system
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We present a proposal to produce bipartite and tripartite entanglement in a hybrid magnon cavity QED system.
Two macroscopic yttrium iron garnet (YIG) spheres are coupled to a single-mode microwave cavity, where the
cavity photons are generated via a two-photon process induced by a strong pump field. Using mean-field theory,
we show that nonlinear pumping can result in strong bipartite entanglement between the cavity photon and
magnon under two conditions, i.e., δcδm = 2g2 and δc = −δm. For the latter one, we also show the possibility for
producing bipartite entanglement between two magnon modes as well as tripartite entanglement among three
modes. Combining these two conditions, we further derive a third condition, i.e., δ2

m − φ2 + 2g2 = 0, where
tripartite entanglement can be achieved when two magnon modes have different resonant frequencies.
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I. INTRODUCTION

Yttrium iron garnet (YIG) materials are good candidates
for demonstrating interesting phenomena in quantum optics
and the condensed matter field of magnetism due to their
high Curie temperature, high spin density, low dissipation
rate, and good tunability [1,2]. Particularly, ferromagnetic
resonance (FMR) induced collective spin dynamics gives rise
to a new research field of magnonics by combining meso-
and nanoscale science. With modern lithography and sensing
techniques, a great amount of fascinating phenomena have
been reported theoretically and experimentally, including the
dynamics of skyrmions [3], magnetic vortices [4,5], the spin
pumping effect [6–9], and so on. All these properties would
enable further investigations of quantum optical phenomena
in hybrid quantum systems, integrating magnonic systems
with photons [10,11], qubits [12–14], optomechanics [15–17],
and others.

In addition, the interaction between an ensemble of spins
and the cavity field plays an important role in the development
of novel hybrid quantum systems. In the field of quantum
magnonics, photons confined to a cavity mode interact more
strongly with a matter polarization, producing the cavity
magnon polariton as a new type of quasiparticle [18,19]. This
is because magnon polaritons have a spin density many or-
ders of magnitude higher than ensembles consisting of atoms,
molecules, nitrogen vacancy centers, ion doped crystals, and
so on. Notably, strong coupling between a Kittel mode in a
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YIG sphere and the photonic mode has been observed at room
temperature [20–23].

Recently, this subfield of cavity electromagnonics involv-
ing the interaction between magnon modes and the cavity light
mode has developed rapidly. Many emergent phenomena have
been found, such as cavity spintronics [24–26], bistability
[27–29], magnon dark modes [22,30], magnetically control-
lable slow light [31,32], and magnon induced transparency
[33,34]. Particularly, the preparation of entangled states in
ferromagnetic materials, e.g., YIG spheres, has attracted much
attention. Several methods have been proposed theoretically
to realize bipartite and tripartite entanglements [15,35–38].
Other applications have also been reported such as the gen-
eration of squeezed states of magnons and phonons in cavity
magnomechanics [39], and the implementation of nonrecipro-
cal transmission for a microwave field [40].

In this paper, we present a method to produce bipar-
tite and tripartite entanglements in a two-YIG-sphere cavity
QED system via the nonlinear pumping process, which can
be implemented by utilizing nonlinear materials [41–45],
photonic waveguide systems [46,47], as well as the dynam-
ical Casimir effect demonstrated in optomechanics systems
[48–51]. We first consider a special case where two magnon
modes have the same resonant frequencies. Then, we obtain
two conditions for realizing photon-magnon entanglement,
and magnon-magnon entanglement. Moreover, tripartite en-
tanglement among the cavity field and two magnon modes
can also be achieved under one of these two conditions. Then,
we consider the case where two magnon modes have different
resonant frequencies. We show that a different condition for
the implementation of tripartite entanglement among three
modes can be easily derived. We also show that nonlinear
pumping can result in a strong gain of cavity photon num-
bers, and further enhance the interaction strength between
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FIG. 1. (a) Schematic of a hybrid magnon cavity QED system.
Two YIG spheres with resonant frequencies ωm1 and ωm2 are located
inside a microwave cavity driven by a pump field and an auxiliary
probe field εp. The pump field photons are transferred to the probe
field photons via a two-photon process with nonlinear interaction
strength �. Here, γ1 and γ2 denote the decay rates of two magnon
modes, while κ denotes the decay rate of the cavity mode. (b) Interac-
tions among the subsystems. Two magnon modes linearly couple to
the cavity mode with coupling strengths g1 and g2, respectively. The
nonlinear interaction results in bipartite entanglements between two
magnon modes and the cavity mode, respectively. With some specific
conditions, two magnon modes can be entangled, which further leads
to tripartite entanglements.

photons and magnons, yielding entanglements with weak
nonlinearity.

II. THEORETICAL MODEL

As shown in Fig. 1, we consider a magnon-photon hybrid
system where two YIG spheres are placed in a single-mode
microwave cavity with resonant frequency ωc. With current
experimental techniques, strong couplings between the cavity
photons and collective spin excitations in YIG spheres can be
achieved [52–55]. In our system, we only take into account
the Kittel modes which have a spatially uniform profile and
are subject to giant magnetic moments, i.e., M j = γ S( j)/V .
Here, γ = e/mec is the gyromagnetic ratio for electron spin
and S( j) ( j = 1, 2) denotes the collective spin operator of the
jth YIG sphere, which couples the external magnetic field and
the magnetic field inside the cavity. Thus, the frequency of
the Kittel mode in the jth YIG sphere ωmj = γ H ( j)

z , which
can be flexibly tuned by adjusting the external magnetic field.
By means of the Holstein-Primakoff (HP) transform [56], the
collective spin operators can be approximately represented by
the boson creation and annihilation operators (m̂†

j and m̂ j)

with [m̂ j, m̂†
j ] = 1. Then, the raising and lowering operators of

the spin can be approximately expressed as m̂ j ≈ Ŝ( j)
+ /

√
(2S)

and m̂†
j ≈ Ŝ( j)

− /
√

(2S) with Ŝ( j)
± = ∑N

j=1 σ̂
( j,N )
± and S = Ns

being the total spin number of the corresponding collective
spin operator, with the total number of spins N = ρV and
the spin number s = 5/2. Here, we consider a typical yttrium
iron garnet with high spin density ρ = 4.22 × 1027 m−3 and
diameter d = 1 mm [27,57]. The cavity is driven by a weak
probe field with resonant frequency ωp and a pump field
with resonant frequency ωP = 2ωp. We must point out that
the probe field is just used to obtain the conditions for the
implementation of entanglements, which is not essential in
experiments.

Under the rotating-wave approximation in the frame of the
probe field, the Hamiltonian of this magnon cavity system

shown in Fig. 1 is (setting h̄ = 1)

Ĥ = δcâ†â +
∑
j=1,2

[δmj m̂
†
j m̂ j + g j (âm̂†

j + â†m̂ j )]

+�(â2 + â†2) + εp(â + â†), (1)

where â (â†) denotes the annihilation (creation) operator of
the cavity mode, δc = ωc − ωp and δmj = ωmj − ωp. g j ∝
(γ /2)

√
2Nsh̄ωcμ0/Vc describes the magnon cavity coupling

strength [10], where μ0 is the vacuum permeability, and Vc

is the mode volume of the microwave cavity. εp is the driving
strength of the probe field, and the cavity photons also interact
with a strong pump field via a two-photon process with non-
linear interaction strength � [58,59]. Such a kind of nonlinear
pumping can be implemented in various quantum systems
[41–51], e.g., a resonator with lithium niobate or aluminum
nitride [60].

The dynamics of this coupled system is described by the
quantum master equation, which reads

d ρ̂

dt
= −i[Ĥ, ρ̂] + κ

2
L̂κ [ρ̂] +

∑
j=1,2

γ j

2
L̂( j)

γ [ρ̂], (2)

where ρ̂ is the density matrix of the system. The decay terms
are given by L̂κ [ρ̂] = 2âρ̂â† − â†âρ̂ − ρ̂â†â and L̂( j)

γ [ρ̂] =
2m̂ j ρ̂m̂†

j − m̂†
j m̂ j ρ̂ − ρ̂m̂†

j m̂ j with the cavity decay rate κ and
magnon decay rate γ j , respectively.

Then, the time evolution of the bosonic operators, includ-
ing the thermal fluctuation about the mean values, can be
described by the quantum Langevin equations (QLEs), which
read

dâ

dt
= −i(δc − iκ )â − ig1m̂1 − ig2m̂2 − iεp

−2i�â† +
√

2κ âin, (3)

dm̂1

dt
= −i(δm1 − iγ1)m̂1 − ig1â +

√
2γ1m̂in

1 , (4)

dm̂2

dt
= −i(δm2 − iγ2)m̂2 − ig2â +

√
2γ2m̂in

2 , (5)

where âin and m̂in
j ( j = 1, 2) denote input quantum noises

of the cavity mode and the jth magnon mode, respectively.
They obey the following correlations [61]: 〈âin(t )âin†(t ′)〉 =
δ(t − t ′), 〈âin†(t )âin(t ′)〉 = 0, 〈m̂in

j (t )m̂in†
j (t ′)〉 = δ(t − t ′),

〈m̂in†
j (t )m̂in

j (t ′)〉 = 0. In the following, we set g1 = g2 ≡ g,
γ1 = γ2 ≡ γ0 for mathematical simplicity. Generally,
Eqs. (3)–(5) can be solved by using the mean-field
approximation, i.e., setting an arbitrary operator ô = o + δô
(o = a, m1, m2). Here, o ≡ 〈ô〉 = Tr(ρ̂ô) denotes the average
value of the operator ô, while δô represents the quantum
fluctuation about the average value.

To show the physical mechanism of the entanglement more
clearly, we first set ωm1 = ωm2 ≡ ωm. Under the steady-state
approximation, Eqs. (3)–(5) can be linearized, yielding

(δc − iκ )a + g(m1 + m2) + 2�a∗ = −εp, (6)

(δm − iγ0)mj + ga = 0, (7)
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FIG. 2. Average photon number nc [(a)] and magnon excitation
number nm1 (nm2 ) [(b)] on a logarithmic scale as functions of normal-
ized detunings δc/κ and δm/κ . Here, the white dashed curves indicate
the condition δcδm = 2g2 where a maximum value of the average
photon number and magnon excitation number can be observed.
System parameters are given in the text.

where j = 1, 2 and δm = ωm − ωp. The solutions of the above
equations are given by

a = εp

4�2 − |D0|2 (D∗
0 − 2�), (8a)

m1 = m2 = −ga/δm, (8b)

where D0 = �c − 2g2/�m with complex detuning �c = δc −
iκ and �m = δm − iγ0. Then, one can easily obtain the
average photon number nc ≡ 〈a†a〉 ≈ |a|2 and the magnon
excitation numbers of the jth YIG sphere nmj ≡ 〈m†

j m j〉 ≈
|mj |2. In view of Eq. (8a) and dropping all decay terms, it
is noted that the cavity photons can be excited with their
maximal efficiency if the condition

δcδm = 2g2 (9)

is satisfied. Simultaneously, the magnon excitation number
will also reach its maximum. In Fig. 2, we show the aver-
age photon number nc [Fig. 2(a)] and the magnon excitation
number nm1 (nm2 ) in the first (second) YIG sphere [Fig. 2(b)]
on a logarithmic scale as functions of the detunings δc and
δm, respectively. Here, we choose εp = κ and the nonlinear
interaction strength �/κ = 0.6, γ0 = κ , g/κ = 3.2, which are
feasible with current experiments [10,62]. In Fig. 2(a), it is
clear to see that there exist two excitation branches in the
cavity excitation spectrum with the condition δcδm = 2g2. As
shown in Fig. 2(b), similar characteristics can be observed in
the magnon excitation spectrum. We must point out that the
maximal value of the magnon excitation numbers is just about
103 so that the weak excitation assumption m1, m2 
 2Ns is
satisfied and the HP approximation is valid. In the following,
we will show how such a weak magnon excitation can lead
to entanglement between cavity photons and magnons in both
YIG spheres.

III. BIPARTITE ENTANGLEMENT

First, let us consider bipartite entanglement between
cavity photons and magnons by studying the properties
of the quadrature fluctuations of the cavity field and
the magnon modes, which are defined as δX = (δâ +
δâ†)/

√
2, δY = i(δâ† − δâ)/

√
2, δx1 = (δm̂1 + δm̂†

1)/
√

2,

δy1 = i(δm̂†
1 − δm̂1)/

√
2, δx2 = (δm̂2 + δm̂†

2)/
√

2, and δy2 =
i(δm̂†

2 − δm̂2)/
√

2. Neglecting higher-order fluctuations of the
operators, the evolution of quadrature fluctuations can be de-
scribed by the linearized QLEs, which read

ḟ (t ) = A f (t ) + η, (10)

where f (t ) = [δX (t ), δY (t ), δx1(t ), δy1(t ), δx2(t ), δy2(t )]T,
and η(t ) = [

√
2κX in,

√
2κY in,

√
2γ0xin

1 ,
√

2γ0yin
1 ,

√
2γ0xin

2 ,√
2γ0yin

2 ]T is a vector denoting the input noises. The drift
matrix is defined as

A =

⎛
⎜⎜⎜⎜⎜⎝

−κ δc − 2� 0 g 0 g
−δc − 2� −κ −g 0 −g 0

0 g −γ0 δm 0 0
−g 0 −δm −γ0 0 0
0 g 0 0 −γ0 δm

−g 0 0 0 −δm −γ0

⎞
⎟⎟⎟⎟⎟⎠

.

(11)

For such a system, a 6 × 6 covariance matrix (CM) V can
be used to describe a continuous variable three-mode Gaus-
sian state. The corresponding element of this CM is defined as
Vi j = 〈 fi(t ) f j (t ′) + f j (t ′) fi(t )〉/2 (i, j = 1, 2, . . . , 6). Gener-
ally, we can solve the Lyapunov equation to obtain the
steady-state CM V [63,64], i.e.,

AV + VAT = −D, (12)

where D is a 6 × 6 diffusion matrix with Di jδ(t − t ′) =
〈ηi(t )η j (t ′) + η j (t ′)ηi(t )〉/2. Then, we calculate the logarith-
mic negativity [65,66] to quantitatively measure the bipartite
entanglement Eαβ (α, β = a, m1, m2) between any two differ-
ent modes, i.e.,

Eαβ ≡ max{0,− ln 2ν̃−}, (13)

where ν̃− = min{eig(i�2Ṽ4)} with Ṽ4 = P1|2V4P1|2. Here,
�2 = ⊕2

j=1iσy, P1|2 = σz ⊕ I , and V4 is a 4 × 4 CM of two
arbitrary subsystems in this three-mode system, which can be
obtained by deleting rows and columns of irrelevant modes in
CM V . σy and σz are the Pauli matrices. As usual, Eαβ > 0
denotes the existence of bipartite entanglement. Figure 3(a)
shows the bipartite entanglement Eam1 (Eam2 ) between the
magnon mode in the first (second) YIG sphere and the
cavity mode as functions of the detunings δc and δm, respec-
tively. The system parameters are the same as those used in
Fig. 2. Obviously, strong bipartite entanglements between the
magnon mode and the cavity mode occur under two differ-
ent conditions. One is δcδm = 2g2 (white dashed curves) as
demonstrated in Fig. 2. The other (white solid line) is

δc = −δm, (14)

which can be understood by exploring the system in a bare
state picture. Considering two bare states labeled by |Nc, Nmj 〉
and |Nc − 1, Nmj + 1〉, a bipartite entanglement state such
as (|Nc, Nm1〉 + |Nc − 1, Nm1 + 1〉)/

√
2 will be produced if

both states have the same excitation probabilities. Thus, the
probe field frequency must satisfy ωp = (ωc + ωmj )/2, yield-
ing δc = −δm. It is also noted that, in a small regime near
δc = δm = 0 (i.e., ωc = ωm1 = ωm2 ), the photon mode and
magnon mode are not entangled and Eam1 = Eam2 = 0 since
these two states cannot be distinguished [see Fig. 3(a)].
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FIG. 3. Density plot of bipartite entanglement Eam1 = Eam2 [(a)]
and Em1m2 [(b)] vs normalized detunings δc/κ and δm/κ . White
dashed curves indicate the condition δcδm = 2g2, while white solid
lines indicate the condition δc = −δm. (c) and (d) show the density
plot of bipartite entanglements Eam1 = Eam2 and Em1m2 against the
normalized nonlinear interaction strength �/κ and detuning δm/κ by
fixing δc = −δm.

In Fig. 3(b), we show the bipartite entanglement Em1m2

between two magnon modes. In contrast to the bipartite
entanglement Eamj between photons and magnons, the bi-
partite entanglement Em1m2 only appears in the regime near
the condition of δc = −δm1 . In particular, maximal bipartite
entanglement between two magnon modes occurs at the cen-
ter point with ωc = ωm1 = ωm2 . However, at this point, the
magnon mode and cavity mode are not entangled.

Here, we must point out that nonlinear pumping is the key
for generating bipartite entanglements. To show this point,
we fix δc = −δm. Figures 3(c) and 3(d) show Eam1 (Eam2 )
and Em1m2 against the normalized detuning δm/κ and nonlin-
ear interaction strength �/κ , respectively. Obviously, Eam1 =
Eam2 = Em1m2 = 0 (nonentanglement) if the nonlinear inter-
action strength � = 0. Bipartite entanglements Eam1 (Eam2 )
and Em1m2 are significantly enhanced as the nonlinear interac-
tion strength � increases. It is noted that these nonlinearity
induced bipartite entanglements reach up to 0.1 even for a
weak nonlinear interaction strength, e.g., �/κ = 0.5. It is as
strong as the phonon induced bipartite entanglements reported
in Ref. [67], where the average magnon excitation number is
above 107 to acquire a strong nonlinear effect. Compared with
Figs. 3(c) and 3(d), we notice that it is possible to find some
regimes where mutual bipartite entanglements (i.e., tripartite
entanglement with nonzero Eam1 , Eam2 , and Em1m2 ) can be
achieved when the driving field is detuned.

IV. TRIPARTITE ENTANGLEMENT

To verify this feature, we adopt the minimum residual con-
tangle as a bona fide quantification of tripartite entanglement
[68,69]. Here, contangle is a CM analog of tangle for discrete-

FIG. 4. (a) Tripartite entanglement Rmin
τ vs normalized detunings

δc/κ and δm/κ . The black solid line indicates the condition δc = −δm.
(b) Maximal tripartite entanglement Rmin

τ is plotted as functions of the
normalized nonlinear interaction strength �/κ and coupling strength
g/κ by fixing δc = −δm and scanning magnon detuning δm over a
wide range.

variable tripartite entanglement, and the minimum residual
contangle is given by

Rmin
τ ≡ min{Ra|m1m2

τ , Rm1|am2
τ , Rm2|am1

τ }, (15)

where Ri| jk
τ ≡ Ci| jk − Ci| j − Ci|k � 0 (i, j, k = a, m1, m2) de-

notes the residual contangle with Cu|v being the contangle of
subsystems u and v (v can contain one or two modes). Here,
we consider that v contains two modes, and the contangle
Ci| jk = [max{0,− ln(2ν̃−)}]2, where ν̃− ≡ min{eig(i�3Ṽ6)}
with �3 = ⊕3

j=1iσy and Ṽ6 = Pi| jkVPi| jk . Here, P1|23 = σz ⊕
I ⊕ I , P2|13 = I ⊕ σz ⊕ I , and P3|12 = I ⊕ I ⊕ σz denote par-
tial transposition matrices. Thus, Rmin

τ > 0 represents the
existence of genuine tripartite entanglement in the system.

Next, we will discuss the possibility for generating a tri-
partite entanglement among three modes. In Fig. 4(a), we
show the tripartite entanglement Rmin

τ versus detunings δc and
δm, respectively. Here, the system parameters are the same
as those used in Fig. 2, and the black solid line indicates
the condition δc = −δm. As expected, tripartite entanglements
occur near this condition with nonzero cavity/magnon detun-
ing. Figure 4(b) shows more clearly the presence of tripartite
entanglement by setting δc = −δm. Here, we plot maximal tri-
partite entanglement against the normalized coupling strength
g/κ and the nonlinear interaction strength �/κ by scanning
the magnon detuning δm over a wide range. Obviously, tri-
partite entanglement can be produced when a set of suitable
photon-magnon interaction strength g and nonlinear interac-
tion strength � is chosen.

Finally, let us study the presence of tripartite entanglements
when two magnon modes have different resonant frequencies.
To show the properties of tripartite features more clearly, we
define the average magnon frequency ω̄m = (ωm1 + ωm2 )/2
and the frequency difference φ = (ωm1 − ωm2 )/2. Then, the
detunings are given by δm1 = δm + φ and δm2 = δm − φ with
δm = ω̄m − ωp. Based on the above analysis, it is found that
there exist two different conditions to realize strong bipartite
entanglement between the photon mode and single magnon
mode [see Eqs. (8)]. Therefore, the presence of tripartite en-
tanglement with two different magnon modes can be predicted
if the frequency of the first magnon mode satisfies δc = −δm1 ,
while the frequency of the second magnon mode satisfies
δcδm2 = 2g2 simultaneously. Combining these two conditions,
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FIG. 5. (a) Tripartite entanglement Rmin
τ vs the frequency differ-

ence between two magnon modes φ/κ and the detuning δm/κ . Here,
we choose δc = −δm and white dashed curves indicate the condi-
tion δ2

m − φ2 + 2g2 = 0. (b) Maximal tripartite entanglement Rmin
τ vs

the nonlinear interaction strength �/κ and the frequency difference
between two magnon modes φ/κ by setting δ2

m − φ2 + 2g2 = 0 and
scanning the detuning δm over a wide range.

one can easily obtain

δ2
m − φ2 + 2g2 = 0 (16)

for achieving strong tripartite entanglement. To verify this
prediction, we plot Rmin

τ versus the average magnon fre-
quency detunings δm and magnon frequency deviation φ [70]
in Fig. 5(a). Here, we set δc = −δm and other system pa-
rameters are the same as those used in Fig. 2. It is clear
to see that maximal tripartite entanglements appear at the
condition δ2

m − φ2 + 2g2 = 0 indicated by the white dashed
curves. In Fig. 5(b), we show the influence of the nonlinear
interaction strength � on the presence and quality of tripartite
entanglement. Here, we plot optimal tripartite entanglement
versus φ/κ and �/κ by scanning the detuning δm over a
wide range. It is found that tripartite entanglement with two

different magnon modes can also be realized under a weak
nonlinear interaction and it can be significantly enhanced as
the nonlinear interaction strength � increases.

V. CONCLUSION

In conclusion, we have proposed a scheme to generate bi-
partite and tripartite entanglements in a hybrid magnon cavity
QED system, where the cavity photons are generated via the
two-photon process. In the presence of nonlinear pumping,
we show that bipartite entanglement between the cavity mode
and magnon mode can be achieved under two conditions.
One is δcδm = 2g2, and the other is δc = −δm. For the second
condition, it is also possible to produce mutual entanglement
between two magnon modes near the resonance region. In
addition, we show that optimal tripartite entanglement can be
implemented if the second condition δc = −δm is fulfilled.
Combining these two conditions, we derive a third condi-
tion for realizing tripartite entanglement among the photon
mode and two magnon modes with different resonant fre-
quencies, i.e., δ2

m − φ2 + 2g2 = 0. All these conditions are
helpful for experimentalists to realize macroscopic bipartite
and tripartite entanglements in hybrid magnon cavity QED
systems.
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