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Formation of the skyrmionic polaron by Rashba and Dresselhaus spin-orbit coupling
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Skyrmions in reduced dimensions such as thin layers and interfaces are of both fundamental and technological
importance. In these systems, itinerant electrons are often present together with the Rashba and Dresselhaus
spin-orbit coupling (SOC). Here, we show that an itinerant electron in the presence of these interactions can
nucleate the skyrmion state, even when the standard Dzyaloshinskii-Moriya interaction (DMI) is absent, and the
electron can become self-trapped in the skyrmion core, forming the “skyrmionic polaron” (SkP). The formation
of the SkP is investigated from a continuum model of the electron, exchange coupled to the lattice spins, by
solving the appropriate Euler-Lagrange equations. The skyrmion (antiskyrmion) texture is favored by the Rashba
(Dresselhaus) SOC, with the binding energy increasing quadratically with the strength of the interaction. In
contrast, if the skyrmion is already formed due to a nonzero DMI, the electron is delocalized and avoids the
skyrmion core until the strength of the Rashba or Dresselhaus SOC exceeds a critical value. Below this critical
value, the electron is not bound to the skyrmion core, the polaron does not form, and the electron has little
effect on the skyrmion state. Our work envisions the possibility of manipulating the skyrmion state in device
applications by altering the strength of the Rashba or Dresselhaus interactions, e.g., by an external electric field.
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I. INTRODUCTION

Originally introduced as a model for baryons in particle
physics [1], skyrmions are now a topic of considerable interest
in condensed matter physics [2–9]. The magnetic skyrmion
[10–12] that forms in the latter has a swirling spin texture,
which provides a topological stability, preventing it from a
continuous deformation to the ferromagnetic (FM) or other
magnetic states. Together with this stability, their small size
and the capability to switch and move quickly in the presence
of small electric currents make them potential candidates for
future memory applications [13]. From a fundamental point
of view, skyrmions have been reported to show various unique
topological phenomena such as the topological magnetic field
and the skyrmion Hall effect [14–18].

While skyrmion states were first observed in bulk materials
starting with MnSi [19,20], a lot of current research is focused
on skyrmions in quasi-two-dimensional (quasi-2D) structures,
such as thin films and interfaces. The reason for this interest
is that skyrmions hosted in structures of reduced dimension-
ality can be more easily manipulated with external stimuli
and therefore may be more suitable for device applications.
Interfacial skyrmions were first observed some ten years ago
in an Fe monolayer deposited on the Ir (111) surface [21].
Subsequently, they have been proposed and observed in a
variety of reduced-dimensional systems including multilayers
[22,23], thin films [24,25], epitaxial oxide heterostructures
[26–32], magnetic tunnel junctions [33], and topological het-
erostructures [34].

Itinerant electrons are often present at surfaces and inter-
faces, or they can be introduced by external means such as
a gate voltage. These electrons can affect the skyrmion state

via the exchange coupling to the lattice spins that form the
skyrmion. The kinetic energy term of the electron prefers a
ferromagnetic arrangement of the lattice spins, which tends
to destabilize the skyrmion, while, in contrast, the Rashba
and Dresselhaus interactions [35,36], present at the interfaces
due to spin-orbit coupling and broken symmetry, can help
nucleate the skyrmion state. It is important to understand these
effects both from a fundamental point of view as well as from
the viewpoint of device applications. It is well known that
even a lone electron can modify the magnetic structure in a
significant way. For instance, in many systems including anti-
ferromagnetic semiconductors and colossal magnetoresistive
manganites [37–44], an itinerant electron can create a ferro-
magnetic region in an otherwise antiferromagnetic system and
become trapped forming the “self-trapped magnetic polaron.”
In the dilute magnetic semiconductors, a bound magnetic
polaron may form, with the electron bound to a magnetic
impurity center, and such centers may become aligned leading
to a collective ferromagnetic state [45]. Along these lines, it
has been recently proposed by Brey [9] that a self-trapped
skyrmionic polaron (SkP) can be nucleated by an itinerant
electron in the presence of the Rashba interaction, without the
need for any direct Dzyaloshinskii-Moriya interaction (DMI)
[46,47].

In this paper, we study the effect of an itinerant electron on
the formation of the skyrmion state from a continuum model
for the lattice spins, exchange coupled to the electron, by
solving the resulting Euler-Lagrange equations numerically.
The lattice spins are as usual taken as classical and fixed on
the lattice sites, but they are free to change their orientation.
Both the Rashba and Dresselhaus spin-orbit couplings (SOCs)
experienced by the itinerant electron are taken into account,
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FIG. 1. Sketch of the skyrmion with winding number m = ±1 and helicity γ (0 or π for Néel type and ±π/2 for Bloch type) and the
various interactions indicated in each quadrant that affect the particular skyrmion type. DM⊥ (DM‖) refers to the DMI, where the DM vector is
perpendicular (parallel) to the bond as indicated in Eq. (7), while the form of the Rashba or Dresselhaus SOC term is indicated in Eq. (4). The
polarity (the spin direction at the origin) is taken to be negative (p = −1), so that the spin points into the page at the origin and out of the page
at r = ∞, indicated by a cross and a dot, respectively. The negative p means that the topological charge q = pm is the negative of the winding
number. An arrow indicates a spin completely lying on the plane (with no vertical component) and shows the intermediate configuration as the
spin turns from a cross into a dot along the radial direction. From the cross-arrow-dot structure along a radial line starting from the center, the
gradual change of the spin orientation may be visualized. The skyrmion texture for a general helicity γ is obtained by starting with the γ = 0
texture and rotating each spin counterclockwise by the angle γ about the axis, located on the same spin and normal to the plane of the paper.
The helicity shown is the preferred state for a single interaction only, and if multiple interactions are present, then γ could take a general value.

and furthermore, we consider the general case, where the
direct interactions between the lattice spins, viz., the DMI and
the Heisenberg interaction, can be present or absent. Our work
differs from the earlier work of Brey [9] in that in addition to
the Rashba SOC, we also consider the role of the Dresselhaus
SOC as well as a nonzero DMI between the lattice spins on the
formation of the SkP. Furthermore, we study the problem from
the exact (albeit numerical) solution of the Euler-Lagrange
equations. As shown below, we find a qualitatively different
behavior if a nonzero DMI is present.

The problem treated here is also related to but distinct
from several other earlier works that studied the skyrmion
formation in the presence of a 2D electron gas (2DEG) and the
Rashba or Dresselhaus SOC. It is well known that if a 2DEG
is present together with the Rashba or Dresselhaus SOC and
weakly coupled to the localized spins (JH → 0), it leads to
an oscillatory long-range DMI between the localized spins,
similar to the Ruderman-Kittel-Kasuya-Yosida (RKKY) in-
teraction [48], with �Di j ⊥ r̂i j for Rashba and �Di j ‖ r̂i j for
Dresselhaus SOC. We recently obtained an analytical form for
the DMI between two lattice spins mediated by a 2D electron
gas, which also experiences a Rashba or Dresselhaus interac-
tion [49]. The resulting DMI can then lead to the formation
of the skyrmion [50–52]. In our model here, we do not have
a 2DEG, rather just a lone electron, which is furthermore
strongly coupled to the localized spins (JH → ∞). The state
of the electron is changed nonperturbatively, and as a result,

the electron can become bound to the skyrmion core, forming
the SkP.

The main results of this paper are the following.
(a) The itinerant electron can nucleate the skyrmion state,

even without the DMI, a result similar to Brey’s [9], but with
binding energy an order of magnitude stronger.

(b) Though the skyrmion texture favored by the Rashba or
Dresselhaus term has different winding numbers, the ground-
state energy and spread of the wave function of the itinerant
electron are the same irrespective of the Rashba or Dressel-
haus interaction, while the excited states are different.

(c) When direct interactions [Dzyaloshinskii-Moriya (DM)
and Heisenberg interactions] are present between the lattice
spins, so that the skyrmion state is formed without the aid
of the itinerant electron, the Rashba interaction has no effect
on the skyrmion until its strength exceeds a critical value.
Only beyond this critical value does the electron get trapped
in the skyrmion core forming the SkP and further stabilizing
the skyrmion state. The Dresselhaus term, in contrast, leads to
the formation of the SkP with the winding number m = −1 ir-
respective of its strength, unless a nonzero DMI, which prefers
m = 1, is the dominant interaction. Figure 1 summarizes the
various interactions that affect the skyrmion state.

The rest of this paper is organized as follows. In Sec. II,
we describe the Hamiltonian and the method of solution. In
Sec. III, we study the case where there is no direct interaction
(J, D = 0) between the lattice spins. In Sec. IV, we consider
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the case where direct interactions are also present between the
lattice spins, and finally, the results are summarized in Sec. V.

II. FORMALISM

The skyrmion is characterized by a nonzero topological
charge

q = 1

4π

∫
d2r Ŝ ·

(
∂ Ŝ

∂x
× ∂ Ŝ

∂y

)
, (1)

which counts the integer number of times the magnetization
vector �S wraps the unit sphere. The magnetization vectors
are fixed in the lattice (lattice spins) with fixed magnitudes,
but their directions can change. The spin profile is com-
pletely defined by the polar and azimuthal angles θ (�r) and
φ(�r), �r being the position on the 2D plane. For the radi-
ally symmetric skyrmion, the local magnetization vector is
described by Ŝ(θ (r), φ(α)), where the polar coordinates �r =
(r cos α, r sin α) for the 2D plane have been introduced. The
quantities θ (r) and φ(α) describe the radial profile and the
twist angle, respectively, with the latter having the form

φ(α) = mα + γ , (2)

where m = ±1,±2,±3, . . . is the winding number and γ is
the helicity. With this skyrmion form, Eq. (1) yields the result
for the topological charge q = p × m, where p = cos θ (r =
0) = ±1 is the polarity (the spin direction at the origin, fixed
by the boundary condition) and m = (2π )−1[φ(α)]2π

0 is the
winding number. Throughout this paper, we take p = −1,
so that the lattice spin points down (θ = π ) at the origin.
Skyrmions are defined to have a positive winding num-
ber (m > 0), while antiskyrmions have a negative winding
number (m < 0). The helicity γ differentiates between the
Néel-type skyrmions (γ = 0 or π ) and the Bloch types (γ =
±π/2). A sketch of the skyrmions with the winding number
m = ±1 is shown in Fig. 1, which also summarizes the effect
of the various interaction terms considered in this paper.

A. Hamiltonian

We now consider a single electron on a 2D plane in the
presence of the Rashba and Dresselhaus SOC (Fig. 2), with
the electron coupled to the lattice spins via the exchange
interaction. The Hamiltonian

H = He + HS + Hex (3)

is a sum of the electronic part, the direct interaction between
the lattice spins, and the exchange coupling between the lat-
tice spins and the itinerant electron. The three terms are

He = h̄2k2

2me
+ αR(σxky − σykx ) + αD(σxkx − σyky), (4)

HS = −J

2

∑
i j

�Si · �S j + 1

2

∑
i j

�Di j · �Si × �S j, (5)

and

Hex = −JH

∑
i

�si · Ŝi, (6)

respectively, where αR (αD) is the strength of the Rashba
(Dresselhaus) term, J > 0 is the Heisenberg ferromagnetic

FIG. 2. Illustration of the skyrmionic polaron (SkP). In the pres-
ence of the Rashba and/or Dresselhaus SOC, an electron can nucleate
the SkP state, even in the absence of other interactions such as the
DMI. The electron in turn gets self-trapped in the skyrmion core in
the process.

exchange, �D is the DMI, �σ are the Pauli matrices describing
the electron spin, JH is the exchange coupling between the
electron spin �si and the space fixed lattice spin �Si, i being the
site index in the lattice. In Eq. (6), the electron spin operator
�si = (1/2)

∑
λλ′ c†

iλ �σλλ′ciλ′ , where c†
iλ creates an electron at

site i with spin λ. Thus the electron interacts with each lattice
spin as it moves around in the crystal via the Hund’s rule
exchange coupling JH . The sums in Eq. (5) run over all nearest
neighbors, and the factors of half take care of the double
counting. The Hamiltonian parts have been written above in
their familiar forms, either in the continuum model or for
the discrete lattice, but all terms will be converted into the
continuum model eventually.

We consider two distinct cases of the DMI:

�Di j =
{−D⊥ �ri j × ẑ (DMI ⊥ bond)
−D‖ �ri j (DMI ‖ bond),

(7)

�ri j being the distance vector between the two lattice spins and
ẑ being the normal to the 2D plane. Note that the units of Di j

are eV, while for D⊥ and D‖ the units are eV/Å, since we
have defined the DMI with the distance vector �ri j rather than
the unit vector r̂i j in Eq. (7), which is more convenient for
working in the continuum limit. The typical magnitudes [53]
of the DM and Heisenberg interactions for nearest neighbors
are Di j = 2 meV and J = 10 meV, while αR = 0.1–4.0 eV Å
can be quite large [54]. Taking the typical distance between
neighboring spins to be ri j ∼ 3 Å, this translates to D⊥, D‖ ∼
1 meV/Å.

The exchange interaction Hex is the only term by which the
electron is coupled to the lattice spins. The typical magnitude
of JH being several eV in the solid, which is large compared
with the other energy scales of interest, one can take the limit
JH → ∞ for simplicity and without affecting the essential
physics of the problem. With this simplification, the electron
spin is perfectly aligned with the lattice spins everywhere as
the electron moves about in the lattice. This in effect makes
the itinerant electron spinless, since the spin state which is
antiparallel to the lattice spin is strictly forbidden.

The direct interactions between the lattice spins [Eq. (5)],
consisting of the DMI and the Heisenberg interaction, have
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TABLE I. The winding number and the helicity of the skyrmion
supported by the various interactions considered in this paper. For
instance, the table shows that if D‖ > 0 (and no other interactions
are present), it would form a skyrmion with m = 1 and γ = π/2.
The sign convention for the DMI (D⊥ and D‖) is given in Eq. (7),
and that for the Rashba and Dresselhaus SOC (αR and αD) is given in
Eq. (4).

Interaction D‖ αD D⊥ or αR

Sign of interaction + − + − + −
Winding number m 1 1 −1 −1 1 1
Helicity γ π/2 −π/2 π/2 −π/2 0 π

been written in the familiar form in the discrete lattice model,
but it is easily converted to the continuum limit with the
substitution �Si → �S(�r) and

∑
i → A−1

∫
d2r, where the sum

runs over all sites and A is the unit cell area. With this, the
Heisenberg and the DM energies in Eq. (5) become

EH = E0 + JS2

2

∫
d2r

(
θ̇2 + m2

r2
sin2 θ

)
, (8)

EDM⊥ = D⊥S2 cos γ δm,1

∫
d2r

(
θ̇ + sin 2θ

2r

)
, (9)

EDM‖ = D‖S2 sin γ δm,1

∫
d2r

(
θ̇ + sin 2θ

2r

)
, (10)

where E0 = −JνNS2/2 is the ferromagnetic ground-state en-
ergy of the lattice spins, N is the number of sites in the discrete
lattice model, ν is the number of nearest neighbors (four for
the square lattice), θ̇ = dθ/dr is the radial derivative, and we
have written down the DM energy for the two different types
of the DMI.

Different types of DMI result in skyrmions of different
helicities in order to minimize the energy. If the DM vector is
perpendicular to the bond ( �D ⊥ �ri j), Eq. (9) clearly favors γ =
0 or π due to the cos γ factor depending on the sign of D⊥
(Néel skyrmion), so that the energy is minimum. For typical
spin profiles in our problem, the integral in Eq. (9) is negative,
so that for a positive (negative) D⊥, the helicity γ = 0 (π ) for
the lowest-energy configuration. In contrast, if the DM vector
is parallel ( �D ‖ �ri j), Eq. (10) favors the Bloch skyrmion with
γ = π/2 (−π/2) for a positive (negative) D‖. These results
are summarized in Table I. The Heisenberg energy (8), on
the other hand, is always positive for the skyrmion as com-
pared with the ferromagnetic state, making the skyrmion only
metastable, though it is topologically protected. The strength
of this topological protection is thought to be determined by
the Heisenberg energy [55].

We now proceed to evaluate the energy of the electron
corresponding to the Hamiltonian He, Eq. (4). The strong
exchange JH → ∞ approximation, which we adopt here, con-
siderably simplifies our calculations without changing the
essential physics, but there is no problem extending the analy-
sis to a finite JH , if desired. In this approximation, the electron
spin must exactly follow the direction of the lattice spin at
each site, which in turn produces an indirect coupling between
the lattice spins.

We write the electronic wave function as

�(r) = eiξ (�r)ψ (r)χ (�r), (11)

where ψ (r), the radial part of the wave function, is taken as
real, χ (�r) is a two-component spinor, with the electron spin
parallel to the lattice spin �S(�r) pointing along (θ (�r), φ(�r)),

χ (�r) =
(

e−iφ cos θ
2

sin θ
2

)
, (12)

and the phase factor eiξ (�r) has been included to ensure a
single-valued wave function as we rotate around the origin.
The phase factor is also necessary to describe excited states
of the SkP, if desired, e.g., for excited states with nodes in
the azimuthal direction α. With our choice of the spinor wave
function [Eq. (12)] and the twist angle [Eq. (2)], we take

ξ (�r) ≡ ξ (α) = lα, (13)

where the azimuthal quantum number l = 0,±1,±2, . . . is
an integer, so that the wave function is single valued. With a
different choice of phase for χ (�r), l could be a noninteger,
for example, if in the spinor wave function [Eq. (12)] an extra
factor eiφ/2 is multiplied by χ (�r), as is sometimes done.

With this wave function, the energy of the electron corre-
sponding to the Hamiltonian He, Eq. (4), is written as a sum
of the kinetic, Rashba, and Dresselhaus energies. The result is

Ee = EK + ER + ED, (14)

where

EK = − h̄2

2me

∫
d2r

[
ψ∗ψ̈ + ψ∗ψ̇

r
− θ̇2

4
|ψ |2

−|ψ |2
r2

(
(l − m)2 cos2 θ

2
+ l2 sin2 θ

2

)]
, (15)

ER = αR

2
cos γ δm,1

∫
d2r |ψ |2

(
θ̇ + 2l − 1

r
sin θ

)
, (16)

ED = αD

2
sin γ δm,−1

∫
d2r |ψ |2

(
θ̇ − 2l + 1

r
sin θ

)
. (17)

Note that the δm,1 factor in the Rashba energy ER favors
the skyrmionic state (m = 1), whereas the Dresselhaus term
ED favors the antiskyrmion state (m = −1), and they have no
effect on skyrmions with any other winding number. Thus
the Rashba or Dresselhaus interaction can only nucleate a
spin texture with winding number m = ±1. Also, as readily
inferred from the multiplicative prefactor cos γ (sin γ ) ap-
pearing in the energy expression for ER (ED), a positive αR

(αD) and a negative αR (αD) have an equal effect on the SkP,
but the helicity γ will depend on the sign of the interaction,
in order to minimize the ground-state energy. Similar to the
results for the DMI, it is clear from an inspection of Eq. (16)
that if αR is positive (negative), it favors the skyrmion with
helicity γ = 0 (π ). This is because the boundary condition,
θ (r = 0) = π and θ (r → ∞) = 0, means that for a typical
radial profile, θ̇ (r) < 0 and the integral in the Rashba energy
expression (16) is negative as well, so that for a positive αR,
there is a maximal gain in the energy if γ = 0. Similarly, a
positive (negative) Dresselhaus interaction αD would favor the
helicity γ = π/2 (−π/2).
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A second point to note is that neither the Rashba nor the
Dresselhaus interaction supports the formation of the FM
state. This is because for the FM state, θ (r) = θ0 and m = 0
[in the special case of θ (r) = 0, m is any integer], so that there
is no net gain in energy ER or ED as readily seen from Eqs. (16)
and (17).

Table I summarizes the above results and the type of
skyrmions that might form under the various interactions con-
sidered in this paper. For instance, if a positive D‖ is the only
interaction present, then this would lead to a skyrmion with
winding number m = 1 and helicity γ = π/2. Since different
interactions prefer different skyrmion types (m and γ ), if
multiple interactions are present, the skyrmion type with the
lowest energy will be the most stable solution. An interesting
case is when both D⊥ and αR are present with opposite signs.
In this case, one interaction prefers the helicity γ = 0, while
the other prefers γ = π ; the final value of γ for the resulting
skyrmion will be determined by a competition between the
two, and γ may be different from 0 or π . This is further
discussed in Sec. IV.

A final point to note, from the structure of the energy ex-
pressions, Eqs. (15)–(17), is that when D = J = 0, the Rashba
or the Dresselhaus term with the same interaction strength
results in the same binding energy for the SkP for the ground
state, since the azimuthal quantum number l = 0. This is
because Eqs. (15)–(17) are identical for l = 0 and m = 1 (−1)
for Rashba (Dresselhaus) interaction if αR = αD. Of course,
the δ functions in the expressions for ER and ED mean that
the winding number m will be different for the two cases,
though the energy will be the same. For the excited states
with l � 1, the equations are different, and hence the solutions
including the excited state energies are different. The situation
is, however, different when D, J �= 0 and the Rashba and
Dresselhaus SOCs produce different results, since the DMI
couples to the m = 1 skyrmion only, the same as the Rashba
interaction, while the Dresselhaus term couples to the m = −1
skyrmions only, as seen from Fig. 1 as well as from Table I.

B. Euler-Lagrange equations

While a variational wave function is quite useful (we will
present one in Sec. III) and provides an analytical form for the
solution, when desired, the problem may be solved exactly
albeit numerically, using methods of the calculus of variations
[3,56]. The Euler-Lagrange equations are given by

∂F

∂y
− d

dr

∂F

∂ ẏ
+ d2

dr2

∂F

∂ ÿ
= 0, (18)

where the function F ≡ f (r, ψ, ψ̇, ψ̈, θ, θ̇ , θ̈ ) − μr|ψ |2, ψ is
taken as real, y = ψ orθ , and f is the sum of the integrands
in the energy expressions (8)–(10) and (15)–(17), after writ-
ing them as integrals over only the radial coordinate r and
dividing the integrands by the factor 2π that comes from the
polar angle integration. The normalization condition for the
electron wave function

∫ |ψ |2d2r = 1 has been enforced via
the Lagrange multiplier μ.

After a straightforward derivation, we obtain a set of cou-
pled differential equations for the functions ψ (r) and θ (r),

viz.,

h̄2

2me

[
θ̈ + θ̇

r

(
1 + r

d

dr
ln |ψ |2

)
+ sin θ

r2
((l − m)2 + l2)

]

+ αR

r
cos γ δm,1

(
1 + (1 − 2l ) cos θ + r

d

dr
ln |ψ |2

)

+ αD

r
sin γ δm,−1

(
1 + (1 + 2l ) cos θ + r

d

dr
ln |ψ |2

)

+ 2J

|ψ |2
[
θ̈ + θ̇

r
− m2

2r2
sin 2θ + 2D′

J

sin2 θ

r
δm,1

]

= 0 (19)

and

− h̄2

2me

[(
ψ̈ + ψ̇

r

)
−

(
l2

r2
+ θ̇2

4
+ m(m − 2l )

r2
cos2 θ

2

)
ψ

]

+ αR

2
δm,1 cos γ

(
θ̇ + 2l − 1

r
sin θ

)
ψ

+ αD

2
δm,−1 sin γ

(
θ̇ − 2l + 1

r
sin θ

)
ψ

= μψ. (20)

In Eq. (19), D′ = D⊥ cos γ (D′ = D‖ sin γ ), if the DMI is
perpendicular (parallel) to the bond as indicated in Eq. (7),
and the magnitude of the lattice spins has been taken as S = 1.
Throughout this paper, we have used the following topological
boundary condition: θ (r = 0) = π and θ (r → ∞) = 0.

There are several general points to note from these equa-
tions.

(i) When no electron is present (|ψ |2 = 0), our equa-
tions reduce to the Euler equation studied by Bogdanov and
co-workers [2,3]. In this case, we have the θ equation, Eq. (19)
only, and the only term left there is the square bracket on the
last line, which is the Bogdanov equation [3].

(ii) As seen from the δ function in the last line of Eq. (19),
the DM interaction can nucleate only the skyrmion state with
m = 1 as well known in the literature. In its absence, the
solution gives a FM state: [θ (r) = const, m = 0] or [θ (r) =
0 or π , m = integer], when no boundary conditions are im-
posed. Any other spin profile θ (r) would produce a higher
energy than the FM energy, as an inspection of the Heisenberg
energy expression (8) immediately reveals.

(iii) The Rashba SOC can affect the skyrmion state (m =
1), while the Dresselhaus SOC can affect the antiskyrmion
state (m = −1), potentially forming the SkPs under appropri-
ate conditions.

(iv) Without the Rashba or Dresselhaus SOC term, the
electron cannot be bound to the skyrmion core. When there
is no Rashba or Dresselhaus term, αR = αD = 0, the electron
sees an effective repulsive potential, which makes the electron
avoid the skyrmion core, making it unbound. As seen from the
Schrödinger-like equation (20), the spin texture is equivalent
to an effective potential seen by the electron, which is just the
coefficient of ψ on the left side of the equation.

For instance, for the case when only the Rashba SOC
is present, for the ground state of the electron (l = 0), the
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FIG. 3. Effective potential Veff , Eq. (21), for the case (J = D = 0
and αR �= 0) seen by the self-trapped electron in the ground state for
αR = 0.5 eV Å. Here, helicity γ = 0 as appropriate for the ground
state when αR is positive. Veff is the sum of a repulsive and an
attractive part corresponding to the two terms in Eq. (21).

effective potential is

Veff = h̄2

2me

[
θ̇2

4
+ cos2 θ

2

r2

]
+ αR cos γ

2

[
θ̇ − sin θ

r

]
. (21)

Note that this is true even when the Heisenberg and the
DMI terms, J and D, are present, whose effects enter the
equation via the spin texture θ (r). The first term is always
positive for all θ (r), and only the second term can produce
an effective attractive potential that can trap the electron at
the skyrmion core. Thus, if αR is zero, no matter what the
skyrmion texture θ (r) is, the electron experiences a repulsive
potential everywhere, which diminishes to zero as r = ∞,
where both θ = 0 and θ̇ = 0 due to the boundary condition.
The electron moves to r = ∞ and thus is not bound to the
skyrmion core at the origin. This argument holds good irre-
spective of the value of J and D, which indirectly appears
in Eq. (21) via the radial profile θ (r). In contrast, if αR is
nonzero, the electron may produce a spin texture θ (r), such
that the second term in Eq. (21) is attractive, and the electron
in turn becomes self-trapped in that potential. When J, D = 0,
the self-trapping occurs for any nonzero strength of αR, while
if J, D �= 0, the potential becomes attractive and self-trapping
occurs only when αR exceeds a critical value, as discussed in
Sec. IV.

The computed Veff obtained from the solution of the Euler-
Lagrange equations is shown in Fig. 3 for the case J = D = 0
and αR �= 0, which shows the attractive potential that localizes
the electron in the skyrmion core.

III. SELF-TRAPPED SKYRMIONIC POLARON

In this section, we consider the case where there is no
direct interaction between the lattice spins (D = J = 0). The
question is whether the itinerant electron can by itself nucleate
the skyrmion state due to the Rashba or Dresselhaus SOC and
trap itself in the skyrmion core, thereby forming the SkP, even
when there is no direct interaction between the lattice spins.
We will find that this is indeed the case.

A. The Brey solution

The idea of the self-trapped SkP was recently proposed
by Brey [9], where he considered skyrmion formation in the
presence of the Rashba interaction, and the skyrmion size and
binding energy were obtained by a heuristic argument.

Brey considered the spin texture θ (r) = π (1 − r/λ) for
r < λ, and 0 otherwise, and φ(α) = α, assumptions which
are reasonable for the ground state of the itinerant electron.
Here, λ is a variational parameter and a measure of the size of
the skyrmion. One can then compute some average topologi-
cal vector potential and electrostatic potential experienced by
the electron due to the twisting spin texture. Considering a
nonzero Rashba SOC, Brey estimated the energy to be

E = h̄2

2me

(
π2

4
+ 2

)
1

λ2
− αR

π

2λ
, (22)

where the two terms within the parentheses are the energy cost
of confinement by the emergent electrostatic and magnetic
fields, respectively, with the latter estimated from the energy
of the lowest Landau level 1/2 h̄ωc, while the last term is
the energy gain due to the Rashba interaction. A somewhat
different ansatz by us [8] that more clearly identifies the origin
of the various competing energies yields the same form as
Eq. (22) but with different prefactors; however, the essential
argument remains the same.

Minimizing the energy in Eq. (22), dE (λ)/dλ = 0, we ob-
tain the skyrmion radius and the corresponding ground-state
energy within the Brey ansatz. The result is

λ ≈ 3h̄2

meαR
,

E ≈ −meα
2
R

4h̄2 ≈ (−0.036 eV−1 Å−2) × α2
R. (23)

Clearly, without any Rashba interaction (αR = 0), the
skyrmion radius λ is infinity, indicating that there is no
skyrmion state, while the presence of the Rashba term favors
the formation of the skyrmion state with the binding energy
E . The Brey result is plotted in Fig. 4 together with the results
obtained from several other methods discussed below. As seen
from the figure, the Brey solution severely underestimates the
binding energy.

B. The variational method

Before we discuss the exact solution of the problem in the
next section, we first consider a variational form to minimize
the skyrmion energy [Eq. (17)]. For the radial profile, we tried
two forms:

θ (r) = π exp(−r/λ) (exponential θ ),

θ (r) =
{
π (1 − r/λ), r < λ (linear θ )

0 (otherwise),
(24)

where λ is a variational parameter. The second of these is a
common form of the spin profile often used in the literature.
For the electronic wave function, we either take the exponen-
tial form

ψ (r) = N exp(−κr2) (exponential ψ ), (25)
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FIG. 4. Binding energy of the SkP as a function of the Rashba
SOC strength αR using various methods. Here, J = D = 0. Brey’s
solution is the black dashed curve, and the exact solution is the black
solid curve, while the rest are variational solutions: (i) exponential θ ,
exponential ψ (solid blue curve), (ii) linear θ , exponential ψ (solid
red curve), (iii) exponential θ , exact ψ (dashed blue curve), and (iv)
linear θ , exact ψ (dashed red curve), with the variational forms for
θ (r) and ψ (r) given in Eqs. (24) and (25). Exact ψ for cases (iii) and
(iv) above were obtained by fixing θ (r) in the given form and solving
for ψ using the Euler-Lagrange equation (20). For these solutions,
the winding number m = 1, the helicity γ = 0, and the azimuthal
quantum number l = 0.

N being the normalization factor, or we solve the Euler-
Lagrange equation (20) for a given variational θ (r) in
Eq. (24). Note that the electron wave function [Eq. (25)] is
nodeless as appropriate for the ground state. Excited states
would have nodes in the radial and/or azimuthal part of the
wave function, and an appropriate variational ψ can be writ-
ten. With these variational forms, we then minimize the total
energy Eq. (14) in the parameter space λ and κ . Calculated
ground-state energies are compared in Fig. 4.

C. Exact solution from the Euler-Lagrange method

The exact solutions were obtained by iteratively solving
the two Euler-Lagrange equations, Eqs. (19) and (20), using
the standard shooting method. The box size was increased
until the energy converged, which was typically 50–100 Å
for convergence with our range of parameters. The boundary
condition used for the spin texture is as usual θ (r = 0) = π

and θ (r → ∞) = 0. Note that when J = 0 exactly, there is
no preferred alignment for the lattice spins at r → ∞, while
at the skyrmion core, r = 0, the Rashba or Dresselhaus terms
will still favor the twirling skyrmionic structure. The skyrmion
state is obtained in our calculations by using the standard FM
boundary condition θ (r → ∞) = 0. Alternatively, this can
be thought of as a limiting procedure with an infinitesimal
J → 0.

As already discussed, the Rashba and Dresselhaus terms
have very similar energy expressions, Eqs. (16) and (17), and
consequently similar Euler-Lagrange equations. Only the θ

equation, Eq. (19), contains αR and αD explicitly, and the
equation is identical for the two cases if we take the appropri-
ate skyrmion texture (m = 1 for the Rashba case and m = −1

TABLE II. Ground-state energy and size of the SkP for several
values of the Rashba SOC strength αR. The skyrmion size λ0 here is
defined from θ (λ0) = π/2, i.e., where the polar angle θ falls to half
of its value at the origin, while the spread of the electronic wave func-
tion is given by the root-mean-square value 〈r2〉1/2 ≡ 〈ψ |r2|ψ〉1/2.
In the variational (Var.) results presented in the table, both the spin
texture and the electron wave function were variational, with linear
θ (r) and exponential ψ (r) forms, Eqs. (24) and (25). The Brey solu-
tion [9] is from Eq. (23), while the exact results are from numerical
solutions of the Euler-Lagrange equations.

αR Energy (meV) λ0 (Å) 〈r2〉1/2 (Å)

(eV Å) Brey Var. Exact Var. Exact Var. Exact

0.005 −0.001 −0.001 −0.03 64.1 58.4 65.3 59.2
0.01 −0.004 −0.16 −0.42 16.7 15.6 17.1 15.4
0.1 −0.36 −2.3 −4.15 9.6 8.9 8.45 8.41
1.0 −36 −230 −403 3.5 3.2 4.01 3.96

for the Dresselhaus case) and also take the nodal quantum
number l = 0, which is true for the ground state of the elec-
tron. It is only for l > 0 (excited states) that the solutions are
different, which is, however, not studied in any detail here.
For this reason, we present our results for the Rashba case
only, when J = D = 0. In this case, both the Rashba SOC and
the Dresselhaus SOC produce the same θ (r), ψ (r), as well
as the binding energy for the SkP, except that the helicity
γ and the winding number m are different, as indicated in
Table I.

The results for the ground-state energy from the exact as
well as the variational calculations are shown in Fig. 4 as
a function of the Rashba SOC strength. We note that both
variational forms, Eqs. (24) and (25), significantly improve
the binding energy over the Brey ansatz, though they still
underestimate the energy as compared with the exact result.
Nevertheless, the variational treatment is still useful, when a
full numerical solution is not desired.

In Table II, we compare the energy and the polaron size
obtained from the variational method (using linear θ and
exponential ψ) with the exact solution. The binding energy
from the exact solution E ≈ (0.41 eV−1 Å−2) × α2

R follows
the quadratic dependence of Eq. (23), but with a prefactor an
order of magnitude larger.

The spin texture and the wave function as well as the SkP
size for three different values of αR are shown in Fig. 5. The
spread of the wave function is computed from the root-mean-
square value 〈r2〉1/2 ≡ 〈ψ |r2|ψ〉1/2, while the skyrmion size
λ0 is defined from θ (λ0) = π/2, i.e., where the polar angle θ

falls to half of its value at the origin. As seen from Fig. 5(c),
there is an inverse relation between the polaron size and the
strength of the Rashba SOC αR.

In Fig. 5, we present the ground-state solutions of the
Euler-Lagrange equations in the presence of the Rashba SOC,
which shows the formation of the SkP. As seen from Fig. 5(b),
the electron is localized within a radius of ∼20 Å from the
skyrmion core for the parameters chosen. The larger the mag-
nitude of αR, the stronger is the localization region, which
reduces the size of the SkP. As mentioned already, if the
Dresselhaus SOC is present instead of the Rashba SOC (αD �=
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(a) (b) (c)

FIG. 5. Exact solutions for the SkP in the presence of the Rashba SOC, as obtained from the Euler-Lagrange equations: (a) the spin texture
θ (r), (b) the electron wave function ψ (r), and (c) the polaron size, as defined in the text, for various αR. Here, the winding number m = 1,
the helicity γ = 0, and the azimuthal quantum number l = 0 for the ground state. If the Dresselhaus SOC was present instead of the Rashba
SOC, these solutions would be identical except that now we would have winding number m = −1 and helicity γ = π/2 (Néel antiskyrmion;
see Fig. 1), instead of γ = 0 for the present results. Here, J = D = 0.

0, αR = 0), we get the identical solutions but with negative
winding number m = −1 and helicity γ = ±π/2, depending
on the sign of αD. This is because with these changed m and
γ when αD is present, the Euler-Lagrange equations become
identical to the corresponding equations for the case with
Rashba SOC. If both Rashba SOC and Dresselhaus SOC are
present simultaneously, then the competition between them
would lead to the SkP with winding number m = 1, if αR >

αD, and m = −1 otherwise.
Excited states. The trapped electron at the skyrmion core

can also exist in excited states, which are the higher-energy
solutions of the Euler-Lagrange equations. The electron wave
function ψ (r) in this case has a nonzero number of radial
and/or azimuthal nodes. The ground state and the first two
excited states are shown in Fig. 6 for the Rashba SOC. For
the Dresselhaus SOC, the solutions with no azimuthal nodes
(l = 0) would be the same, while the excited states with
(l �= 0) would be different, since in this case the underlying
differential equations (19) and (20) are different. A second
point to note is that for the excited states of the electron in
the skyrmion core, the linear form of θ , Eq. (24), often used
to describe the skyrmion spin texture, would not be a good
approximation (see Fig. 6, inset). For the excited states, the
spin profile θ (r) starts out flat at the origin before dropping,
as seen from the blue curve for the l = 1 case in the inset of
Fig. 6.

IV. SKYRMIONIC POLARON WITH DIRECT
INTERACTIONS PRESENT (J, D �= 0)

Finally, we consider the case where the direct Heisenberg
and DM interactions are nonzero. In this case, the skyrmion
is already present due to the DMI, and an itinerant electron,
which can be introduced via a gate voltage or other means, can
alter the skyrmion state and produce the SkP if the conditions
are right.

As already mentioned, if multiple interactions are present,
skyrmion states of different types (winding number, helicity)
must be considered in order to find the ground state with the
lowest energy. This also suggests the possibility of manipulat-

FIG. 6. Ground and the first two excited states of the self-trapped
electron with Rashba SOC and skyrmion winding number m = 1.
Top: Electron wave function and the corresponding spin texture
(inset) for αR = 1 eV Å. Bottom: Energy of the the ground and the
excited states as a function of αR. For the Dresselhaus SOC and
skyrmion winding number m = −1, the azimuthal nodeless states
(l = 0) are identical, while the states with azimuthal nodes (l �= 0)
are different (not shown in the figure), as discussed in the text. Here,
J = D = 0.
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FIG. 7. Formation of the SkP for the case J, D⊥, αR �= 0. Shown are (a) the effective potential Veff (r) seen by the electron due to the
skyrmion core, (b) the electron wave function ψ (r), and (c) the radial profile θ (r). Results are from the solution of the Euler-Lagrange
equations, Eqs. (19) and (20), with the box size rmax = 50 Å. The two dashed curves in all three fipanels would be identical if rmax = ∞ for all
values of αR < αc

R (≈0.21 eV Å), which is true for both dashed curves, and the electron would stay far away from the skyrmion core. They are
not identical here because the electron is forced to penetrate the repulsive region at the origin even when αR < αc

R. Beyond the critical value
αc

R, the electron is trapped in the skyrmion core, forming the SkP as seen from (b), which shows the qualitatively different behavior for ψ ,
when αR crosses the critical value.

ing the skyrmion state by tuning the strengths of the various
interactions by external means such as an applied electric
field.

We consider as an example the case where a perpendicular
DMI together with the Heisenberg interaction as well as the
Rashba SOC is present (J, D⊥, αR �= 0). This case is interest-
ing because both D⊥ and αR produce the same topological
state with winding number m = 1 as indicated in Fig. 1. As
Table I shows, the helicity will depend on the signs of D⊥ and
αR. If the signs are both positive (negative), then the helicity
is γ = 0 (π ), but if the signs are opposite, then there is a
competition between the two terms, and the helicity could be
different from 0 or π .

Figure 7 shows the solutions of the Euler-Lagrange equa-
tions when the signs are both positive, D⊥, αR > 0. It turns out
that for a fixed J, D⊥, the SkP forms only when αR exceeds
a critical value, which is αc

R ≈ 0.21 eV Å for J = 10 meV
and D⊥ = 2 meV/Å, the parameters used in Fig. 7. The
results can be understood in terms of the effective potential
Veff seen by the electron due to the skyrmion texture. This
is plotted in Fig. 7(a) using Eq. (21), from which it can be
immediately seen that for small αR, the potential is always
repulsive because any spin profile θ (r) always produces a
repulsive first term in Eq. (21). Thus the itinerant electron
avoids the skyrmion core, moves away to r → ∞, is not
bound to the skyrmion core, and the SkP does not form. When
the magnitude of αR is increased, Veff gradually becomes
less and less repulsive due to the second term in Eq. (21),
eventually becoming attractive for αR > αc

R. Above the crit-
ical value, the transition is sudden, and the electron becomes
bound in the attractive potential of the skyrmion core, thus
forming the SkP state. The sharpness of the transition is
indicated from the electron wave function ψ (r) plotted in
Fig. 7(b), where the sudden transition of the electron from
the unbound state to the SkP state is clearly seen as αR

exceeds αc
R.

Note that the numerical results shown in Fig. 7 are for a
finite simulation box size (rmax = 50 Å), which makes the
electron penetrate the skyrmion core for all αR, which would
not be the case if the size of the box was ∞. For infinite
box size, the electron is unbound, moving to r → ∞, and
the skyrmion texture remains completely unchanged for all
αR < αc

R. This is indicated in Fig. 8(a), which was obtained
by extrapolation of the results to rmax → ∞. Beyond αc

R, the
electron penetrates more and more into the skyrmion core; in
Fig. 8(a), we have shown the results for the specific value
αR = 0.4 eV Å, which is larger than the critical αc

R ≈ 0.21
eV Å for the chosen parameters.

The transition between the unbound electron state and the
SkP state as αR crosses αc

R is sharp. The sharpness of the
transition shows up in the stabilization energy of the SkP
due to the presence of the itinerant electron. The stabilization
energy is defined as the energy difference between the energy
when the electron is localized at the skyrmion core and the
energy when the electron is far away from the skyrmion core.
It is zero, so long as the electron stays away from the skyrmion
core, which happens when J, D �= 0 and αR < αc

R. The results
are shown in Fig. 8(b) for both the case of J, D⊥ = 0 and the
case of J, D⊥ �= 0. There is a clear difference in the behavior
of the stabilization energy for the two cases. With no direct
interactions present (J, D⊥ = 0), the smallest value of αR

leads to the self-trapped SkP state as discussed in Sec. III,
so that the stabilization energy increases continuously begin-
ning from αR = 0. In contrast, when the direct interactions
are present, a critical magnitude of the Rashba parameter is
needed before the electron is trapped in the skyrmion core.
Beyond this critical value, the SkP forms, and there is a finite
stabilization energy due to the electron trapping as seen from
the solid black curve in Fig. 8(b).

The critical value αc
R, above which the electron penetrates

the skyrmion core forming the SkP, depends on the magnitude
of the DMI, which we have plotted in Fig. 8(c). This result
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FIG. 8. Energetics and the critical value αc
R for the formation of the SkP for the case J, D⊥, αR �= 0. (a) Radial profile and electron wave

function for αR < αc
R and for αR = 0.4 eV Å, which exceeds the critical value αc

R ≈ 0.21 eV Å with the parameters chosen. Unlike in Fig. 7,
here results are extrapolated to box size rmax → ∞, so that the solutions θ (r) and ψ (r) do not change until αR > αc

R. (b) Energy as a function
of αR (zero of energy is when αR = 0). The stabilization energy, defined as the energy gained by the SkP due to the Rashba SOC, is simply
the negative of the energy plotted in (b), and it increases as αR is increased. With J, D present, the SkP forms only when αR > αc

R; until
then, the electron stays away from the skyrmion core, and the stabilization energy remains zero. In contrast, for J, D = 0, the stabilization
energy continuously increases starting with αR = 0. (c) Critical value αc

R as a function of the strength of the DMI that separates the SkP region
from the unbound electron state. The SkP forms only in the region αR > αc

R. Otherwise, the itinerant electron is unbound, it has no effect on
the skyrmion, and the SkP state does not form. (d) The effective repulsive potential Veff (r) [the first term in Eq. (21)] that the electron must
overcome through the Rashba term (the second term in the same equation). With increasing D⊥, the repulsive potential diminishes, requiring a
smaller critical value of αR for the electron to penetrate the skyrmion core, forming the SkP, as indicated from (c). Parameters are J = 10 meV
and D⊥ = 2 meV/Å except in (c) and (d), where D⊥ is varied.

is simple to understand by examining the repulsive potential
generated by the spin texture θ (r) in the absence of the Rashba
term. This is obtained from Eq. (21), which has been shown
in Fig. 8(d) for several values of D⊥. As seen from the figure,
a larger D⊥ causes a diminishing potential barrier, so that
a smaller value of the Rashba term αR is sufficient for the
penetration of the electron into the skyrmion core.

A question that might arise from an inspection of Fig. 8(c)
is, Why does αc

R increase rapidly as D⊥ decreases, while
from the results of the previous sections, for all values of αR,
the SkP forms for the case J, D = 0? The answer is that in
Fig. 8(c), the value of J is not zero, and the limit J → 0 should
be appropriately taken. To illustrate this point, we have shown
αc

R for three different values of J in Fig. 9. As indicated from

FIG. 9. Critical value of the Rashba term αc
R, which separates the

SkP region (αR > αc
R) from the unbound electron state (αR < αc

R), as
a function of the strength of the DMI for three different values of the
Heisenberg interaction J . The data for J = 10 meV are the same as
in Fig. 8(c).

the figure, when J, D → 0, the SkP forms for all values of αR,
however small, and αc

R goes to zero, consistent with the results
of Sec. III.

An interesting case arises when both Rashba SOC and the
DMI are present, but with opposite signs. In this scenario,
the competition between the two terms in general leads to
a helicity different from 0 or π . This happens if αR is suffi-
ciently large, which is illustrated in Fig. 10(a) (blue and green
curves), where we have shown the energy as a function of
the helicity. For comparison, we have also shown the results
when D⊥ and αR have the same signs, resulting in γ = 0 or
π , consistent with Table I. Figures 10(b) and 10(c) show the
energy and the helicity of the skyrmion for a case when the
signs of D⊥ and αR are opposite. For αR < αc

R, the solution
does not change as the electron stays away from the skyrmion
due to an effective repulsive potential, and the electron has no
effect on the skyrmion state. The helicity γ = π is once again
determined from the sign of the interaction D⊥. Above the
critical value, the electron begins to penetrate the skyrmion
core, and a competition between the two interactions D⊥ and
αR leads to a reduction of γ from π , which will eventually go
to zero as αR → ∞, consistent with Table I for a positive αR.

V. SUMMARY

In summary, we studied how an itinerant electron can
affect the skyrmion state, when the Rashba SOC and/or
Dresselhaus SOC are present. We considered two questions:
(i) Can the electron, acting alone, nucleate the skyrmion state
of the lattice spins, even when there are no direct interactions
(Heisenberg and Dzyaloshinskii-Moriya) between the lattice
spins forming the skyrmion? (ii) If the direct interactions are
present, how does an itinerant electron affect the already-
formed skyrmion state? We found that under broad conditions,
the itinerant electron gets trapped in the skyrmion core form-
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FIG. 10. The skyrmionic polaron in the presence of the DMI and Rashba SOC with opposite signs. (a) Ground-state energy as a function of
the helicity γ with D⊥ and αR of different signs. The minimum of energy determines the final helicity of the solution. When signs are opposite,
the helicity of the SkP can be different from 0 or π (blue and green curves). (b) Stabilization energy (negative of the energy plotted) due to
the introduction of the itinerant electron into the system, when D⊥ and αR are of opposite signs. For αR < αc

R, the energy of the skyrmion does
not change, signifying that the electron avoids the skyrmion core, which remains unaffected by αR. (c) Helicity γ of the solutions shown in
(b). The helicity (but not the energy) is sensitive to the simulation box size, and the results shown in (c) are extrapolated values for ∞ box size
from finite size calculations.

ing the skyrmionic polaron (SkP). These issues were studied
by solving the appropriate Euler-Lagrange equations for a
continuum model Hamiltonian containing the relevant inter-
actions.

Figure 1 and Table I summarize the various skyrmion
states affected by the interactions considered in this paper.
For instance, the Rashba SOC can affect skyrmions with the
winding number m = 1 only, while it is −1 for the Dressel-
haus SOC, and the helicity is determined by the sign of the
interaction.

A main result of this paper is that the Rashba or Dres-
selhaus SOC can nucleate the SkP, even in the absence of
any other direct interactions such as the DMI. In particular,
the Rashba SOC can nucleate the Néel type SkP, while the
Dresselhaus SOC can nucleate an anti-SkP of the Bloch type,
with opposite winding numbers. For the Rashba SOC, we
find in agreement with Brey [9] that the self-trapped SkP
forms; however, the exact solutions reveal a much stronger
binding energy as indicated in Fig. 4. For the Dresselhaus
SOC, we find that a similar SkP is formed, though of the Bloch
type with the winding number m = −1. For both Rashba and
Dresselhaus SOC, the binding energy is exactly the same for
the ground state, the solutions differing only for the excited
states with a nonzero azimuthal quantum number (l �= 0).

We furthermore studied the effect of the Rashba or Dressel-
haus interactions, when the direct interactions are also present
(J, D �= 0). In this case, the skyrmion is already formed with
the winding number m = 1, with the skyrmion texture pro-
viding a repulsive potential for the electron. For the Rashba
case, a critical value αR > αc

R is needed before the electron
can overcome the repulsive potential and become trapped
in the skyrmion core, forming the SkP with an extra stabi-
lizing energy. Below this critical value, the electron avoids
the skyrmion core, it moves away to ∞, and the skyrmion
state remains unaffected. In contrast, when the Dresselhaus

term is present together with J and D, since they affect
skyrmions with different winding numbers, it has no effect on
the already-formed skyrmion, unless of course it is so strong
that the topological barrier can be overcome for transition to
the antiskyrmion state (m = −1) that the Dresselhaus term
supports. When competing interactions are present (such as
a perpendicular DMI and Rashba SOC with opposite signs),
the helicity may also change for sufficiently strong values of
the interactions.

Our study suggests the interesting possibility of tuning
the skyrmion state by external means such as an electric
field by tuning the strengths of the Rashba and Dressel-
haus interactions and by manipulating carrier injection into
quasi-2D structures. It has been already suggested that the
Mn-doped semiconductors Ge1−xMnxTe may be good candi-
dates for the experimental observation of the SkP [9], where
the Rashba interaction can also be tuned by an external elec-
tric field. An interesting possibility is whether by injecting
a higher density of electrons, a skyrmionic polaron crys-
tal, where the SkPs organize in a regular crystalline array,
similar to the well-known skyrmion crystal, can be formed
and manipulated by external means. Experiments to estab-
lish these ideas would represent a significant advance in the
field.
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