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Theoretical study of the magnetic properties of the CoCu2O3 compound
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In this paper we present a theoretical study of the magnetic properties of the CoCu2O3 compound. The
magnetic effective exchange interactions and zeroth-field splitting were computed using ab initio methods,
then the magnetic order and transition temperature were determined using classical Monte Carlo simulations.
We showed that, unlike other members of the ACu2O3 family, the presence of an additional magnetic atom,
associated with a large folding of the puckered layers in the (�a, �b) directions, induces a magnetic pattern based
on coupled three-leg ladders, quite different from the two-leg structural ladders. The propagation vector has been
found to be �q = (0, 1

2 , 1
2 ). It is associated with a doubly degenerated ground state suggesting a doubling of the

unit cell. The large Co2+-ion anisotropy was shown to be of crucial importance in the high transition temperature
observed in this compound.

DOI: 10.1103/PhysRevB.106.224402

I. INTRODUCTION

Following the discovery of high-temperature superconduc-
tivity in BaxLa5−xCu5O5(3−y) by Bednorz and Müller [1],
cuprates have attracted a lot of attention over the past
decades. Apart from superconductivity, a large number of
compounds of the cuprate family have been studied for their
low-dimensional quantum magnetism. Indeed, the S = 1/2
character of the Cu2+ ion, and the directionality of the as-
sociated 3d magnetic orbital, are responsible for a tendency
to form one-dimensional (1D) or two-dimensional magnetic
systems with quantum character. For example, the A = Sr
member of the ACu2O3 family, a two-leg ladder compound,
has been extensively studied in the recent decades [2–8] for
its one-dimensional properties.

Very few cuprates exhibit a three-dimensional (3D) mag-
netic ordering at a reasonable temperature (i.e., close to room
temperature or higher). Among them, one can, however, cite
the CuO oxide that exhibits an antiferromagnetic long-range
ordering below 220 K [9,10]. Another example is the A =
Mg, Ca, and Co members of the ACu2O3 family that exhibit
a high-temperature 3D character, and that, in contrast to CuO,
have been little studied. Interestingly, the MgCu2O3 com-
pound presents a 3D spin ordering at 95 K [11], and the mixed
Ca1−xCoxCu2O3 compounds show ordering temperatures that
range from 27 K for pure Ca (x = 0) [12] to 215 K for pure
Co (x = 1) [13].

The room-temperature crystal structure of this family is or-
thorhombic (Pmmn or Cmmm). The copper atoms are located
at the center of CuO4 corner-sharing square plaquettes, ar-
ranged in two-leg ladders along the �b direction [see Fig. 1(a)].
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In each unit cell there are two symmetry-related ladders along
the �a direction (represented in blue and green). These two-
leg copper ladders are zigzag coupled, and form planar (Sr
compound) or puckered (Mg, Ca, and Co) layers in the (�a, �b)
directions [see Fig 1(b)]. These layers are connected along
the �c direction, by AO6 octahedra (A=Mg, Ca, Co), or AO8

cubes (A=Sr), sharing corners with the CuO4 plaquettes from
adjacent copper-ladder layers [see Fig. 1(b)].

At this point one should note that the Sr compound also
differs from the Mg, Ca, and Co ones by its magnetic prop-
erties. Indeed, whereas the latter ones present a 3D magnetic
order below its Néel temperature, the Sr compound remains
essentially 1D [3]. It, thus, seems that the puckering of the
(�a, �b) layers plays a major role in the dimensionality of the
magnetic ordering.

In this article we will study the magnetic properties of
the CoCu2O3 compound, the member of the ACu2O3 family
with the highest-3D-ordering temperature. After the evalu-
ation of the effective exchange interactions using ab initio
calculations, we will compute the associated magnetic order
by classical Monte Carlo (MC) methods.

This paper is organized as follows. Section II details the
computational methods. Section III is devoted to the calcula-
tions of the exchange interactions and single-ion anisotropy.
In Sec. IV we discuss the magnetic order at zero and finite
temperatures. Finally, we conclude in Sec. V.

II. COMPUTATIONAL DETAILS

A. Ab initio calculations

As the magnetic interactions are intrinsically exchange-
correlation effects, we will use a multireference configuration
interaction method to compute them, namely, the selected
active space plus single excitation (SAS+S) method [15].
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FIG. 1. Schematic of the crystal structure of CoCu2O3. (a) along
the �c and (b) �b axes. The Cu atoms form two-leg ladders along the
�b direction, and there are two symmetry-related ladders along the �a
direction. The Cu atoms were represented either in blue or in green
to more easily visualize the two equivalent structural ladders. The
Co atoms are in light gray and the O in red. Atomic structures were
drawn with VESTA [14].

Indeed, this method ensures that the following effects are
treated explicitly: (i) the correlation effect within the 3d
magnetic orbitals, (ii) the ligand-to-metal charge transfers
mediating the magnetic interactions, and (iii) the screening
effects on all the previous configurations (as configuration-
dependent hole-particle excitations and their coupling).

As such configuration interaction methods require the di-
agonalization of large matrices, they can only be used on
formally finite-size systems. We, thus, designed for each
magnetic integral, suitable fragments embedded in a set of
renormalized charges [16] and total ions pseudopotentials
(TIPS) [17] in order to reproduce the effects of the rest of
the crystal on the quantum fragment. The TIPS reproduce
the exclusion effects due to the electrons of the first layers
surrounding the fragment, and the set of charges is chosen
in order to reproduce the Madelung potential seen by the
fragment with an error smaller than 0.1 meV. The quantum
fragments were chosen in order to include the magnetic atoms
associated with the desired interaction, their first coordination
shell, and any additional bridging ligands.

The fragment orbitals were optimized within a com-
plete active space self-consistent field [18] calculation on
the 3d electrons of the magnetic atoms, using the MOLCAS

package [19]. We used a valence basis set of 3ζ + P qual-
ity, associated with relativistic core pseudopotentials of the
Stuttgart group [20]. The SAS+S calculations were then per-
formed using the RELAXSE code [21]. The latter provides
the fragment low-energy excitations from which the effective
exchange integrals can be deduced.

The anisotropy calculations were performed using the
same method on a single-ion embedded cluster for the spin-
orbit-free description, and the RASSI/ANISO [22] modules
of MOLCAS for the spin-orbit part. More details are available
in the Supplemental Material [23].

The crystal structure used in all calculations is the room-
temperature x ray given in Ref. [24].

B. Monte Carlo calculations

The MC simulations were performed on the model
magnetic Hamiltonian derived from our ab initio effective ex-
change interactions and single-ion anisotropies. We computed
both the order parameters and the magnetic transition tem-
peratures. For this purpose we used the standard Metropolis
algorithm [25] on a classical approximation of the spin Hamil-
tonian. The calculations were performed using supercells up
to 10×20×20 (24 000 magnetic atoms). The thermodynam-
ical averages were performed with 4000 Monte Carlo steps
per atom. More details are available in the Supplemental Ma-
terial [23].

III. RESULTS OF THE AB INITIO CALCULATIONS

A. Magnetic integrals

The formal charge analysis of CoCu2O3 yields Cu2+ and
Co2+, corresponding, respectively, to 3d9 and 3d7 electronic
configurations. The corresponding magnetic moments are
SCu = 1

2 and SCo = 3
2 because the Co ion is in a high-spin

configuration (as expected for such ions and by continuity
from the partially substituted compounds Mg1−xCoxCu2O3

for x =(0.05, 0.10, 0.15, 0.50) [26] and confirmed by our
calculations).

The magnetic exchange interactions were obtained from
the ab initio calculations by mapping the computed magnetic
spectra onto the energy spectra of a Heisenberg Hamiltonian
on the same fragments,

Ĥ = −
∑
〈i, j〉

Ji j Ŝi · Ŝ j, (1)

where Ŝi and Ŝ j are the quantum spin operators associated
with sites i and j, respectively. The Ji j are the effective ex-
change interactions, positive and negative values correspond,
respectively, to ferromagnetic (FM) and antiferromagnetic
(AFM) interactions.

In Fig. 1(b) one sees that the cobalt octahedra are located
between two layers of copper ladders. However, magnetically
they belong to only one of them. Indeed, the CuO4 plaquettes
define the orientation of the magnetic dx2−y2 orbitals expected
on the Cu2+ ions. Looking at Fig. 1 one can see that the CuO4

plaquettes of only one of the layers point toward the Co2+ ion.
As a result the Co2+ ions should be considered as belonging
to the connecting layer of copper ladders [see Fig. 1(b)].

224402-2



THEORETICAL STUDY OF THE MAGNETIC PROPERTIES … PHYSICAL REVIEW B 106, 224402 (2022)

FIG. 2. Definition of magnetic interactions in CoCu2O3, seen
along the (a) �c and (b) �b directions. The Co atoms are in light gray, the
Cu atoms are in blue and green, and the O atoms are masked. The Cu-
Cu interactions are in orange, the Co-Cu interactions are in magenta,
and the Co-Co interactions are in red. Dashed lines represent the
puckered layers, and yellow boxes are a guide to identify structural
ladders. Atomic structures were drawn with VESTA [14].

There are seven independent Cu-Cu interactions in
CoCu2O3, named, JuuX (in orange in Fig. 2). Three of them
are intraladder interactions: Juu2 is the ladder-rung inter-
action, Juu5 is the ladder-leg interaction, and Juu7 is the
second-neighbor intraladder interaction. Juu1 is the in-plane
interladder interaction. The last three are Cu-Cu interactions
between the puckered planes, Juu3, Juu4, and Juu6.

There are five Co-Cu interactions, named JouX , (in magenta
in Fig. 2). The intralayer ones are Jou2 where the Co atom is
between two rungs of a ladder and Jou4 where the Co atom
interacts with the next-ladder nearest copper. The interlayer
interactions are denoted Jou1, Jou3, and Jou5 [see Fig. 2(b)].

Finally, there are two Co-Co interactions (in red in Fig. 2),
Joo1 along the �c axis and Joo2 along the �b axis.

The computed exchange interactions are presented in
Table I. We can immediately see that the largest magnetic
interaction is the AFM exchange along the ladders legs
(Juu5 = −123.43 meV). When one looks at the ladder rungs
(Juu2), however, the interaction does correspond neither to
the largest J nor to the largest contributions to the classical
magnetic energy −J �Si · �S j . Indeed, the next largest magnetic
energy contribution is due to the Cu-Co AFM interactions
(Jou4); the interaction along the structural-ladder rungs being
much smaller. The third energetic contribution comes from the
Co-Co intralayer interactions, namely, Joo2. As a result one
should differentiate the magnetic ladders, based on Juu5 and
Joo2 for the legs, Jou4 for the rungs from the structural ones.
Indeed, these interactions draw a magnetic-interaction pattern
of three-leg Cu-Co-Cu ladders (see Fig. 3), obtained by the
exchange of the legs of neighboring structural ladders (yel-
low in Fig. 2). Finally, the next contribution to the magnetic

TABLE I. Effective exchange interactions (in meV) obtained
from ab initio calculations, associated Heisenberg energy, and metal-
metal distances (in angstroms). Negative values correspond to AFM
interactions, and positive values correspond to FM ones.

d (Å) Ji j −Ji j �Si · �Sj Nature

Cu-Cu intralayers

Juu5 3.980 −123.43 −30.86 Leg structural ladders
Juu1 2.829 27.85 6.96 Interstructural ladders
Juu2 3.118 9.75 2.44 Rung structural ladders
Juu7 5.056 0.09 0.02 Next-nearest-neighbor

structural ladder
Cu-Cu interlayers

Juu3 3.198 −0.42 −0.10
Juu4 3.213 −0.65 −0.16
Juu6 4.466 1.94 0.49

Cu-Co interactions
Jou4 4.157 −26.97 −20.23 Intralayer
Jou1 2.931 5.67 4.25 Intralayer
Jou3 3.182 2.81 2.10 Interlayer
Jou2 3.055 1.23 0.92 Interlayer
Jou5 4.839 0.23 0.17 Interlayer

Co-Co interactions
Joo2 3.980 −4.22 −9.50 Leg type
Joo1 3.198 −1.05 −2.36 Interlayer type

energy comes from the FM Cu-Cu interladder (structural or
magnetic) zigzag interactions (Juu1).

Comparing CoCu2O3 to SrCu2O3 and to the other mem-
bers of the family, they all have in common large AFM ladder
leg interactions. The main differences are related to the ladder
rungs and more specifically to the bending of the Cu-O-Cu
angle in the structural-ladder rungs. Indeed, this angle is close
to 180◦ in the SrCu2O3 and results in an AFM interaction
of −150 meV [27] (of the same order of magnitude as the
ladder leg one) responsible for the one-dimensional charac-
ter of the compound, and the correspondence between the
structural and magnetic two-leg ladders. On the contrary the
CaCu2O3 system presents a large bending of the Cu-O-Cu

FIG. 3. Schematic of the magnetic interaction pattern in
CoCu2O3. This pattern is obtained from the structural pattern
[Fig. 2(a)] by the exchange of the legs of neighboring ladders as
pictured by the red arrows. The main interactions are added for easy
comparison. The dashed black lines represent the magnetic puckered
layers including the Co atoms, the dashed gray lines show the rungs
of the structural ladders, and blue or green boxes show the magnetic
ladders.

224402-3



JULIEN LÉVÊQUE et al. PHYSICAL REVIEW B 106, 224402 (2022)

angle, namely, of 123◦ [28] in the structural-ladder rungs.
It results in a strongly reduced magnetic interaction (never-
theless, still AFM (−11.5 meV) [27]) leading to a quasi-1D
magnetic structure of coupled chains. In the present system
the Cu-O-Cu angle is again reduced compared to the CaCu2O3

(105◦ [24]) and much closer to 90◦, yielding an enhanced
reduction of the AFM term, and resulting in a FM interaction
of Juu2 = 9.7 meV. This result is in agreement with the ferro-
magnetic ordering, experimentally observed (along the rungs)
by neutron diffraction on the MgCu2O3 compound [29] where
the angle is also 105◦ [30].

To better understand the importance of the Cu-O-Cu angle
bending, one should remember that the effective magnetic
exchanges are the result of three terms [31]:

(1) a direct exchange term between the magnetic atoms
(Jd ), this term is always FM and depends exponentially on the
metal-metal distance,

(2) a through-space (also named kinetic or Anderson’s su-
perexchange) superexchange term (Jss), issued from electron
transfers between the two magnetic atoms, this term is AFM
and decreases exponentially with the metal-metal distance, it
is, thus, very small in systems where the metal-metal bond is
bridged by a ligand,

(3) Finally the through-bridge superexchange term (Jsb),
issued from electron transfers between the bridging ligand
and the magnetic atoms, this term is AFM and depends ex-
ponentially on the metal ligand distance and as the square of
the cosine of the metal-ligand-metal angle (θ ); it is the largest
term in AFM bridged systems.

In a first approximation, the effective magnetic exchange
can, thus, be assumed to be

J = Jd (dCu-Cu)︸ ︷︷ ︸
FM, scales as

e−αd

+ Jsb(RCu-O, θCu-O-Cu)︸ ︷︷ ︸
AFM, scales as
e−βR cos2θ

. (2)

The bending of the Cu-O-Cu angle, thus, increases the FM
term Jd as it is associated with a reduction of the Cu-
Cu distance. Simultaneously it strongly reduces the AFM
through-bridge superexchange term when going from 180◦
where the latter is maximum to 90◦ where it cancels out. One,
thus, sees that the Cu-O-Cu angle is a crucial parameter for
the magnetic properties of the ACu2O3 family.

Let us now focus on the magnetic character of the A site
in our compound. Structurally CoCu2O3 and MgCu2O3 are
very similar. However, the magnetic character of the Co2+
ion transforms the coupled chain magnetic pattern found in
the Mg compound into a coupled three-leg ladder system
in CoCu2O3 (see Fig. 3). Let us remember that the second
largest magnetic energy is brought by the copper cobalt Jou4

interaction and the next one by the Co-Co ladder legs (Joo2).
Analyzing the interactions in the puckered layers a bit

closer one sees that there are two frustrating magnetic inter-
actions, namely, the Juu1 FM interactions between the ladders,
and the FM Jou1 interactions between the Co atoms and the Cu
atoms of the neighboring magnetic ladders (see Fig. 3). Both
interactions bring frustration with the AFM interaction along
the ladder legs.

Finally, the interactions between the magnetic puckered
layers are conveyed by the FM Jou3 and AFM Joo1. As can be

seen in Table I the remaining interactions can be considered
negligible.

B. Anisotropy

As the Cu2+ ion is in a S = 1/2 quantum spin state, the
anisotropy of the compound is due to the Co2+ ion. We, thus,
computed the cobalt easy axes and zeroth-field splitting tensor
on embedded CoO6 fragments.

The zeroth-field splitting tensor is derived from the
eigenstates and energies of the many-body ab initio elec-
tronic plus spin-orbit Hamiltonian on the CoO6 embedded
fragment, using the pseudospin method of Chiboratu and
Ungur [22].

We found that in our system the main anisotropy axes
are along the crystallographic directions, �b is the easy axis,
and �c is the hard one. They are associated with a strong
anisotropy. Indeed, the zeroth-field splitting tensor can be
written as

ĤZFS = D
[(

�̂S · �b
b

)2

− S(S + 1)

3

]

+ E
[(

�̂S · �c
c

)2

−
(

�̂S · �a
a

)2]
, (3)

with D = −10.60 and E = 2.10 meV. These values are
comparable to some of the strongest magnetic exchange in-
teractions. As a consequence one can expect the anisotropy to
play a major role in the magnetic ordering.

IV. MAGNETIC PROPERTIES

A. Magnetic order at T = 0 K

As previously seen, the three exchange interactions with
the strongest energy contributions, namely, Juu5, Jou4, and Joo2,
form three-leg ladders along the �b direction that do not cor-
respond to the structural ones (see Fig. 3). These three AFM
interactions, (Juu5, Jou4, and Joo2) do not bring any frustration
resulting in antiferromagnetically ordered three-leg ladders.
Moreover, the large anisotropy of the Co ions aligns the spins
along the �b axis.

The next nonfrustrated contribution to the magnetic en-
ergy comes from the FM interaction Juu2, which connects
second-neighbor magnetic ladders, forming two independent
magnetic puckered planes in the (�a-�b) directions. These two
independent subsystems are pictured in blue and green in
Fig. 3. One should note that the two subsystems are related by
the 2y

1 or i-symmetry operations. The different planes are then
connected by the AFM Joo1 and FM Jou3 interactions, leading
to two magnetically independent 3D nonfrustrated subsys-
tems. Both subsystems are associated with a �q = (0, 1

2 , 1
2 )

propagation vector. The two subsystems are coupled by the
remaining non-negligible exchange interactions (see Table I),
namely, the FM Juu1 and Jou1. These two interactions are
frustrated and, thus, do not contribute to the magnetic energy
in the proposed T = 0 magnetic order (see Fig. 4).

At this point the question is whether the above twofold de-
generate magnetic ordering (pictured in Fig. 4) is the ground
state. It is easy to show that these two magnetic orders
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FIG. 4. Schematic of the magnetic structure of CoCu2O3. (a) Or-
der on the puckered magnetic layers. (b) Order in the structural
arrangement. The Co atoms are in light gray and the Cu in blue or
green according to the magnetic subsystem they belong to. The latter
are outlined by blue and green boxes. Atomic structures were drawn
with VESTA [14].

correspond to minima of the classical magnetic energy: nil
gradient and positive Hessian.

Let us note that both the CaCu2O3 [12] and the MgCu2O3

[29] compounds also exhibit degenerate ground states, how-
ever, with different subsystems and magnetic orders.

Doubly degenerate ground states are very rare in real
compounds as any perturbation, coupling the two states, lifts
the degeneracy. In CoCu2O3 such a coupling does not exist
in the present crystallographic space group and unit cell.
One can, however, see that to couple the two ground states
and reduce the magnetic frustration, one should double the
crystallographic cell along the �b direction. Indeed, such a
symmetry reduction could allow lowering of the frustration
brought by the inter-magnetic-ladder interactions Juu1 and
Jou1. Let us remember that spin-1/2 chains could exhibit spin-
Peierls transitions and that the dominant magnetic interaction
in CoCu2O3 is, by far, the AFM exchange along the Cu ladder
leg. One can, thus, expect that such an effect is also at play
in CoCu2O3 producing the dimerization that doubles the unit
cell and lowers the energy.

Comparing the magnetic orders of CoCu2O3 with
CaCu2O3 and MgCu2O3, one sees that in addition to differ-
ent magnetic ladders as discussed in the previous section,
these compounds also exhibit different propagation vectors.
Indeed, CaCu2O3 is dominated by an incommensurate order
�q = (0.429, 1

2 , 1
2 ) [28] and MgCu2O3 by the commensurate

�q = ( 1
2 , 1

2 , 0) [29] propagation vector. This is due to the non-
magnetic character of the Ca and Mg ions that probably
induce a weakly AFM interaction between the ladders, me-
diated by these closed-shell ions.

FIG. 5. Results of Monte Carlo simulations. (a) LRO and (b) spe-
cific heat versus temperature. The two curves represent our MC
results with (orange) and without (blue) the Co2+ zeroth-field split-
ting contribution to the model Hamiltonian.

B. Magnetic properties at finite temperature

To study the thermodynamic properties at finite tempera-
ture, we performed classical MC simulations. We computed
both the specific-heat Cp and the long-range-order parame-
ter (LRO), characteristic of the �q = (0, 1

2 , 1
2 ) magnetic order

identified in the previous section. The calculation was per-
formed using the Heisenberg Hamiltonian defined from the
exchange interactions given in Table I, complemented with
the zeroth-field splitting tensor of the Co ions as provided in
Sec. III.

Figures 5(a) and 5(b) display, respectively, LRO and Cp

as a function of temperature. When the Heisenberg and zero-
field splitting terms are considered, one can see that both
quantities (in orange in both panels) exhibit a clear transition
at TN � 190 K confirming the magnetic order proposed in
the previous section. The magnetic frustration brought by
the inter-magnetic-ladder effective exchanges do not bring
any noticeable canting of the spins in the MC results. All
spins remain aligned along the �b direction. When decreasing
the temperature we obtain a MC average energy of about
−259.8 mev/cell, in good agreement with the theoretical
ground-state classical magnetic energy,

Ecell = (2Joo2 + 2Joo1) S2
Co + 2D

[
S2

Co − SCo(SCo + 1)

3

]
+ (4Jou4 − 4Jou3 + 4Jou5) SCuSCo

+ (4Juu5 − 2Juu2 + 4Juu6 + 4Juu3 + 4Juu7) S2
Cu

= −260.2 meV/cell. (4)
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As suggested in the previous section the frustrating inter-
actions Juu1, Jou1, (as well as Jou2 and Juu4) do not contribute
to the energy. The very small interactions, neglected in our
previous analysis, namely, Juu6, Jou5 and Juu7, have positive
contributions to energy, i.e., these interactions are frustrated,
but their effect is negligible.

Let us note that, despite the quantum character of the
spin-1/2 Cu ions, the obtained transition temperature is close
enough to the TN = 215 K value observed in magnetic sus-
ceptibility and specific-heat measurements [13]. In fact, the
Co anisotropy plays a major role, its inclusion in the model
Hamiltonian breaks the rotational symmetry, transforming
CoCu2O3 in an Ising-like magnetic system. Indeed, in MC
simulations where only the exchange interactions are taken
into account (see the blue curves in Fig. 5), long-range
magnetic order is obtained by the 3D character of the Heisen-
berg Hamiltonian provided by the interplane interactions Juu3,
Jou3, and Joo1. As the leading interactions of the system are
quasi-2D, the symmetry breaking of the rotational invariant
Hamiltonian is numerically more difficult to achieve, and the
transition appears less clear in Fig. 5 but definitively takes
place at lower temperature (TN ≈ 150 K). Nevertheless, the
magnetic order remains identical, apart from the general spin
orientation.

V. CONCLUSION

In this paper we theoretically determined the magnetic
order and transition temperature of the CoCu2O3 ladder com-
pound. We first computed the effective magnetic interactions
and anisotropy parameters using an ab initio multireference
configuration interactions method (SAS + S [15,21]). With
these parameters, we constructed a model Hamiltonian that
has been used to determine the magnetic order at T = 0 K
and at finite temperature.

Compared to other members of the ACu2O3 family the
CoCu2O3 compound is characterized by puckered layers with
a large folding angle, and by a supplementary magnetic ion
(Co2+). These two aspects have strong consequences on the
magnetic properties of the system. Indeed, our results allow
us to predict that the magnetic ladders strongly differ from
those of the other members of the family. First, not only they

are not identical to the structural ladders, but they exhibit
three and not two legs. Second, these magnetic ladders are
strongly connected, both in the layers and between the layers,
resulting in a twofold degenerated ground state. Finally, there
is the strong Co2+ easy axis along the �b direction that not
only reduces the otherwise infinite degeneracy to a twofold
one, but also explains the strong increase (compared to the
other members of the family) of the temperature at which
the long-range magnetic order sets in. It would be nice if our
predicted magnetic order could be experimentally verified, for
instance, by neutrons diffraction.

We would like to conclude on the magnetic frustration
responsible for the degenerated ground state. This degeneracy
is due to the existence of two 3D subsystems only coupled
by frustrated interactions. One, thus, expects that a structural
distortion should occur to lower this frustration and couple the
two subsystems. Our analysis yields that the expected distor-
tion should be a doubling of the unit cell along the �b direction.
Indeed, not only such a symmetry breaking would lower the
magnetic frustration, but it would also allow the Cu chains
(ladder legs) to display a spin-Peierls transition as expected
in spin-1/2 chains. Such a transition is reasonably expected
at, or close to, the magnetic ordering temperature, however,
no structural transition has been seen in x-ray diffraction in
the 115–300 K range as stated in Ref. [13]. One should, how-
ever, remember that the energy associated with the magnetic
frustration (issued from Juu1 and Jou1) is small compared to
the other energy scales in the system. As a result the atomic
displacements associated with the symmetry breaking can
be expected to remain weak, and, thus, difficult to see with
diffraction techniques (as was learned over the past years by
the study of multiferroic systems). Most probably only lattice
dynamic studies will be able to clarify this point.
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