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Time-dependent strain-tuned topological magnon phase transition
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Collinear magnets in honeycomb lattices under the action of time-dependent strains are investigated. Given
the limits of high-frequency periodically varying deformations, we derive an effective Floquet theory for spin
systems that results in the emergence of a spin chirality. We find that the coupling between magnons and spin
chirality depends on the details of the strain such as the spatial dependence and applied direction. Magnonic
fluctuations about the ferromagnetic state are determined, and it is found that spatially homogeneous strains
drive the magnon system into topologically protected phases. In particular, we show that certain uniform strain
fields play the role of an out-of-plane nearest-neighbor Dzyaloshinskii-Moriya interaction. Furthermore, we
explore the application of nonuniform strains, which lead to a confinement of magnon states that for uniaxial
strains propagates along the direction that preserves translational symmetry. Our work demonstrates a direct way
in which to manipulate the magnon spectrum based on time-dependent strain engineering that is relevant for
exploring topological transitions in quantum magnonics.
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I. INTRODUCTION

Magnons, the elementary bosonic excitations of the mag-
netic order, are a key ingredient for future spin-based,
low-power-consumption, and ultralow-noise technologies [1].
The control and transport of magnon spin currents over large
distances, e.g., in diffusive regimes or in superfluid systems
[2,3], constitute one of the main challenges of magnonics [4].

The interest in spin fluctuations in magnetic insulators was
invigorated by the discovery of exotic topological phenom-
ena [5–11]. These effects have their roots in the geometric
properties of the space of magnonic eigenstates [12], which
result in the emergence of exceptional phenomena such as
the magnon Hall effect [13] and robust edge modes [14]. The
realization of topological spin excitations has been shown in
various two-dimensional honeycomb van der Waals magnets,
either intrinsic [9,15–20] or induced by light [21,22]. This
phenomenology, either in collinear or textured magnetic ma-
terials, is related to a (scalar) spin chirality, defined as

χi jk = S j · (Si × Sk ), (1)

which appears as an emergent magnetic field and is responsi-
ble for the topological transport of magnons [23–29].

Mechanical strains are a widely recognized technique to
create artificial gauge fields in solid systems [30,31]. This
method enables the engineering of states of matter such as
Landau levels in strained graphene [32–35] and topologi-
cal phase transitions [36–40]. Similarly, elastic gauge fields
have been predicted in magnetic insulators through spatial
modulations of the exchange interaction. The application of
suitable nonuniform and stationary strain patterns results in
novel magnonic states. A few strained magnetic systems have

been studied in this context, including topological phases in
ferromagnetic Kagome lattices [41] and magnon (pseudo)
Landau levels in ferromagnets [42,43] and in antiferromagnets
[44,45], which have also shown exotic emergent supersymme-
try properties under triaxial strains [46].

In this work, we propose a mechanism of time-dependent
strain engineering to induce an effective spin chirality in
the spin system. We show that high-frequency periodically
varying uniform strains modify the spectrum of magnonic
excitation into topologically gapped magnon states. More-
over, when the spatial component of the strain is nonuniform,
it breaks translational symmetry and gives rise to a con-
finement of magnon states. The underlying mechanism is
substantially different from those systems under applied static
strains, where the notion of an elastic gauge field emerges
for smooth deformations and near the Dirac points [30,31].
Instead, periodically varying strains, treated in perturbation
theory, manifest as a massive term in continuum magnon
theory, leading to several consequences for magnon proper-
ties. This result, obtained in the high-frequency limit, is a
key difference with respect to emergent pseudoelectric fields
that lead to topological responses [47–49] and are induced by
slowly varying mechanical deformations.

II. MODEL

We consider a system of localized spins placed on a two-
dimensional honeycomb lattice. The nearest-neighbor spin
Hamiltonian that allows for applied mechanical strains is

H = −
∑
〈i j〉

Ji j

2
Si · S j − K

2

∑
i

(
Sz

i

)2 − B
∑

i

Sz
i , (2)
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FIG. 1. Schematic illustration of deformed honeycomb lattices.
Time-dependent strains are described by the in-plane deformation
field u(r, t ). Effective spin chirality χi jk , relating next-nearest-
neighbor spins, emerges from high-frequency strain fields.

where Ji j ≡ J (ri − r j ) > 0 is the ferromagnetic exchange
coupling between spins located at positions ri and r j in the
lattice. The strength of the easy-axis magnetic anisotropy is K,
and B is the external magnetic field. The elastic deformations
conducted by mechanical strains are represented by the field
u(r) describing the displacement of atomic sites from equilib-
rium positions. The strain is coupled to the system of spins
through the magnetoelastic interaction, which adopts a simple
form via spatial modulations of the exchange coupling as
Ji j ≈ J − J ′δη · (δη · ∇)u(ri ) for small in-plane displacements
[50], where J is the exchange coupling for the unstrained sys-
tem and the nearest-neighbor vectors δη are defined in Fig. 1.
In the following, we assume that a collinear and out-of-plane
ferromagnetic order is preserved in the strained system.

Floquet theory and effective Hamiltonian

We now consider the spin system driven by time-dependent
strains. The Hamiltonian for the strained system is written
as H (t ) = H + V (t ), with V (t ) = ∑

〈i j〉 Ji j (t ) Si · S j being
the time-periodic potential. In terms of the strain tensor
εαβ = (∂αuβ + ∂βuα )/2, the magnetoelastic coupling is writ-
ten as Ji j=i+δη

= J ′δα
η δβ

η εαβ (ri, t ), where α, β ∈ {x, y} and
summation over repeated indexes is implicit. In addition,
we represent the time-dependent field of deformations as
u(ri, t ) = ua(ri ) sin ωt + ub(ri ) cos ωt , with ua and ub be-
ing nonparallel vectors. In the limit of high-frequency
strains, an effective model results in the time-averaged peri-
odic Hamiltonian. Within the framework of Floquet-Magnus
expansion [51,52], the effective theory is obtained pertur-
batively, including corrections of O(ω−n), and is quadratic
on the magnetoelastic coupling. This results in the effec-
tive Hamiltonian Heff = H + ∑

n [Hn, H−n]/nω, where Hn =
1/T

∫ T
0 dtH (t )einωt is the Fourier component of the time-

dependent Hamiltonian and T = 2π/ω is the period of the
deformation field. Therefore, we obtain

Heff = H + 2i

ω

∑
〈i j〉

∑
〈 jk〉

�i jk S j · (Si × Sk ), (3)

with S j = Sz
j ẑ. The second term on the right-hand side of

Eq. (3) corresponds to the strain-induced spin-spin interaction

that constitutes the central result of this work. The cou-
pling tensor �i jk = J +

i j J −
jk − J +

jkJ −
i j , where J ±

i j = (J b
i j ±

iJ a
i j )/2, is nonlocal and quantifies the effective interaction of a

triad of next-neighboring spins (see Fig. 1 and the Appendix A
for major details). In general, the time-dependent strain in-
duces spin chirality Si · (S j × Sk ), which modifies the static
Hamiltonian. As a result, the energy landscape for the mag-
netic order might lead to the stabilization of magnetic textures,
e.g., skyrmions [53]. However, to understand the effective
Hamiltonian Heff, we will focus on the analysis of linear spin
fluctuations. It is important to remark that the strain-induced
Floquet correction is independent of the actual magnetic order
and therefore is also valid for antiferromagnetic models.

III. STRAINED MAGNON HAMILTONIAN

We now study the low-energy spin fluctuations of the
strain-induced effective Hamiltonian within linear spin-wave
theory. It is convenient to introduce bosonic operators through
the Holstein-Primakoff (HP) formalism [54]. The ordered
magnetic ground state is assumed to be out of plane; there-
fore, the quantization axis is along the z axis. Thus, at lattice
site i, the spin operators and HP bosons are related by s−

i =
a†

i

√
2s − a†

i ai, s+
i =

√
2s − a†

i aiai, and sz
i = s − a†

i ai. We ex-
pand the spin Hamiltonian (3) in terms of HP bosons and
disregard many-body magnon interactions. Introducing the
field operator �k = (ak, bk)T , with a and b being the bosonic
operators defined on sublattices A and B, respectively, we find
for the momentum space effective magnon Hamiltonian

Hm =
∑
k,k′

�
†
k (
τ0 δkk′ + hkk′ · τ)�k′ , (4)

where τ is a pseudovector of the Pauli matrices, τ0 is the
identity matrix, and 
 = sJz + sK + B, where z is the coor-
dination number.

hkk′ =
⎛
⎝−sJ

∑
η cos [k · δη]δkk′

sJ
∑

η sin [k · δη]δkk′

4s2(J ′)2�kk′/ω

⎞
⎠. (5)

The field �kk′ = 2i
∑

η �
η

kk′ sin(k′ · δnn
η )/N , where �

η

kk′ =∑
i �i,i−δη,i−δnn

η
e−i(k−k′ )·ri , N is the number of lattice sites,

and the next-nearest-neighbor vectors δnn
η (see Fig. 1 and

Appendix A) feature the nonlocality of magnon coupling in
momentum space.

There are two remarkable characteristics of the magnon
Hamiltonian (4). First, high-frequency periodically driven
strains emerge as a massive term (hz

kk′ ) in the theory for non-
interacting magnonic fluctuations. This is quite different from
systems under the action of static lattice distortions. There,
nonuniform strains manifest as elastic gauge fields close to the
Dirac points, modifying the in-plane components of hkk′ and
giving rise to pseudo-Landau levels in the energy spectrum
[41–46]. Second, due to strain-induced coupling �kk′ , the
effective theory for magnons becomes nonlocal in momentum
space. The dependence on momenta k and k′ is established
by the spatial dependence of the strain tensor. In particular,
for homogeneous deformations of the lattice, u(r) = u0, the
field �i jk becomes null, similar to the strain tensor. Thus, any
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nontrivial effect on the system of magnons is expected for
spatially dependent lattice deformations.

To study the spectra of magnonic excitations, we consider
lattice deformations induced by homogeneous and nonuni-
form mechanical strains. While the former derives from
linearly varying deformation fields ul (r), the latter origi-
nates from any field of displacements unl (r) that depends
on position in a nonlinear fashion. In the first case, elastic
deformations are parameterized by two time-dependent fields
with amplitudes of oscillation ua

l and ub
l . We find that the

strain-induced magnon coupling becomes local in momen-
tum space, �kk′ = �kδkk′ , with �k = −a4 ∑

η �(η) sin(k ·
δnn
η ) and �η quantifying the effective next-nearest-neighbor

interaction. In particular, for the specific lattice deformations,
ua

l = (a2y, b1x) and ub
l = c1(x,−3y/2), with a1, b1, and c1

being constants (see Appendix B), the coupling is identical for
each bond, and �(η) ≡ � = 3

√
3c1(a2 + b1)/2. This is equiv-

alent to a Dzyaloshinskii-Moriya interaction with strength
Deff = −4s2a4(J ′)2�/ω (a is the lattice parameter) that re-
sults from inversion symmetry breaking and is responsible for
opening a topological gap at the Dirac points [5–8].

We now show the existence of topological transitions for
different classes of uniform strains. The topological nature of
magnon eigenstates is captured by the Chern number C± =∫

BZ dk 
±
k /2π , where ± labels each magnonic band and the

integration is over the first Brillouin zone (BZ). The Berry
curvature is 
±

k = ∓ĥ · (∂kx ĥ × ∂ky ĥ)/2, with the unit vector
ĥ = h/|h| and the field h given by Eq. (5). Since we focus on
uniform strains, we consider �kk′ = �kδkk′ and introduce the
dimensionless parameters ξ = �(1)/�(2) and χ = �(3)/�(2)

to study the induced topological phases. The limit ξ = χ = 1
corresponds to gapped states at Dirac points, with energy
gap �g = 3

√
3Deff and Chern number C± = ±1 for each

magnon band. In the general case of uniform strains, i.e.,
ξ 
= χ 
= 1, the topological character is preserved. We find
that for different lattice deformations described by the pa-
rameters ξ and χ , topological magnonic states experience a
phase transition set by a sign change of the Chern number. The
details of various strained configurations, with their respective
Chern numbers, are given in Appendix B. Since the anisotropy
and magnetic field contribute to a trivial gap in the magnon
spectrum, we set hereafter K = 0.1J and B = 0 in order to
explore the genuine topological properties that emerge when
applying variable deformation fields. In Fig. 2(a), the phase
diagram for the topological phases is shown and featured
by the respective Chern number C+(ξ, χ ) = −C−(ξ, χ ).
The transition that separates distinct topological phases is
set when the Chern number nullifies, which corresponds to
the closing of the strain-dependent magnon gap �g[ξ, χ ] =√

3Deff(1 + ξ + χ )/2 shown in Fig. 2(d). The field h and
the magnon spectrum for each mode, ε±(k) = 
 ± √

hk · hk,
are plotted in Figs. 2(b) and 2(c), respectively. In the con-
tinuum limit and near Dirac points, the Hamiltonian 4
is Hl

m = (2π )−2
∫

dk�
†
kH(k)�k, where H(k) = 
τ0 + v(k ·

τ ) + (�g + � · k)τz, v = 3sJ/2, and � = Deff[−
√

3(1 + ξ −
2χ ), 3(ξ − 1)]/4. As a result, at the high-frequency limit,
uniform strains break time-reversal and inversion symmetries,
which provides a linear momentum mass and induces topo-
logically nontrivial magnon states.

(a) (b)

(d)(c)

FIG. 2. (a) Topological phase diagram exhibited by the strained
magnon system in terms of parameters ξ and χ . The transition
(topological) is set by the sign change of the Chern number, which
is determined by the condition 1 + χ + ξ = 0. Chern numbers for
upper and lower magnonic modes are related by C+ = −C−. (b) Ef-
fective field hz/|h| is shown in momentum space for the specific
values χ = 2 and ξ = 1. The vector field is given by the x and y
components of the normalized field h/|h|. (c) For same values of
χ and ξ , the dispersion relation is displayed. (d) Magnon energy
bands ε±,k are gapped at the Dirac point K = (4π/3

√
3, 0)T , with

strain-dependent gap �[ξ, χ ].

IV. CONFINED MAGNON STATES

We now derive the continuum magnon theory that cap-
tures the effect of generic nonuniform strains. We start
by representing lattice deformations as u = ul + unl with
the assumption |unl |/|ul | < 1, where unl features displace-
ments that depend nonlinearly on position. We find that
for the strain-induced and time-reversal symmetry-broken
term, �kk′ = �kδkk′ + �nl

kk′ , with �k being solely determined
by the uniform strains. The nonlinear contribution �nl

kk′ =∑
ηη′ �

(ηη′ ),nl
kk′ eik′ ·δnn

η /N is determined by the magnon coupling

�
(ηη′ ),nl
kk′ = Dηη′,−

k−k′ unl,+
k−k′ + Dηη′,+

k−k′ unl,−
k−k′ , which in turn depends

on the Fourier components of the field of deformations u±
nl . In

the last result, the operator in momentum space is given by
Dηη′,±

k = ±i(J ′)2[(∇ηu±
l )kη′ − (∇η′u±

l )kη], which is depen-
dent on the gradients of the fields u±

l .
Pairs of magnon states with different momenta k and k′

become coupled as a result of applying nonuniform periodi-
cally varying strains. The effects on the topological gap and
spectrum of states need to be evaluated perturbatively. Near
the Dirac points, the interaction between magnons depends
on their relative momentum difference. In turn, the magnon
Hamiltonian (4) is written as

HD = Hl
m +

∫
dk

(2π )2

dk′

(2π )2
�

†
k�nl (k − k′)τz�k′ , (6)

where the second term is the lowest-order correction in non-
linear deformation fields. Generally, an external periodically
varying strain induces a massive term near the Dirac points.
The effective mass �nl (x) is local in real space, breaking the

224401-3



NICOLAS VIDAL-SILVA AND ROBERTO E. TRONCOSO PHYSICAL REVIEW B 106, 224401 (2022)

(a)

(b) (c)

FIG. 3. (a) Real-space distribution of the confined magnon wave
function for various strain parameters ξ . Nonuniform strain is applied
along the y direction, which in turn determines the direction of
confinement. (b) Each mode propagates along the x direction with
energy ε± (solid lines), which is degenerate at Dirac points. In the
absence of nonlinear deformations, eigenstates are gapped (dashed
line) for χ = ξ = 1. (c) Real and imaginary parts of coefficients α01

and α02 for χ = −2 as a function of the strain parameter ξ . Results in
(a) and (b) are shown for parameters χ = 1, β̃ = 10 and akx = 0.5,
and Deff/sJ = 0.5, respectively.

continuous translational symmetry and significantly affecting
the propagation of magnon states.

The energy spectrum of magnon excitations is ob-
tained through the corresponding Dirac equation [H(−i∇) +
�nl (x)τz]�(x, t ) = i∂t�(x, t ), where � = (ψ+, ψ−)T is the
two-component wave function for the magnon modes. For
the uniform component of the strain, it is assumed that gen-
eral deformation fields are detailed as in Appendix C and
captured by the parameters ξ and χ introduced above. Fur-
thermore, we assume a uniaxial nonuniform strain deduced
from the field u±

nl = unl = βy2ŷ, with β being the strength of
the deformation. The effective mass results in �nl (x) = β̃y,
with β̃ = 9β(a2 + b1)/2 and the parameters a2 and b1 featur-
ing the field ul . The magnonic Dirac equation is solved by
the ansatz ψ±(x, t ) = A±eip(x)e−iεt/h̄, where the polynomial
p(x) = ∑

nm αnmxnym, which is quadratic on position coordi-
nates, determines the spatial dependence of the wave function.
The equation for the eigenenergies ε results in

{� · ∇p + [� + �nl (x)]}2 + v2(∇p)2 = (
 − ε)2, (7)

which in turn produces a set of secular equations for αnm.
The solution admits complex-valued coefficients α01 and α02,
where α20 = α11 = 0 and α10 are also real valued; details
can be found in Appendix C. Therefore, the amplitude of the
wave function is position dependent and given by A±(x) =
A±e−Im[p(x)], whose shape in space is determined by the pa-
rameters ξ and χ from the nonuniform strain. The spatial
distribution of the magnon wave function diffuses along the
direction of the applied strain, as shown in Fig. 3(a), and its
propagation becomes confined along the y direction [55]. The
range of confinement is described by the coefficients αI

01 and
αI

02, shown in Fig. 3(c) as a function of the strain parame-
ter ξ , which determines an exponential decay of the wave
function along the y direction. The energy of propagation

is gapless and exhibits a linear dispersion around the Dirac
points, ε± = 
 ± v|kx|/sJ , as shown in Fig. 3(b). Note that in
the absence of nonuniform strain, the amplitude of the wave
function is homogeneous, and the energy around the Dirac
point is gapped, as shown for χ = ξ = 1 by the dashed lines.
Other types of deformations such as biaxial and triaxial strains
might lead to interesting effects on the magnon spectrum;
however, their analysis is left for future studies.

V. DISCUSSION AND CONCLUSIONS

The assumption of time-dependent strains in the high-
frequency range is at the core of the present theory. Thus,
noticeable effects emerging from our model are expected
in materials with a short bandwidth SJ in their dispersion
relation or, equivalently, a low Curie temperature. Specif-
ically, the relation h̄ω > SJ , where ω corresponds to the
frequency of the deformation drive, must be met. Since
the Curie temperature Tc is proportional to the exchange
coupling, materials with low Tc are more suitable for exper-
imentally testing our results. Recent advances in predicting
unexplored two-dimensional honeycomb magnetic materi-
als helped us to target suitable candidates with easy-axis
anisotropy and low Curie temperature [56]. For instance,
the theoretically predicted two-dimensional (2D) ferromag-
netic insulator Mn3Cd2O8, which has a bandwidth of about
0.03 meV [56], should be a suitable material when it is
subjected to time-dependent deformations driven with fre-
quencies of tens of gigahertz. In this line, efforts to excite
high-frequency phonons make our proposal feasible for future
realizations through, for instance, the use of ultrafast lasers
[57] or the consideration of a 2D magnetic material grown
on a piezoelectric substrate. Recent measurements on strained
graphene [58], enabling the spatial and temporal control of
deformations with gigahertz frequencies, paves the way for
developing our proposal.

Note that although the main results were presented for
ferromagnets, our model admits generalizations that extend to
other forms of magnetic order, such as collinear antiferromag-
nets and magnetic textures. Since the induced spin chirality
is proportional to J ′2, it is therefore also valid for antiferro-
magnetic systems. Nevertheless, the effects on the topological
properties are unclear and left for future works.

In summary, we demonstrated the emergence of spin
chirality in collinear honeycomb ferromagnets under high-
frequency time-dependent strains. Given the limit of smoothly
varying deformations, magnon fluctuations acquired an effec-
tive massive term that can be modified by the properties of
strain, such as frequency and amplitude. Homogeneous strains
induce a topological gap at the Dirac points and thus en-
able the control of topological magnonic phases. Interestingly,
nonuniform uniaxial strains close the existing gap and confine
the propagation of magnonic states due to the breaking of
translational symmetry. The underlying physics of this phe-
nomenon is different from systems under static strains, where
elastic gauge fields emerge in response to smooth deforma-
tions. The ability to generate topological magnon phases and
confine magnonic signals with time-dependent strains is of
great interest in topological magnonics. It is essential to point
out that our results are subject to a low-temperature regime,
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which allows us to neglect the possible effect of phonons
safely. Also, since the main results are more appreciable
around the Dirac points, the dipole-dipole interaction plays a
minor role in the reported effects, so we have not considered it.
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APPENDIX A: EFFECTIVE MAGNON HAMILTONIAN

We start with the time-dependent component of the Hamil-
tonian V (t ) = ∑

〈i j〉 Ji, jSi · S j , with Ji, j = Ji, j=i+δη
= J ′δη ·

(δη · ∇)ui(t ). By using S± = Sx ± iSy, V (t ) can be written as

V (t ) =
∑
〈i j〉

[
J s

i jS
−
i S+

j + Ji jS
z
i Sz

j

]
, (A1)

where we have labeled J s
i j as the symmetric part of tensor

Ji j , whose notation (superindex s) will be dropped hereafter.
Let us consider an elliptically polarized time-dependent strain
field as ui(t ) = ua

i sin ωt + ub
i cos ωt . The matrix elements

Ji j can be expanded as Ji j = J a
i j sin ωt + J b

i j cos ωt , where

J a,b
i j=i+δη

= J ′δη · (δ · ∇)ua,b
i . Next, the Fourier component is

Hn = 1/T
∫ T

0 dtV (t )einωt , where ω stands for the frequency
of the drive and T is the period of oscillations. Thus, by
performing the proper integration we get

Hn =
∑
〈i j〉

(J +
i j δn,1 + J −

i j δn,−1)S−
i S+

j

+
∑
〈i j〉

(J +
i j δn,1 + J −

i j δn,−1)Sz
i Sz

j, (A2)

where we have introduced the definition J ±
i j = (J b

i j ±
iJ a

i j )/2. Since we are focused on the high-frequency limit, we
employ the Brillouin-Wigner theory for periodically driven
systems to evaluate the effective Hamiltonian as an expansion
in powers of 1/ω. Specifically, the effective Hamiltonian is
Heff = H + ∑

n>0
[Hn,H−n]

nω
+ · · · , and for our particular case,

it reads

Heff = H + [H1, H−1]

ω
δn,1. (A3)

By explicitly calculating the commutator, the effective Hamil-
tonian reads

Heff = H + 2

ω

∑
〈i j〉

∑
〈 j j′〉

�i j j′
[
Sz

j

(
Sx

i Sx
j′ + Sy

i Sy
j′
)

+ iSz
j ẑ · (Si × S j′ ) + Sz

i

(
Sx

j′S
x
j + Sy

j′S
y
j

)
+ Sz

j′
(
Sx

j S
x
i + Sy

j S
y
i

)]
, (A4)

with �i j j′ = J +
i j J −

j j′ − J +
j j′J −

i j . By employing symmetry ar-
guments on �i j j′ , we finally arrive at

Heff = H + 2i

ω

∑
〈i j〉

∑
〈 j j′〉

�i j j′ S j · (Si × S j′ ), (A5)

which corresponds to Eq. (3) of the main text.

APPENDIX B: LINEAR DEFORMATIONS

In order to study the magnon excitation in the strained
system, we first consider linear deformations. Recall that the
mechanical degrees of freedom are encoded in the field �kk′

that is proportional to the z component of hkk′ at Eq. (5) in
the main text. It will be useful to define the nearest-neighbor
vectors,

δ1 = a(
√

3/2,−1/2, 0), (B1)

δ2 = a(0, 1, 0), (B2)

δ3 = − a(
√

3/2, 1/2, 0), (B3)

and also the next-nearest-neighbor vectors

δnn
1 = δ1 − δ3 = −δnn

4 , (B4)

δnn
2 = δ2 − δ1 = −δnn

5 , (B5)

δnn
3 = δ3 − δ2 = −δnn

6 . (B6)

The nonlocal field �kk′ is explicitly given by

�kk′ = 2i

N

∑
η

�
η

kk′ sin
(
k′ · δnn

η

)
, (B7)

with �
η

kk′ = ∑
i �i,i−δη,i−δnn

η
e−i(k−k′ )·ri . In the linear regime,

�
η

kk′ is local in momentum space since �i,i−δη,i−δnn
η

becomes
independent of position. Therefore, �

η

kk′ = �i,i−δη,i−δnn
η
δkk′ .

The next step is to consider some explicit deformation field
to evaluate the field �i,i−δη,i−δnn

η
. Let us write the strain fields

in the most general form ua
i = αa

1 (x, y)x̂ + αa
2 (x, y)ŷ and ub

i =
αb

1(x, y)x̂ + αb
2(x, y)ŷ, with the coefficients given by

αa
1 (x, y) = a1x + a2y, (B8)

αa
2 (x, y) = b1x + b2y, (B9)

αb
1(x, y) = c1x + c2y, (B10)

αb
2(x, y) = d1x + d2y. (B11)

This allows us to write �kk′ = �kδkk′ , with

�k = −a4
∑

η

�(η) sin
(
k · δnn

η

)
(B12)

and

�(1) = 3a1d2 −
√

3d2(a2 + b1) − 3b2c1 +
√

3b2(c2 + d1),
(B13)

�(2) = −3a1d2 −
√

3d2(a2 + b1) + 3b2c1 +
√

3b2(c2 + d1),
(B14)

�(3) =
√

3[(a2 + b1)(3c1 + d2) − (3a1 + b2)(c2 + d1)].
(B15)

In particular, by imposing that �(1) = �(2) = �(3) = �, a
possible solution reads � = 3

2

√
3c1(a2 + b1), which is pro-

portional to the effective Dzyaloshinskii-Moriya interaction
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FIG. 4. Vector representation of deformation fields ua
l and ub

l for
different values of χ and ξ . (a) χ = ξ = 1 with Chern number C+,
(b) ξ = 1, χ = 0 with Chern number C+, and (c) ξ = 1, χ = −4
with Chern number C−. In all cases the red and gray arrows represent
the deformation fields ua

l and ub
l , respectively.

Deff = −4s2a4(J ′)2�/ω, as stated in the main text. In Fig. 4
we show some particular examples of deformation fields
which produce nontrivial topological magnon states. Since
our parametrization allows several solutions for deformation
fields, we show explicitly some characteristic cases with the
Chern numbers C− and C+ and also a noticeable result that
mimics the Dzyaloshinskii-Moriya interaction through Deff

(also C+). Figures 4(a)–4(c) show the deformation fields
for the cases χ = ξ = 1; χ = 0, ξ = 1; and χ = 1, ξ =
−4. The first one corresponds to the highlighted effective
Dzyaloshinskii-Moriya interaction with Chern number C−,
while the latter two correspond to C− and C+. At the bottom
of each vector representation the respective expression for the
vector fields ua

l and ub
l is shown.

APPENDIX C: NONLINEAR DEFORMATIONS

The time-dependent part of Hamiltonian (4) can be written
as

H ′ = (J ′)2 4s2

ω

∑
k,k′

�kk′ψ
†
k τzψk′ , (C1)

where

�kk′ = 2i

N

{
�12

kk′ sin[k′ · (δ1 − δ2)] + �31
kk′ sin[k′ · (δ3 − δ1)]

+ �23
kk′ sin[k′ · (δ2 − δ3)]

}
. (C2)

Let us consider the inhomogeneous deformation field u(r),
which is nonlinear in its dependence on the position. As a
first approximation, we assume the nonlinear contribution is
a slight deviation from the linear contribution,

u(r) = ul (r) + unl (r), (C3)

where |ul |/|unl | < 1. In this approximation, we find �kk′ =
�kδkk′ + �nl

kk′ , where �nl
kk′ is to be determined.

Returning to the definition of �i,i−δη,i−δnn
η

[see the definition
of �

η

kk′ in Eq. (B7)], we invoke the mentioned approximation
in the deformation field to find �i,i−δη,i−δnn

η
≈ �l

i,i−δη,i−δnn
η

+
�nl

i,i−δη,i−δnn
η

, where quadratic contributions to unl have been

dropped. The expression for �nl reads

�nl
i,i−δη,i−δnn

η
= (J ′)2

[
δη · (δη · ∇)unl,+

i δη′ · (δη′ · ∇)ul,−
i

− δη · (δη · ∇)ul,−
i δη′ · (δη′ · ∇)unl,+

i

]
+ (J ′)2

[
δη · (δη · ∇)ul,+

i δη′ · (δη′ · ∇)unl,−
i

− δη · (δη · ∇)unl,−
i δη′ · (δη′ · ∇)ul,+

i

]
= (J ′)2

{
δη′ · (δη′ · ∇)ul,−

i [δη · (δη · ∇)]

− δη · (δη · ∇)ul,−
i [δη′ · (δη′ · ∇)]

}
unl,+

i

+ (J ′)2
{
δη · (δη · ∇)ul,+

i [δη′ · (δη′ · ∇)]

− δη′ · (δη′ · ∇)ul,+
i [δη · (δη · ∇)]

}
unl,−

i , (C4)

which is compactly written as

�nl
i,i−δη,i−δnn

η
= D−

ηη′unl,+
i + D+

ηη′unl,−
i . (C5)

Note that D±
ηη′ are linear operators acting on the fields unl,∓

i ,
respectively. These operators become trivial in the absence
of linear components of the strain. In Fourier space we set
unl,±

i = ∑
q unl,±

q eiq·ri , and thus, the action of the operators

becomes D∓
ηη′unl,±

i = i
∑

q eiq·riDηη′,∓
q unl,±

q , where

Dηη′,−
q = (J ′)2

{
δη′ · (δη′ · ∇)ul,−

i [δη · (δη · q)]

− δη · (δη · ∇)ul,−
i [δη′ · (δη′ · q)]

}
. (C6)

Therefore, an expression for �
ηη′,nl
kk′ , using Eq. (C5), is

found to be

�
ηη′,nl
kk′ =

∑
i∈B

�nl
i,i−δη,i−δnn

η
e−i(k−k′ )·ri

= iDηη′,−
k−k′ unl,+

k−k′ + iDηη′,+
k−k′ unl,−

k−k′ . (C7)

Finally, we ended up with a short expression for the non-
linear contribution to the field �kk′ , defined by �nl

kk′ =
1
N

∑
ηη′ �

ηη′,nl
kk′ eik′ ·(δη−δη′ ) (N is the number of lattice sites), that

satisfies

�nl
kk′ = i

N

∑
ηη′

(
Dηη′,−

k−k′ unl,+
k−k′ + Dηη′,+

k−k′ unl,−
k−k′

)
eik′ ·(δη−δη′ ), (C8)

which might also be written as

�nl
kk′ = 2i

N

{
�12,nl

kk′ sin[k′ · (δ1 − δ2)] + �31,nl
kk′ sin[k′ · (δ3−δ1)]

+ �23,nl
kk′ sin[k′ · (δ2 − δ3)]

}
. (C9)

The total Hamiltonian including nonlinear deformations now
reads

H =
∑

k

�
†
k (
I + hk · τ )�k

+ (J ′)2 4s2

ω

∑
kk′

�
†
k�nl

kk′τz�k′ . (C10)
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In a small window, near the Dirac point K+ = (4π/3
√

3, 0)T ,
we find for the magnon Hamiltonian

HD =
∑

k

�
†
k [
τ0 + v(kxτx + kyτy)

+ (�g + � · k)τz]�k +
∑
kk′

�
†
k�nl

kk′τz�k′ , (C11)

where �g(ξ, χ ) = √
3Deff(1 + ξ + χ )/2, v = 3sJ/2, and the

vector � = Deff( − √
3(1 + ξ − 2χ ), 3(ξ − 1))/4. To find

�nl
kk′ near the Dirac points, we first note from Eq. (C9) that

sin[k · (δ1 − δ2)] ≈
√

3

2
+ O(k), (C12)

sin[k · (δ3 − δ1)] ≈
√

3

2
+ O(k), (C13)

sin[k · (δ2 − δ3)] ≈
√

3

2
+ O(k). (C14)

In turn, the field �nl
kk′ becomes dependent on k − k′ since

�nl
kk′ ≈

√
3

2

2i

N

[
�12,nl

kk′ + �31,nl
kk′ + �23,nl

kk′
]
, (C15)

with �
ηη′,nl
kk′ = iDηη′,−

k−k′ unl,+
k−k′ + iDηη′,+

k−k′ unl,−
k−k′ . Thus, we write

the last term in Eq. (C11) as∑
kk′

�
†
k�nl

kk′τz�k′

≈
∫

dk
(2π )2

dk′

(2π )2
�†(k)�nl (k − k′)τz�(k′)

=
∫

dr
∫

dk
(2π )2

dk′

(2π )2
�†(k)�nl (r)e−i(k−k′ )·rτz�(k′)

=
∫

dr�†(r)�nl (r)τz�(r), (C16)

which corresponds to Eq. (6) in the main text.
To explore the effects from the field �nl (r), let us assume

a uniaxial strain induced by the deformation field unl = ux r̂ +
uyŷ, with

ux = 0, (C17)

uy = βy2, (C18)

where the parameter β denotes the strength of the strain.
For the sake of simplicity, we consider unl

a = 0, which in
turn implies unl,± = unl

b = unl . Under this assumption we can
simplify the operator at Eq. (C5), which in the continuum limit
reads

�ηη′,nl (r) = (D−
ηη′ + D+

ηη′ )unl

= 2i
[
Dηua

l Dη′ − Dη′ua
l Dη

]
unl , (C19)

with ua,b
l characterizing the linear component of strain and

Dη = δη · (δη · ∇). The field �nl (r) is determined through its
Fourier transform, Eq. (C15), which is defined by

�nl (q) = i
√

3

N

[
�12,nl

q + �31,nl
q + �23,nl

q

]
, (C20)

and thus,

�nl (r) =
∫

dq
(2π )2

�nl (q)eiq·r

= i
√

3

N
[�12,nl (r) + �31,nl (r) + �23,nl (r)], (C21)

with the components �ηη′,nl (r) obtained from Eq. (C19). In
summary, for the specific uniaxial nonuniform strain, the non-
linear contribution adopts a simple form denoted by �nl (r) =
β̃y, with β̃ = 9β

2 (a2 + b1).

1. Eigenvalues

The equation of motion for the magnon field �(r, t ) =
(ψα (r)e−iεt , ψβ (r)e−iεt )T , obtained in real space, can be ex-
pressed in a matrix form as(


 + �g − i� · ∇ + �nl (r) −iv(∂x − i∂y)
−iv(∂x + i∂y) 
 − �g + i� · ∇ − �nl (r)

)

×
(

ψα

ψβ

)
= ε

(
ψα

ψβ

)
. (C22)

Note that Eq. (C22) is a general result and can be evaluated in
both the presence and absence of mechanical deformations.

a. Solutions

Case 1. In order to solve Eq. (C22), we choose the ansatz
ψα,β (r) = Aα,βeiq·r. In the absence of strains, Eq. (C22) re-
duces to(


 − ε v(qx − iqy)
v(qx + iqy) 
 − ε

)(
Aα

Aβ

)
=

(
0
0

)
, (C23)

with the eigenvalues given by ε = 
 ± v|q|.
Case 2. In the presence of linear deformation fields,

Eq. (C22) reduces to(

 − ε + �g + � · q v(qx − iqy)

v(qx + iqy) 
−ε − �g−� · q

)(
Aα

Aβ

)
=

(
0
0

)
,

(C24)

with the eigenvalues given by

ε = 
 ±
√

v2|q|2 + (�g + � · q)2. (C25)

Case 3. In the presence of a nonlinear deformation field
we generalizes the ansatz by ψα,β (r) = Aα,βeip(r), with the
quadratic polynomial p(r) = ∑

nm αnmxnym. We assume that
α10 is real valued, while α20, α02, α01, and α11 can be complex
numbers. Thus, the set of equations becomes

[
 − ε + �g + �nl (r)]Aα = − � · ∇p(r)Aα

− v[∂x p(r) − i∂y p(r)]Aβ,

(C26)

[
 − ε − �g − �nl (r)]Aβ = − v[∂x p(r) + i∂y p(r)]Aα

+ � · ∇p(r)Aβ. (C27)

If Aα,β 
= 0, these equations can be combined to produce

{� · ∇p + [�g + �nl (r)]}2 + v2(∇p)2 = (
 − ε)2, (C28)
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which corresponds to Eq. (7) in the main text. Assuming the previous form for the polynomial p(r), the previous relation is
expressed as 0 = f0 + fxx + fyy + fyyy2 + fxxx2 + fxyxy. In turn, we find the following secular equations for the coefficients:

f0 = (
 − iα02)2 − v2
(
α2

10 + α2
01

) − (�g + α10�x + α01�y)2 = 0,

fy = −2v2(2α01α02 + α10α11) − 2(�g + α10�x + α01�y)(�nl + 2�yα02 + �xα11) = 0, (C29)

fx = −2v2(2α10α20 + α01α11) − 2(�g + α10�x + α01�y)(2�xα20 + �yα11) = 0, (C30)

fxy = −2(�nl + 2�yα02 + �xα11)(2�xα20 + �yα11) − 4v2(α20 + α02)α11 = 0, (C31)

fyy = −(�nl + 2�yα02 + �xα11)2 − v2
(
4α2

02 + α2
11

) = 0, (C32)

fxx = −(2�xα20 + �yα11)2 − v2
(
4α2

20 + α2
11

) = 0, (C33)

where �x,y denotes the x and y components of the vector �, while �g stands for the strain-dependent magnon gap. Note that
all the coefficients depend on the parameters χ and ξ through �x(y) and �nl , which encode the external strain. A simple and
particular solution can be obtained when α20 = α11 = 0,

ψα = Aαei(α10x+αR
01y−αR

02y2 )e−αI
01y+αI

02y2
, (C34)

where the superscript index R (I) stands for the real (imaginary) part of the respective coefficient. Thus, the amplitude of the
magnon wave function reads A±(r) = A±e−Im[p(r)], which is properly shown in Fig. 3(c) in the main text, and the two magnon
bands in the presence of nonlinear deformation fields read ε± = 
 ± v|kx|.

[1] A. V. Chumak, V. I. Vasyuchka, A. A. Serga, and B. Hillebrands,
Nat. Phys. 11, 453 (2015).

[2] L. J. Cornelissen, J. Liu, R. A. Duine, J. B. Youssef, and B. J.
van Wees, Nat. Phys. 11, 1022 (2015).

[3] A. Qaiumzadeh, H. Skarsvåg, C. Holmqvist, and A. Brataas,
Phys. Rev. Lett. 118, 137201 (2017).

[4] A. Barman et al., J. Phys.: Condens. Matter 33, 413001 (2021).
[5] P. A. McClarty, Annu. Rev. Condens. Matter Phys. 13, 171

(2021).
[6] X. S. Wang, H. W. Zhang, and X. R. Wang, Phys. Rev. Appl. 9,

024029 (2018).
[7] X. Wang and X. Wang, J. Appl. Phys. 129, 151101 (2021).
[8] M. Malki and G. S. Uhrig, Phys. Rev. B 99, 174412 (2019).
[9] F. Zhu, L. Zhang, X. Wang, F. J. dos Santos, J. Song, T. Mueller,

K. Schmalzl, W. F. Schmidt, A. Ivanov, J. T. Park, J. Xu, J.
Ma, S. Lounis, S. Blügel, Y. Mokrousov, Y. Su, and T. Brückel,
Sci. Adv. 7, eabi7532 (2021).

[10] D. Ghader, Sci. Rep. 10, 1 (2020).
[11] X. S. Wang, A. Brataas, and R. E. Troncoso, Phys. Rev. Lett.

125, 217202 (2020).
[12] J. Wang and S.-C. Zhang, Nat. Mater. 16, 1062 (2017).
[13] Y. Onose, T. Ideue, H. Katsura, Y. Shiomi, N. Nagaosa, and

Y. Tokura, Science 329, 297 (2010).
[14] A. Mook, J. Henk, and I. Mertig, Phys. Rev. B 89, 134409

(2014).
[15] E. Aguilera, R. Jaeschke-Ubiergo, N. Vidal-Silva, L. E. F. Foa

Torres, and A. S. Nunez, Phys. Rev. B 102, 024409 (2020).
[16] J. Li, Y. Li, S. Du, Z. Wang, B.-L. Gu, S.-C. Zhang, K. He, W.

Duan, and Y. Xu, Sci. Adv. 5, eaaw5685 (2019).
[17] R. Hidalgo-Sacoto, R. I. Gonzalez, E. E. Vogel, S. Allende, J. D.

Mella, C. Cardenas, R. E. Troncoso, and F. Munoz, Phys. Rev.
B 101, 205425 (2020).

[18] S. S. Pershoguba, S. Banerjee, J. C. Lashley, J. Park, H.
Ågren, G. Aeppli, and A. V. Balatsky, Phys. Rev. X 8, 011010
(2018).

[19] Q. Qin, L. Liu, W. Lin, X. Shu, Q. Xie, Z. Lim, C. Li, S. He,
G. M. Chow, and J. Chen, Adv. Mater. 31, 1807008 (2019).

[20] D. Ghader, Physica E (Amsterdam, Neth.) 135, 114984
(2022).

[21] S. A. Owerre, J. Phys. Commun. 1, 021002 (2017).
[22] E. V. Boström, M. Claassen, J. W. McIver, G. Jotzu, A. Rubio,

and M. A. Sentef, SciPost Phys. 9, 061 (2020).
[23] Y. Lu, X. Guo, V. Koval, and C. Jia, Phys. Rev. B 99, 054409

(2019).
[24] H. Lee, J. H. Han, and P. A. Lee, Phys. Rev. B 91, 125413

(2015).
[25] H. Katsura, N. Nagaosa, and P. A. Lee, Phys. Rev. Lett. 104,

066403 (2010).
[26] J. H. Han and H. Lee, J. Phys. Soc. Jpn. 86, 011007 (2017).
[27] N. Kanazawa, Y. Onose, T. Arima, D. Okuyama, K. Ohoyama,

S. Wakimoto, K. Kakurai, S. Ishiwata, and Y. Tokura, Phys.
Rev. Lett. 106, 156603 (2011).

[28] Y. Taguchi, Y. Oohara, H. Yoshizawa, N. Nagaosa, and Y.
Tokura, Science 291, 2573 (2001).

[29] M. Onoda and N. Nagaosa, J. Phys. Soc. Jpn. 71, 19 (2002).
[30] M. Vozmediano, M. Katsnelson, and F. Guinea, Phys. Rep. 496,

109 (2010).
[31] B. Amorim, A. Cortijo, F. de Juan, A. Grushin, F. Guinea, A.

Gutiérrez-Rubio, H. Ochoa, V. Parente, R. Roldán, P. San-Jose,
J. Schiefele, M. Sturla, and M. Vozmediano, Phys. Rep. 617, 1
(2016).

[32] E. Lantagne-Hurtubise, X.-X. Zhang, and M. Franz, Phys. Rev.
B 101, 085423 (2020).

[33] B. Uchoa and Y. Barlas, Phys. Rev. Lett. 111, 046604 (2013).
[34] S.-Y. Li, Y. Su, Y.-N. Ren, and L. He, Phys. Rev. Lett. 124,

106802 (2020).
[35] C.-C. Hsu, M. Teague, J.-Q. Wang, and N.-C. Yeh, Sci. Adv. 6,

eaat9488 (2020).
[36] Y. Liu, Y. Li, S. Rajput, D. Gilks, L. Lari, P. Galindo, M.

Weinert, V. Lazarov, and L. Li, Nat. Phys. 10, 294 (2014).

224401-8

https://doi.org/10.1038/nphys3347
https://doi.org/10.1038/nphys3465
https://doi.org/10.1103/PhysRevLett.118.137201
https://doi.org/10.1088/1361-648X/abec1a
https://doi.org/10.1146/annurev-conmatphys-031620-104715
https://doi.org/10.1103/PhysRevApplied.9.024029
https://doi.org/10.1063/5.0041781
https://doi.org/10.1103/PhysRevB.99.174412
https://doi.org/10.1126/sciadv.abi7532
https://doi.org/10.1038/s41598-020-72000-y
https://doi.org/10.1103/PhysRevLett.125.217202
https://doi.org/10.1038/nmat5012
https://doi.org/10.1126/science.1188260
https://doi.org/10.1103/PhysRevB.89.134409
https://doi.org/10.1103/PhysRevB.102.024409
https://doi.org/10.1126/sciadv.aaw5685
https://doi.org/10.1103/PhysRevB.101.205425
https://doi.org/10.1103/PhysRevX.8.011010
https://doi.org/10.1002/adma.201807008
https://doi.org/10.1016/j.physe.2021.114984
https://doi.org/10.1088/2399-6528/aa8843
https://doi.org/10.21468/SciPostPhys.9.4.061
https://doi.org/10.1103/PhysRevB.99.054409
https://doi.org/10.1103/PhysRevB.91.125413
https://doi.org/10.1103/PhysRevLett.104.066403
https://doi.org/10.7566/JPSJ.86.011007
https://doi.org/10.1103/PhysRevLett.106.156603
https://doi.org/10.1126/science.1058161
https://doi.org/10.1143/JPSJ.71.19
https://doi.org/10.1016/j.physrep.2010.07.003
https://doi.org/10.1016/j.physrep.2015.12.006
https://doi.org/10.1103/PhysRevB.101.085423
https://doi.org/10.1103/PhysRevLett.111.046604
https://doi.org/10.1103/PhysRevLett.124.106802
https://doi.org/10.1126/sciadv.aat9488
https://doi.org/10.1038/nphys2898


TIME-DEPENDENT STRAIN-TUNED TOPOLOGICAL … PHYSICAL REVIEW B 106, 224401 (2022)

[37] I. Zeljkovic, D. Walkup, B. A. Assaf, K. L. Scipioni, R. Sankar,
F. Chou, and V. Madhavan, Nat. Nanotechnol. 10, 849 (2015).

[38] W. Zhang, Q. S. Wu, O. V. Yazyev, H. Weng, Z. Guo, W.-D.
Cheng, and G.-L. Chai, Phys. Rev. B 98, 115411 (2018).

[39] S. Liu, Y. Kim, L. Z. Tan, and A. M. Rappe, Nano Lett. 16, 1663
(2016).

[40] E. Flores, J. D. Mella, E. Aparicio, R. I. Gonzalez, C. Parra,
E. M. Bringa, and F. Munoz, Phys. Chem. Chem. Phys. 24, 7134
(2022).

[41] S. A. Owerre, J. Phys.: Condens. Matter 30, 245803 (2018).
[42] Y. Ferreiros and M. A. H. Vozmediano, Phys. Rev. B 97, 054404

(2018).
[43] T. Liu and Z. Shi, Phys. Rev. B 103, 144420 (2021).
[44] J. Sun, N. Ma, T. Ying, H. Guo, and S. Feng, Phys. Rev. B 104,

125117 (2021).
[45] J. Sun, H. Guo, and S. Feng, Phys. Rev. Res. 3, 043223 (2021).
[46] M. M. Nayga, S. Rachel, and M. Vojta, Phys. Rev. Lett. 123,

207204 (2019).
[47] E. Sela, Y. Bloch, F. von Oppen, and M. B. Shalom, Phys. Rev.

Lett. 124, 026602 (2020).

[48] A. Bhat, S. Alsaleh, D. Momeni, A. Rehman, Z. Zaz, M. Faizal,
A. Jellal, and L. Alasfar, Eur. Phys. J. B 91, 174 (2018).

[49] A. Vaezi, N. Abedpour, R. Asgari, A. Cortijo, and M. A. H.
Vozmediano, Phys. Rev. B 88, 125406 (2013).

[50] M. Neek-Amal, L. Covaci, K. Shakouri, and F. M. Peeters,
Phys. Rev. B 88, 115428 (2013).

[51] T. Mikami, S. Kitamura, K. Yasuda, N. Tsuji, T. Oka, and H.
Aoki, Phys. Rev. B 93, 144307 (2016).

[52] P. Mohan, R. Saxena, A. Kundu, and S. Rao, Phys. Rev. B 94,
235419 (2016).

[53] N. Nagaosa and Y. Tokura, Nat. Nanotechnol. 8, 899 (2013).
[54] T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).
[55] S. Beairsto, M. Cazayous, R. S. Fishman, and R. de Sousa,

Phys. Rev. B 104, 134415 (2021).
[56] D. Torelli, H. Moustafa, K. W. Jacobsen, and T. Olsen, npj

Comput. Mater. 6, 158 (2020).
[57] P. Ruello and V. E. Gusev, Ultrasonics 56, 21 (2015).
[58] P. Zhao, C. H. Sharma, R. Liang, C. Glasenapp, L. Mourokh,

V. M. Kovalev, P. Huber, M. Prada, L. Tiemann, and R. H.
Blick, Phys. Rev. Lett. 128, 256601 (2022).

224401-9

https://doi.org/10.1038/nnano.2015.177
https://doi.org/10.1103/PhysRevB.98.115411
https://doi.org/10.1021/acs.nanolett.5b04545
https://doi.org/10.1039/D2CP00038E
https://doi.org/10.1088/1361-648X/aac365
https://doi.org/10.1103/PhysRevB.97.054404
https://doi.org/10.1103/PhysRevB.103.144420
https://doi.org/10.1103/PhysRevB.104.125117
https://doi.org/10.1103/PhysRevResearch.3.043223
https://doi.org/10.1103/PhysRevLett.123.207204
https://doi.org/10.1103/PhysRevLett.124.026602
https://doi.org/10.1140/epjb/e2018-80389-1
https://doi.org/10.1103/PhysRevB.88.125406
https://doi.org/10.1103/PhysRevB.88.115428
https://doi.org/10.1103/PhysRevB.93.144307
https://doi.org/10.1103/PhysRevB.94.235419
https://doi.org/10.1038/nnano.2013.243
https://doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1103/PhysRevB.104.134415
https://doi.org/10.1038/s41524-020-00428-x
https://doi.org/10.1016/j.ultras.2014.06.004
https://doi.org/10.1103/PhysRevLett.128.256601

