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Semiclassical dynamics of electrons in a space-time crystal: Magnetization, polarization, and
current response
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A space-time crystal is defined as a quantum-mechanical system with both spatial and temporal periodicity.
Such a system can be described by the Floquet-Bloch (FB) theory. We first formulate a semiclassical theory by
constructing a wave packet through the superposition of the FB wave functions, and we derive the equations of
motion of FB electrons subjected to slowly varying external fields (not to be confused with the fast-changing
Floquet drive), revealing behaviors similar to ordinary Bloch electrons but with quantities modified in the
Floquet context. Specifically, we study the local magnetic moment due to the self-rotation of the wave packet, a
contribution to total magnetization from the Berry curvature in k-space, and the polarization of a fully occupied
FB band. Based on the semiclassical theory, we can also show the fingerprint of the energy flow in such an
energy-nonconserved system. We then discuss the density matrix of a FB system attached to a thermal bath,
which allows us to investigate quantities involving many electrons in the noninteracting limit. As an application,
we calculate the intrinsic current response in an oblique space-time metal showing the nonequilibrium nature
of the FB system. The current response can also be related to the acoustoelectric effect. Overall, we develop a
systematic approach for studying space-time crystals, and we provide a powerful tool to explore the electronic
properties of this exotic system with coupled space and time.
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I. INTRODUCTION

Periodically driven systems have long been intensively
studied given their great controllability and potential to realize
many exotic phases of matter or to achieve great perfor-
mance in various applications, such as a Floquet topological
insulator [1–3], a (space-)time crystal [4–10], a Floquet en-
gineered moiré system [11], and even quantum computation
[12,13]. The physics behind the periodically driven systems
can be well-described by the Floquet(-Bloch) theory [8,14–
16], which is generally nonperturbative and thus is useful for
cases with a strong field driven [16,17]. Given the strongly
driven nature of those systems, there arises a natural question:
how does the electron behave, or what kind of unique transport
property can the periodic drive bring us? This question has
been answered by many physicists from different aspects. To
put it simply, the answer is that the electronic dynamics are
largely modified by time variations and so is the electron pop-
ulation (density), which then leads to various unique transport
phenomena: shift current [16,18], the light-induced Hall effect
[19,20], and the acoustic (spin)-Hall effect [21–23].

Among various periodically driven systems, those hav-
ing periodic structures in spatial directions, also known as
Floquet-Bloch systems or space-time crystals, have attracted
more attention as more degrees of freedom are introduced
to their Bloch counterpart [24,25]. Depending on how the
temporal periodicity is related to the spatial periodicity,
the space-time crystals can be roughly classified into two
categories: rectangular and oblique space-time crystals [7].

The former can often be seen in systems driven by light
[16,18–20] where the periodicity is either purely in time or
purely in space, while the latter can be realized as Bloch
systems driven by phonons [8,10] that have non-negligible
momentum leading to a purely temporal periodicity and other
periodicities tilted in space-time (see Refs. [21–23] for recent
advances in the phonon-driven Bloch systems). For a better
understanding and further exploring the unique physics in
those systems, it becomes increasingly important to know
the electron dynamics and its responses to external fields
such as static electric or magnetic fields (not to be confused
with the time-periodic Floquet driving field). The responses
can in general be categorized into equilibrium responses
(e.g., magnetization and polarization) and nonequilibrium re-
sponses (transport phenomena such as charge or spin current
responses) [26]. One could imagine that those fairly famil-
iar concepts in ordinary Bloch systems would become much
more different and hard to reach in the context of the Flo-
quet system due to its distinct nature. Efforts have been
given to some of those aspects, for example Floquet trans-
port [27–29] and orbital magnetization in the Floquet-Bloch
system [30].

Our goal in this work is to establish a systematic frame-
work for studying the electronic dynamics and responses
to external fields in space-time crystals by directly ex-
tending the semiclassical wave-packet formalism developed
for Bloch systems [26,31]. The general philosophy is that
given a space-time crystal, either rectangular or oblique, we
can construct a wave packet as the superposition of the
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Floquet-Bloch wave functions and then treat the external
slowly varying fields (such as static electric or magnetic
fields) as weak inhomogeneity in space and time, which can
be felt by the wave packet. Thus, a set of semiclassical equa-
tions of motions can be derived characterizing the electronic
dynamics in the space-time crystal. Our scope is then ex-
tended to discussions of the physical phenomena involving
many yet noninteracting electrons. By using density matrix
analysis, we are able to see the nonequilibrium nature of the
Floquet systems in the current response of an ensemble of
electrons.

In particular, we find that the behaviors of Floquet-Bloch
electrons are similar to ordinary Bloch electrons but with
quantities modified in the Floquet context, for example the
Berry curvatures and the energy. We are specifically interested
in the local magnetic moment caused by the self-rotation
of the wave packet in the presence of an external mag-
netic field, the magnetization from the Berry curvature, and
the polarization of a fully occupied Floquet-Bloch band,
which has two contributions: one is the Bloch polariza-
tion modified by the Floquet drive, and the other is the
Floquet polarization purely from the time variations. The
theory also shows the fingerprint of the energy flow in
such an energy-nonconserved system. We then discuss the
density matrix of a Floquet-Bloch system connected to a
heat bath, which allows us to investigate quantities involv-
ing many electrons in the noninteracting limit. The density
matrix is in general nondiagonal and time-dependent, which
indicates the inapplicability of the semiclassical scheme to
the damped systems, while it becomes diagonal and time-
independent when the connection (or the damping) is turned
off. As an application of our theory, we calculate the in-
trinsic current response in an oblique space-time metal
showing the nonequilibrium nature of the Floquet-Bloch sys-
tem, which can also be interpreted as the acoustoelectric
effect.

This paper is organized as follows: In Sec. II, we start
with an introduction to the Floquet-Bloch theory for period-
ically driven Bloch systems and the two-timescales scheme
used throughout our work. The eigen-wave-functions of
the Floquet-Bloch system are discussed together with its
orthonormal conditions. Then, based on the eigen-wave-
functions, we construct the wave packet and derive the
equations of motions of Floquet-Bloch electrons subjected to
slowly varying external potentials in Sec. III with more de-
tailed discussions about the magnetization and polarization in
that section. In particular, we discuss the energy flow between
the Floquet drive and the Bloch system. We also discuss the
density matrix of a Floquet-Bloch system attached to a ther-
mal bath in Sec. IV to investigate the electronic populations
given that such a driven system is indeed a nonequilibrium
system. This then allows us to calculate quantities involv-
ing many electrons in the noninteracting limit. Having the
semiclassical theory established, we proceed in Sec. V to
apply it to cases with oblique space-time structures where
nontrivial responses are expected. One specific physical quan-
tity we are interested in is the intrinsic dc current response,
which shows the nonequilibrium nature of the Floquet-Bloch
systems. Finally, several concluding remarks are given in
Sec. VI.

II. FLOQUET-BLOCH HAMILTONIAN, WAVE
FUNCTIONS, AND THEIR PROPERTIES

A. Space-time lattice and multiband Floquet-Bloch system

Here we give some basic information on the Floquet-Bloch
formalism and related properties that are useful for our dis-
cussions. Our starting point is to construct a Floquet system
by time-periodically perturbing a Bloch system. When there
is no perturbation, we have the corresponding static system,
which is basically a multiband Bloch system:

HB(r)|ϕα
k (r)〉 = Eα (k)|ϕα

k (r)〉, (1)

where HB(r) = HB(r + R) is the Hamiltonian for the static
Bloch system with NB multiple bands, α = {1, 2, . . . , NB}
stands for the Bloch band index with α = 1 being the ground
state, and k stands for lattice momentum. From Bloch’s
theorem, the wave function can be expressed as a plane
wave multiplied with a space periodic function: |ϕα

k (r)〉 =
eik·r|uα

k (r)〉, where |uα
k (r + R)〉 = |uα

k (r)〉.
Now, we can introduce the time-periodic perturbation to

the Bloch system, which makes HB → H (r, t ) with peri-
odicity in time H (r, t ) = H (r, t + T ), and the Schrodinger
equation becomes time-dependent:

H (r, t )|�(r, t )〉 = ih̄∂t |�(r, t )〉. (2)

Normally, the new Hamiltonian should inherit the spatial pe-
riodicity from the static Bloch Hamiltonian that H (r, t ) =
H (r + R, t ). However, in this paper we are going to discuss
a more general scenario in which the spatial periodicity can
be partly broken by the time variation ending up with a cou-
pled periodicity in both the temporal and spatial direction:
H (r, t ) = H (r + R, t + κ·R

�
), where � = 2π/T and κ are the

energy and momentum introduced by the time variation. We
call a system with a zero κ the rectangular space-time crystal,
and a system with a nonzero κ the oblique space-time crystal.
We want to emphasize that, for systems considered in this
work, the temporal periodicity H (r, t + T ) = H (r, t ) is exact
regardless of κ being zero or nonzero. In Fig. 1(a), we show
those two types of space-time lattices in both the real space
(space-time) and the reciprocal space (energy-momentum).
We note here that the space-time we used adopts a signature
(−t,ω,+x,k ), so that ai · b j = ±2πδi j holds.

Then, as an illustration, we consider a simple (1 + 1)D
Hamiltonian H (x, t ) = −h̄2

2m ∂2
x + V (x, t ) with a space-time

potential

V (x, t ) = −V0

∑
l

e−[x−xl (t )]2/σ , (3)

where V0 is the potential constant, σ controls the width of the
potential, and xl (t ) ≡ lR − C cos(κlR − �t ) is the position
of the lth ion. This specific ion position profile describes a
sound wave with mode (�, κ ) and amplitude C propagating
through the one-dimensional (1D) lattice (which serves as the
fast-varying Floquet driving field). We note that setting C = 0
reduces the system to its corresponding static Bloch sys-
tem. We can check that the space-time potential satisfies the
correct periodicity: V (x, t + T ) = V (x, t ) and V (x + R, t +
κR
�

) = V (x, t ). We plot the space-time potential for two spe-
cial cases: (�, κ ) = (2π/T, 0) corresponding to a rectangular
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(a)

(b) (c)

FIG. 1. (a) The illustration of two types of simple space-time lat-
tices in (1 + 1)D: the rectangular space-time lattice (left two panels)
and the oblique space-time lattice (right two panels) in both real
(t, x) space (top two panels) and reciprocal (ω, k) space (bottom
two panels). (b),(c) The space-time potential following Eq. (3) with
V0 = 1, C = 0.2R, and σ = 0.2R2 for rectangular (b) and oblique
(c) space-time crystals. The red dots highlight the underlying space-
time lattice structures.

space-time lattice [Fig. 1(b)] and (�, κ ) = (2π/T, 2π/
√

2R)
[32] corresponding to an oblique space-time lattice [Fig. 1(c)].

Now, we have gained some basic knowledge about the
space-time crystalline structure. Let us then move to a discus-
sion about its wave functions. Analogous to the Bloch crystal
where the Bloch wave functions are eigenstates of both the
Hamiltonian and the translation operators, here we should
have the Floquet-Bloch wave function as the eigenstate of
both the Floquet-Bloch Hamiltonian and its corresponding
translation operators. Thus, for a Floquet-Bloch eigenstate
labeled by energy-momentum ξ ≡ (ω, k), the following equa-
tions should be satisfied:

T̂a1 |�ξ (r, t )〉 = |�ξ (r, t + T )〉
= eia1·ξ|�ξ (r, t )〉 = e−iωT |�ξ (r, t )〉,

T̂a2 |�ξ (r, t )〉 = |�ξ (r + R, t + κ · R
�

)〉

= eia2·ξ|�ξ (r, t )〉 = e−iω κ·R
�

+ik·R|�ξ (r, t )〉, (4)

where T̂a1 and T̂a2 are two translation operators along
two translation symmetric directions: a1 = (T, 0) and a2 =
( κ·R

�
, R) [also shown in Fig. 1(a)]. We can construct a set of

basis wave functions [8,10] that satisfy the above equations,
which read

|�α
n,ξ (r, t )〉 = e−iωt |�α

n,k(r, t )〉 ≡ e−i(ω+n�)t |ϕα
k+nκ(r)〉, (5)

which is merely the original Bloch wave function shifted both
in energy and momentum by an integer multiple of (�, κ).
Here n is the so-called Floquet band index. Thus, true eigen-
states can be expressed as linear combinations of those basis
wave functions,

|�μ

k (r, t )〉 =
∑
n,α

f μ,α

n,k |�α
n,ξ (r, t )〉

= e−iωμ(k)t
∑
n,α

f μ,α

n,k |�α
n,k(r, t )〉

≡ e−iωμ(k)t eik·r|ũμ

k 〉, (6)

where we have added the Floquet band index μ and denoted
the quasienergy ωμ, |ũμ

k 〉 refers to the Floquet-Bloch periodic
function that has the same periodicity as the Hamiltonian,
and the coefficient f μ,α

n,k satisfies the following eigenequation:∑
n,β Hm,n;α,β (k) f μ,β

n,k = h̄ωμ(k) f μ,α

n,k , with the kernel matrix
defined as

Hm,n;α,β (k) ≡ 〈〈�α
m,k(r, t )|H (r, t ) − ih̄∂t |�β

n,k(r, t )〉〉. (7)

There are a few things that need to be clarified: the inner
product now also takes the time dimension into account,
which is defined as 〈〈·〉〉 ≡ 1/T

∫ T
0 〈·〉dt ; the quasienergy ωμ

inherits the Bloch band index, so that in principle we will have
NB different quasienergy bands {ω1, ω2, . . . , ωNB} within a
Floquet-Bloch zone; the wave vector k is now only conserved
up to a change of integer multiples of κ so that we can refer to
it as a quasimomentum. The kernel matrix Hm,n;α,β is actually
a direct product of the Bloch system and the Floquet degrees
of freedom.

In this work, we will keep using the following convention
for notions:

{μ, ν} label Floquet bands,

{α, β} label original Bloch bands,

{n, m, l, . . . } label Floquet band replicas. (8)

For more than two Floquet (Bloch) bands involved, we use
primed symbols to distinguish different states: μ, ν, μ′, ν ′, . . .
(α, β, α′, β ′, . . . ). Additionally, the periodic part of the
Floquet-Bloch wave unction will also have a tilde on top of
it: |ũμ

k 〉, as compared to that of the Bloch wave function that
has no tilde: |uα

k 〉.
One of the reasons to choose the extended Floquet-Bloch

basis is that we can utilize some properties of the correspond-
ing Bloch system directly. For example, one can obtain the
following orthonormal conditions for the wave function and
constructing basis:

〈�μ

k (r, t )|�ν
k′ (r, t )〉 =

∑
G

δμ,νδ(k − k′ + G), (9)

where G is the reciprocal vector of the corresponding static
Bloch lattice. We note that the above relation is true given the
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following relation (see Appendix A):∑
n,β

(
f μ,β

n+m,k−mκ

)∗
f ν,β

n,k+G = δμ,νδm,0, (10)

which follows from the orthogonality of the eigenvector of
the kernel matrix in Eq. (7). We also utilized the fact that the
coefficients also inherit the Bloch periodicity: f ν,α

n,k+G = f ν,α
n,k

[33]. In the remainder of this work, we shall restrict the
quasimomentum k in our discussion to the first Brillouin zone
of the corresponding static Bloch lattice. Then, we have the
following completeness relation for the Floquet-Bloch states:

I =
∑

μ

∫
dk|�μ

k (r, t )〉〈�μ

k (r, t )|

=
∑

μ

∑
αβ,mn

∫
dk|�α

m,k(r)〉 f μ,α

m,k ( f μ,β

n,k )∗〈�β

n,k(r)|, (11)

or at a specific k, the completeness relation for the periodic
part of the Floquet-Bloch wave function:

Ik =
∑

μ

|ũμ

k 〉〈ũμ

k |. (12)

B. Two Timescales

In the last section, we primarily consider Floquet systems
with only one fast-varying driving field (light or sound wave),
which introduces a typical timescale T = 2π/�. However, in
many cases, those systems are also subjected to other external
fields with a much slower timescale. Such a separation in
timescales allows us to treat those two types of driving fields
differently: the Floquet Hamiltonian with fast-changing fields
as the basis, and the slowly varying fields as perturbations.
In this work, we will consider an extended system by adding
an external field A to the Hamiltonian in Eq. (2), and to
further distinguish the two timescales, we explicitly write the
extended Hamiltonian as

H (r, t ; A(r, t )) ≡ H (r, τ f ; A(r, τs)), (13)

where the fast time evolution denoted by τ f is the Floquet
oscillation [for example, the space-time potential introduced
in Eq. (3), which can be recast as V (x, τ f ) using the
notation defined here], and the slow time evolution de-
noted by τs is characterized by the external field A(r, τs)
(such as static electromagnetic fields E, B), which can
be viewed as the envelope function over the fast-changing
part. Although two different labels have been used to
distinguish two timescales, they are essentially the same
(any time-dependent operator acts on both of them). The
two-timescale method has been adopted for studying the
transition behaviors of time periodically driven systems
before [34,35].

However, this work focuses on the effect of applying
slowly varying external fields. A common technique is to
average out the fast oscillating part of the system and what is
left is the slow-time evolving part in which we are interested.
By averaging out the fast-time variations, we end up with the

following approximation:

〈g(τ f , τs)〉T ≈ ḡ(τs) ≡ 1

T

∫ τs+T

τs

g(τ f , τs0)dτ f ,

〈∂τs g(τ f , τs)〉T ≈ ∂τs ḡ(τs),

〈∂t g(τ f , τs)〉T ≈ 〈∂τ f g(τ f , τs0)〉T ,∫
dtg(τ f , τs) ≈

∫
dτsḡ(τs), (14)

where g(τ f , τs) is an arbitrary function having two timescales
as described before, and 〈·〉T ≡ 1

T

∫ τs+T
τs

dt is to average over a
Floquet period. One should notice that the only approximation
made in the above equations is that we keep the slowly varying
part unchanged (by setting τs = τs0 ∈ [τs, τs + T ]) during the
time integration, which is the essence of slow evolution.

We have to emphasize that the main technique used in this
work is that we separate the timescale into fast and slowly
changing parts, and we assign two different and independent
time variables (τ f and τs) to describe those two evolutions.
The independence between t and τs here is really an as-
sumption that when we integrate out or differentiate the fast
time variable t , those quantities slowly depending on time
characterized by τs are thought to be unchanged. In the cases
in which we need to count all time variations, we shall denote
the total time derivative as

d

dt
= d

dτ f
+ d

dτs
. (15)

III. WAVE-PACKET DYNAMICS FOR FLOQUET-BLOCH
ELECTRONS

A. Construction of a wave packet

In this section, following the semiclassical theory devel-
oped for the Bloch system, we construct a wave-packet based
on the Floquet-Bloch wave functions, and thus we obtain
the effective Lagrangian. The wave packet is essentially a
superposition of waveforms with a broadened distribution in
wave vector, based on which the wave packet for the electron
on a specific Floquet-Bloch band ωμ can be constructed as
below:

|Wμ〉 ≡
∫

dk a(k, τs)
∑
n,α

f μ,α

n,k (rc)|�α
n,k(r, rc, τ f )〉

=
∑
n,α

e−in�τ f

∫
dk a(k, τs) f μ,α

n,k (rc)|ϕα
n,k(r, rc)〉, (16)

where |ϕα
n,k(r, rc)〉 ≡ ei(k+nκ)·r|uα

n,k(r, rc)〉 is the Bloch wave
function for the corresponding static system with lattice mo-
mentum kn ≡ k + nκ at the Bloch band Eα , and a(k, τs) ≡
|a(k, τs)|e−iγ (k,τs ) is the distribution function in k space. No-
tice that we put explicitly the packet center rc in the wave
function to illustrate its extra dependence on the spatial vari-
ation of the external field, whose evaluation is presented in
Appendix B. One of the most important arguments or assump-
tions we made in the construction of the above wave packet
is that the distribution a(k, τs) is purely dependent on the
quasimomentum k and the slow timescale τs. Later we will see
that this slow time dependence gives rise to the semiclassical
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dynamics on a large timescale. The normalization of the con-
structed wave packet requires that

∫
dk |a(k, τs)|2 = 1, and in

the sense of a wave packet, we also need the k distribution to
be narrow: |a(k, τs)|2 ∼ δ(k − kc) with

kc(τs) ≡
∫

dk k|a(k, τs)|2 (17)

being the so-called momentum center of the wave packet.
Again, as we can see, kc only has a slow-time dependence.

Here are some remarks on the construction of the wave
packet using Floquet-Bloch wave functions: (i) Given a
Floquet-Bloch system, there will be an infinite number of
energy bands in the frequency domain. So, we have to choose
one set of Floquet-Bloch bands within the Floquet Brillouin
zone, and all others are just replicas labeled by different
Floquet index n. (ii) Similar to the Bloch system, we need
adiabaticity for the wave packet to be well defined, which
means that the external slowly varying fields should have
energy scales much smaller than the Floquet gap (which will
be defined in the later discussions).

B. Effective Lagrangian and equations of motion

The effective action for the wave packet is given by [31,36]

S =
∫

dt〈Wμ(kc, rc)|ih̄ d

dt
− Ĥ (r, t )|Wμ(kc, rc)〉

≈
∫

dτs〈〈Wμ(kc, rc)|ih̄ d

dt
− Ĥ (r, t )|Wμ(kc, rc)〉〉

≡
∫

dτsLeff(kc, rc, τs), (18)

where we have implicitly integrated out the fast-time varia-
tion, and the slow-time dependence τs is left. The fast spatial
variation has been taken care of by the inner product between
the wave packets [31]. Here, Leff(kc, rc, τs) is defined as the
effective Lagrangian, which has only slow space and time
variations. One can also think of the effective Lagrangian as
the operator ih̄dt − Ĥ evaluated under the wave packet over a
space-time unit cell. In Appendixes C and D, we perform de-
tailed calculations for both 〈〈Wμ|ih̄dt |Wμ〉〉 and 〈〈Wμ|Ĥ |Wμ〉〉.
Thus, we have

Le f f = −
⎛
⎝Eμ − h̄

∑
n,α

| f μ,α

n,kc
|2n�

⎞
⎠ + h̄kc · ṙc

+ 〈〈ũμ

k |ih̄∂τs |ũμ

k 〉〉∣∣k=kc
+ h̄ṙc · 〈〈ũμ

k |i∂rc |ũμ

k 〉〉∣∣k=kc

+ h̄k̇c · 〈〈ũμ

k |i∂k|ũμ

k 〉〉∣∣k=kc
, (19)

where Eμ ≡ 〈〈Wμ|Ĥ (r̂, t )|Wμ〉〉 is the energy of the wave
packet and |ũμ

k (r, rc)〉 = ∑
n f μ,α

n,k (rc)e−in�τ f einκ·r|uα
n,k〉 is the

periodic part of the Floquet-Bloch wave function. Note that
all fast-time dependencies have been integrated out leaving
only slow-time variations. So, here the dot on top of variables
Ȯ ≡ dO/dτs denotes slow time derivative.

Now, by the Euler-Lagrange equation, we can obtain the
equations of motion for Floquet-Bloch electrons:

h̄ṙc = ∂ Ẽμ

∂kc
− (

�
μ

kc,kc
· k̇c + �

μ

kc,rc
· ṙc

) + �
μ

τs,kc
,

h̄k̇c = −∂ Ẽμ

∂rc
+ (

�μ
rc,rc

· ṙc + �
μ

rc,kc
· k̇c

) − �μ
τs,rc

, (20)

where Ẽμ ≡ Eμ − h̄
∑

n,α | f μ,α

n,kc
|2n� = h̄ωμ + �Eμ is the

electron energy, with �Eμ being the gradient correction to
the energy due to the finite size of the wave packet (see
Appendix D for more details), and

(�μ

ξ,ξ′ )p,q ≡ �
μ

ξp,ξ ′
q
≡ i[〈〈∂ξp ũ

μ

k |∂ξ ′
q
ũμ

k 〉〉 − H.c.],

(�μ

τs,ξ
)p ≡ �

μ
τs,ξp

≡ i[〈〈∂τs ũ
μ

k |∂ξp ũ
μ

k 〉〉 − H.c.], (21)

where ξ = kc, rc are the Berry curvatures defined in the pa-
rameter space (kc, rc, τs).

Now, we have obtained the equation of motion for the
Floquet-Bloch electron subjected to slowly varying external
potentials. Those equations have exactly the same form as
those for the static Bloch crystal [31], except that the quanti-
ties involved are modified in the Floquet context, for example
the Berry curvatures that include the time variations in them.
In the next few subsections, we are going to discuss some
specific physical observables for which one can also find
correspondences in the static Bloch crystal together with some
implications that are unique to Floquet systems.

C. Electromagnetic responses of Floquet-Bloch electrons

One of the most important responses studied in condensed-
matter physics is the electromagnetic response. In this section,
we want to specify the external slow-varying field to be the
electromagnetic field, which can be introduced through gauge
potentials [A(r, t ), φ(r, t )]:

Ĥ = Ĥ0[k + eA(r̂, t )] − eφ(r̂, t ), (22)

which gives Ĥc = Ĥ0[k + eA(rc, τs)] − eφ(rc, τs). Note that
the gauge potentials only introduce slow time and space vari-
ations, so that only (rc, τs) enters the argument. Let us use
the gauge momentum center qc = kc + eA(rc, τs), which in-
cludes the variation of the position center and the momentum
center: ∂rc = (∂rc eA) · ∂qc and ∂kc = ∂qc . Plugging this substi-
tution, we have the electron energy as

Eμ = E0
μ(qc) − eφ(rc, τs) + �Eμ, (23)

where E0
μ(qc) = 〈〈Wμ|Ĥ0(qc)|Wμ〉〉 and �Eμ = −B · m (see

detailed derivations in Appendix D), where B = ∇rc ×
A(rc, τs) is the magnetic field and

m = e

2h̄
Im

〈〈
∂

∂qc
ũμ

qc
| × [ĤF (qc) − h̄ωμ(qc)]| ∂

∂qc
ũμ

qc

〉〉
(24)

is the local magnetic moment of the Floquet-Bloch wave
packet due to its self-rotation in the magnetic field. Finally,
the Lagrangian becomes

LEM
eff = −EM

μ + eφ(rc, τs) + h̄ṙc · [qc − eA(rc, τs)]

+ h̄q̇c · 〈〈ũμ
qc

|i∂qc |ũμ
qc

〉〉, (25)
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where EM
μ ≡ h̄ωμ(qc) − m · B is the electron energy including

the magnetization, and the last term is equal to the last three
terms in Eq. (19) written compactly. The equations of motion
become simply

ṙc = ∂EM
μ

h̄qc
− q̇c × �, q̇c = −eE

h̄
− eṙc × B, (26)

where (�)p = 1
2εi jk�qc j ,qck is the pseudovector form of the

Berry curvature, and E = −∇rcφ(rc, τs) − ∂τs A(rc, τs) is the
electric field.

The electromagnetic fields introduced here should be
slowly varying in both space and time. This is important since,
in some cases, the Floquet system is actually driven by elec-
tromagnetic fields, which introduce the fast time variations
[16,18]. One has to distinguish those fields by their timescales.
The general argument here is still the separation of timescales.

D. Berry curvature contribution to the magnetization

Apart from the local magnetic moment of the wave packet
as written in Eq. (24), there is another contribution to the
overall magnetization originating from the Berry curvature.
The Bloch counterpart can be found in Ref. [26]. Similarly,
it can be seen from the current response of the Floquet-Bloch
system that

jμ = −e
∫

BZ
dkρF

μ,μṙc = − e

h̄

∫
BZ

dk
[
∂Eμ

∂kc
(1 + Tr �

μ

kr )

−�
μ

kr · ṙc − �
μ

kk · k̇c + �
μ

τsk

]
,

(27)

where for simplicity we set ρF
μ,μ ≡ 1, i.e., a fully occupied

band, and Tr �
μ

kr is a correction to the k-space measure dk
(or the density of states) due to the noncanonical form of the
equations of motion [26,37]. In this case, we also consider
no external slow time variations: �

μ

τsk
= 0, and k̇c = − ∂Eμ

∂rc
,

ṙc = ∂Eμ

∂kc
(notice that any higher orders in the Berry curvatures

have been ignored). Thus, the current can be rewritten as (by
discarding terms that are total derivatives of momentum k)

jμ = − e

h̄

∫
BZ

dkEμ

[
− ∂

∂k
�

μ

kiri
+ ∂

∂ki
�

μ

kri
− ∂

∂ri
�

μ

kki

]

− e

h̄

∂

∂ri

∫
BZ

dkEμ�
μ

kki
= ∇ ×

∫
BZ

dk(− e

h̄
)Eμ�μ,

(28)

where the repeated subscript “i” should be summed over (no
summation for index μ), and we have recognized that the
first line is exactly the Bianchi identity, which is zero (one
can also show explicitly that those terms cancel each other
exactly). Here �μ is again the pseudovector form of the Berry
curvature. Finally, the current can be cast into a curl of some-
thing that has the meaning of magnetization. Therefore, we
conclude that there is a contribution from the Berry curvature
to the total magnetization, which reads

− e

h̄
Eμ�μ = eωμ(k)Im

〈〈
∂

∂k
ũμ

k | × | ∂

∂k
ũμ

k

〉〉
. (29)

Together with the local magnetic moment (24), the magneti-
zation at given k-state becomes (promoting qc to general k
here)

M(k) = e

2h̄
Im

〈〈
∂

∂k
ũμ

k | × [ĤF (k) + h̄ωμ(k)]| ∂

∂k
ũμ

k

〉〉
.

(30)
Some remarks need to be given regarding the above deriva-

tions. First, the procedure for getting the Berry curvature
contribution to the total magnetization is general for any sys-
tems that have the current response as described in Eq. (27).
So, the obtained magnetization in Eq. (30) is also true for
static Bloch systems at zero temperature (because we set
ρF

μ,μ ≡ 1) [37,38], but modifications in energy have to be
made: H → H − μ and h̄ω → h̄ω − μ to account for the
chemical potential [39]. In this section, we set simply the
distribution function to be constant, which ignores the ef-
fect of the k-dependence of the Floquet-Bloch density of
states (as we will discuss later). Such a contribution from the
nonuniform distribution function can be found quite easily in
Bloch systems [26], but it becomes complicated in the Floquet
system due to its nonequilibrium nature, which is beyond
our scope in this work. However, efforts have been made to
address that issue using perturbation theory [30].

E. Effective Hamiltonian and the averaged energy

Here we want to provide some insights into the semi-
classical dynamics derived above. Given a system with
two timescales—fast periodic time evolution and external
slow-time evolution—we separate those two by imposing in-
dependence between them, and we average out the fast time
ending up with only the dynamics of slowly varying quantities
(rc, kc, τs; E, B, . . . ). On the large timescale, we can define
the effective Hamiltonian based on only those slowly varying
variables. First, from Lagrangian Eq. (19), we have the canon-
ical conjugate variables:

�rc = ∂Leff

∂ ṙc
= h̄kc + h̄

〈〈
ũμ

kc
|i∂rc |ũμ

kc

〉〉
,

�kc = ∂Leff

∂ k̇c
= h̄

〈〈
ũμ

kc
|i∂kc |ũμ

kc

〉〉
. (31)

Then, the effective Hamiltonian is obtained through Legendre
transformation:

Heff(rc, kc,�rc ,�kc , τs)

= ṙc · �rc + k̇c · �kc − Leff

= Eμ − h̄
∑
n,α

| f μ,α

n,kc
|2n� − h̄

〈〈
ũμ

kc
|i∂τs |ũμ

kc

〉〉
. (32)

As we can see, the effective Hamiltonian is generically time
(τs) -dependent due to the last term induced by the external
slow time-dependent field. Let us consider the simplest case
in which there is no external field. The Hamiltonian becomes
Heff = 〈〈HF

0 〉〉 − h̄
∑

n,α | f μ,α

n,kc
|2n�, which is invariant under

time (τs) translation: d
dτs

Heff = ∂
∂τs

Heff = 0. In the case in

which there is no external field, we have k̇c = 0 and ∂
∂rc

f μ,α

n,kc
=

0, which leads to d
dτs

| f μ,α

n,kc
|2 = (ṙc · ∂

∂rc
+ k̇c · ∂

∂kc
)| f μ,α

n,kc
|2 = 0.
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Together, we have the conserved energy:

d

dτs

〈〈
HF

0

〉〉 = 0 (33)

in the sense of expectation energy averaged over a Floquet
period. Here HF

0 stands for the Floquet-Bloch system without
an external field. Its expectation value has been evaluated in
Eq. (D3), which contains two terms: the electron quasienergy
and the additional energy related to the Floquet drive with fre-
quency �. The latter can be viewed as the driving field quanta
(nh̄�) coherently coupled to the electron. For example, if the
system is driven by coherent light, then the additional energy
will be the energy of the photon coupled to the electron. The
average number of the photon coupled to the electron at state
ωμ(k) is

∑
n,α | f μ,α

n,k |2n.
More intriguingly, if we consider an external field with

only space variation such as electric field: H = H0(k, t ) −
eφ(r), then the effective Hamiltonian is still conserved but
now becomes

Heff = 〈〈
HF

0

〉〉 − eφ(rc) − h̄
∑
n,α

| f μ,α

n,kc
|2n�. (34)

Therefore, we have the energy conversion between three
sources:

0 = d

dτs
Heff ≡ d

dτs

〈〈
HF

0

〉〉 + d

dτs
Epot + d

dτs
N (τs)h̄�, (35)

where d
dτs

N (τs) ≡ − d
dτs

∑
n,α n| f μ,α

n,kc
|2. Thus, we can identify

the following:
(i) 〈〈HF

0 〉〉 is the Floquet-Bloch energy of electron defined
as the averaged energy without external potential. It contains
the energy of the electron and the energy of a Floquet coherent
driven field (such as the photon, h̄�).

(ii) Epot ≡ −eφ(rc) is the potential energy of the electron
subjected to the external field.

(iii) N (τs)h̄� is the energy of the driven source of the
Floquet system.

We have recognized the last changing term N (τs)h̄� as
the driven source term because, as defined in Eq. (35),
− d

dτs
N (τs) = d

dτs

∑
n,α n| f μ,α

n,kc
|2, the N (τs) is to exactly com-

pensate the change in the number of driving field quanta that
are coherently coupled to the electron.

We want to remark here that the effective Hamiltonian
suggests that we construct an energetic conserved quantity
for Floquet systems, and it allows us to discuss the role of
the Floquet driving field (not to be confused with the external
field) in energy conversion processes.

F. Polarization of a fully occupied Floquet-Bloch band

In this section, we want to have a general discussion on the
polarization of a space-time crystal. To have a well-defined
polarization, we have to consider a space-time insulator or a
fully occupied Floquet-Bloch band with electron distribution:
ρF

μ,μ(k, t ) = 1 for all k. For the equations of motion given by
Eq. (20), we can find the polarization of the space-time crystal
through adiabatic current [40], i.e., letting �

μ

kr = 0 and k̇c =
0 in Eq. (27), so that the current reduces to (from now on, we

omit the electric charge −e and set h̄ = 1 for simplicity)

jμ =
∫

BZ
dk

(
∂Eμ

∂kc
+ �

μ

τsk

)
=

∫
BZ

dk�
μ

τsk
, (36)

where we utilized the periodicity of Eμ. Therefore, the polar-
ization due to the current accumulation is

�Pμ =
∫

dτs jμ =
∫

dτs

∫
BZ

dk�
μ

τsk

=
∫

dτs

∫
BZ

dk[∂τsÃ
μ

k − ∂kcÃμ
τs

] =
[∫

BZ
dkÃμ

k

]τs2

τs1

,

(37)

where Ãμ

k(τs ) = 〈〈ũμ

k |i∂k(τs )|ũμ

k 〉〉 and we have chosen a peri-

odic gauge for Ãμ
τs

. Accordingly, we can define the adiabatic
polarization as

Pμ =
∫

BZ
dkÃμ

k . (38)

Explicitly, we have

Ãμ

k = 〈〈ũμ

k |i∂k|ũμ

k 〉〉

≡
∑

n

⎡
⎣∑

α,β

( f μ,α

n,k )∗ f μ,β

n,k Aαβ

k+nκ +
∑

α

i( f μ,α

n,k )∗∂k f μ,α

n,k

⎤
⎦,

(39)

where Aαβ

k is the interband Berry connection for the original
Bloch crystal. Thus, the polarization will have two parts:

P =
∑

n

∫
BZ

dk

⎡
⎣∑

α,β

( f μ,α

n,k )∗ f μ,β

n,k Aαβ

k+nκ

+
∑

α

i( f μ,α

n,k )∗∂k f μ,α

n,k

]

≡
∑

n

Pn, (40)

where the first term mainly originates from Bloch contribution
but is modified by the time perturbation [weighted by the
factor ( f μ,α

n,k )∗ f μ,β

n,k ], while the second term is the purely time-
periodic effect. Let us call the first term the Bloch contribution
and the second term the Floquet contribution. Here, we denote
Pn as the partial polarization at the nth Floquet subband (or
replica).

It is important that the physical quantities or observ-
ables should be gauge-invariant. Consider the following gauge
transformation: |ũμ

k 〉 → e−iθμ

k |ũμ

k 〉 or equivalently f μ,α

n,k →
e−iθμ

k f μ,α

n,k . The polarization P will gain an extra term∫
BZ dk∂kθ

μ

k , which vanishes if we impose periodic boundary
conditions for the wave function. However, the partial po-
larization will become gauge-dependent, thus it cannot be a
measurable quantity.

Before we close this section, we would like to discuss a
special symmetry constraint that will force the Floquet contri-
bution to be zero. For oblique space-time crystals with κ �= 0,
we have that the parity and time-reversal symmetry are both
broken by the Floquet driven, which selects unique directions
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in both space and time. However, the system can still preserve
the joint spatial and temporal reversal symmetry called the
PT symmetry, which requires that the Hamiltonian is invari-
ant under the joint action of reversing both space and time.
Typically, we should have a Hamiltonian in the following
form:

ĤF (r, t ) = − h̄2

2m
∂2

r + VB(r) + VF (r, t ) − ih̄∂t , (41)

where VB(r) is the periodic potential of the original Bloch
crystal, and VF (r, t ) is the Floquet drive. Those two potentials
are all real-valued. Under the PT action, we have

PT ĤF (r, t )(PT )−1 = ĤF∗(−r,−t ) = ĤF (r, t ), (42)

which requires that VB(r) = VB(−r) [this implies that the pe-
riodic part of the Bloch wave function can be chosen to be
|uα

k (r)〉 = |uα
k (−r)〉] and VF (r, t ) = VF (−r,−t ). Notice that

PT k(PT )−1 = k, thus the extended Floquet-Bloch basis in
Eq. (6) is also PT symmetric:

PT |�α
n,k(r, t )〉 = |�α

n,k(−r,−t )〉∗ = |�α
n,k(r, t )〉. (43)

Then, for the Floquet-Bloch eigenstate to be PT symmetric,
we require that the coefficient f μ,α

n,k be real for all n, α up to
an overall gauge choice. One should see that the contribu-
tion in the polarization from the Floquet variation vanishes
identically due to the fact that

∑
n,α | f μ,α

n,k |2 = 1. However,
the modified Bloch contribution to the polarization may still
survive under the PT symmetry.

IV. FLOQUET QUASIEQUILIBRIUM

In the previous section, we developed the single-electron
dynamics in Floquet-Bloch systems, which show similar be-
havior to that of the Bloch systems but are modified by
Floquet time variation. The next step is naturally to con-
sider an ensemble of electrons (but still noninteracting for
simpleness). However, such a consideration turns out to be
difficult, given that the Floquet-Bloch systems are essentially
out-of-equilibrium. There have been many efforts dedicated
to exploring the nonequilibrium behavior of electrons in Flo-
quet systems [19,41–44]. However, we can still bypass the
difficulty of dealing with nonequilibrium ensembles by con-
sidering a special Floquet quasiequilibrium ensemble [16],
where the density matrix becomes time-independent and di-
agonal under the Floquet-Bloch eigenbasis just resembling a
Bloch equilibrium ensemble. In this section, we follow the
formalism introduced in Ref. [16], but we extend it to the case
of finite κ, i.e., the oblique space-time crystal.

A. General formalism

To know the physical quantities contributed by many (non-
interacting) electrons, we need to know the population or
density of electrons at different states. We start with the Li-
ouville equation

i∂t ρ̂ = [Ĥ, ρ̂] + i[D̂, ρ̂], (44)

where ρ̂ is the density operator of the Floquet-Bloch system,
and D̂ characterizes the damping. Under the relaxation-time
approximation and assuming noninteracting electrons, we can

write the damping term as [16]

[D̂, ρ̂] = −�(ρ̂ − ρ̂B,eq), (45)

where � = 1/τsr is the damping constant, with τsr being the
relaxation time and ρ̂B,eq is the equilibrium density operator of
the corresponding static Bloch system. Although the damping
term introduced above is oversimplified so that some interact-
ing or correlation features of electrons are ignored, we believe
that such a simple setting can already give the physics that we
want to address in this work, and further treatment is certainly
needed when including electron-electron interactions. For the
rest of the discussion, we assume that the density operator of
the Floquet-Bloch system is quasimomentum-diagonal if the
system is in a steady state. However, the oblique space-time
crystal (κ �= 0) is essentially different from the rectangular
space-time crystal (κ = 0), given that the quasimomentum in
oblique space-time crystals is only conserved up to an integer
multiple of κ, i.e., the electron can acquire momenta from the
Floquet drive. In this case, the best we can do is to define the
density operator in the following way:

ρ̂ =
∑

μ,n,ν,m

∫ ′
dkρF

{μ,n},{ν,m}(k, t )|�μ

k+nκ(r, t )〉〈�ν
k+mκ(r, t )|,

(46)

where ρF
{μ,n},{ν,m}(k, t ) ≡ 〈�μ

k+nκ(r, t )|ρ̂|�ν
k+mκ(r, t )〉. One

has to be very careful about the summation over indices
n, m and the integration over the quasimomentum k to avoid
repeated counting for the same states. A detailed discussion
regarding the integration and summation can be found in
Appendix E. For the static Bloch equilibrium density operator,
we want to keep it in general, which reads

ρ̂B,eq =
∑
α,β

∫
dkdk′ρB,eq

α,β (k, k′)|ϕα
k (r)〉〈ϕβ

k′ (r)|, (47)

where ρ
B,eq
α,β (k, k′) ≡ 〈ϕα

k (r)|ρ̂B,eq|ϕβ

k′ (r)〉 is the density ma-
trix of the static Bloch equilibrium under the Bloch eigenba-
sis.

By casting Eq. (44) into the Floquet-Bloch basis, after
some algebra (see Appendix F) we can obtain

ρF,l
{μ,n},{ν,m}(k)

= i�δn−m,l

∑
αβ,p

ρ
B,eq
α,β (k + nκ + pκ)( f μ,α

p,k+nκ )∗ f ν,β

p+l,k+mκ

ωn
μ(k) − ωm

ν (k) − i�
.

(48)

Here ωn
μ(k) ≡ ωμ(k + lκ) − n� corresponds to the μth

Floquet-Bloch band at the nth Floquet replica. One can think
about this as an extended zero picture in the frequency domain
[8]. Notice that we have lim�→0(−i�)/[ωn

μ(k) − ωm
ν (k) −

i�] = δμ,νδn,m if the system is gapped. Then when the thermal
contact is gradually turned off (� → 0), the density matrix
becomes

ρF
{μ,n},{ν,m}(k, t )

= δμ,νδn,m

∑
αβ,p

ρ
B,eq
α,β (k + nκ + pκ)( f μ,α

p,k+nκ )∗ f μ,β

p,k+nκ,

(49)
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which is diagonal and time-independent. Thus, we would
like to call it the Floquet quasiequilibrium state to empha-
size the diagonal and time-independent density matrix under
the Floquet-Bloch eigenbasis. The density operator can then
be written as

ρ̂ =
∑
μ,n

∫ ′
dkρF

{μ,n},{μ,n}(k, t )|�μ

k+nκ(r, t )〉〈�μ

k+nκ(r, t )|

=
∑

μ

∫
BZ

dkρF
μ,μ(k)|�μ

k (r, t )〉〈�μ

k (r, t )|, (50)

where the change of the integration has been discussed in
Appendix E, and

ρF
μ,μ(k) = ρF

{μ,n=0},{μ,n=0}(k)

=
∑
αβ,p

ρ
B,eq
α,β (k + pκ)( f μ,α

p,k )∗ f μ,β

p,k . (51)

From the above density matrix element, we can find that it is
not easy to form a Floquet-Bloch insulator. One of the possible
ways to do that is to let the original Bloch bands involved
in forming the Floquet-Bloch bands all be occupied, namely
ρ

B,eq
α,β (k) = δα,β , thus we can have ρF

μ,μ(k) = 1.

Now, given an observable Ô, we can say that the ensemble
average of the expectation value is simply

〈〈Ô〉〉 = TrF [ρ̂Ô] =
∑

μ

ρF
μ,μ〈〈�μ

k (r, t )|Ô|�μ

k (r, t )〉〉, (52)

where TrF [Ô] ≡ ∑
μ〈〈�μ

k (r, t )|Ô|�μ

k (r, t )〉〉 is the space-
time trace under the Floquet-Bloch eigenbasis. We want to
emphasize here that we only consider the intrinsic contribu-
tion of the density matrix, i.e., at the condition where � → 0.
For finite �, we shall expect off-diagonal (or extrinsic) con-
tributions. We want to emphasize here that Eq. (52) is the
key to why the semiclassical analysis works for Floquet-Bloch
systems.

Finally, we would like to point out that the analysis in
this section represents a special initialization protocol (con-
necting the Floquet-Bloch system to a heat bath and then
gradually turning off the connection), following which the
Floquet-Bloch system can be prepared into such a state with
the density matrix in Eq. (51).

B. Finite damping: A discussion

There arises a natural question when damping is finite:
does the semiclassical scheme developed for intrinsic Floquet-
Bloch systems still work? To answer this question, one should
be clear about what is needed to validate the semiclassical
theory. An observation is that the semiclassical formalism
discussed in Sec. III only involves single-electron states, while
the many-electron effects are restored by simply multiplying
the single-electron dynamics by their densities or populations.
This then requires that the density operator of the system
(without any scattering or interactions) should be diagonal in
the basis on which the wave packet is constructed. Moreover,
for Floquet-Bloch systems, the density matrix also needs to be
fast-time-independent as we have already averaged over fast-
time variations of the single-electron dynamics [45]. Having
the above criteria in mind, we will show that it is impossible
to apply our semiclassical theory to damping Floquet-Bloch
systems, and that further development is needed.

First of all, it is easy to see why the semiclassical formal-
ism fails when κ �= 0. In Sec. IV, we have shown that the
off-diagonal term in the density matrix for nonzero damping
involves different states with different quasimomenta k + nκ

and k + mκ (n �= m), which violates the assumption used for
constructing the wave packet in Eq. (16) where only one
specific quasimomentum is involved. This is a unique rea-
son for the oblique space-time crystal that does not hold for
the rectangular space-time crystal where κ = 0. However, for
κ = 0, we can show that the density matrix can be written in
a diagonal form (see Appendix G):

ρF
μ,ν (k, t ; �) = δμ,ν

⎡
⎣ρF

μ,μ(k) + i�
∑
αβ,n

∑
l �=0

ρ
B,eq
α,β (k)( f μ,α

n,k )∗ f μ,β

n+l,k

l� + i�
e−il�t

⎤
⎦, (53)

which will always contain fast-time-dependent parts. In gen-
eral, there is no such orthonormal basis that can make the
density matrix diagonal and time-independent simultaneously
for a nonzero �. As we discussed at the beginning of this
section, for density matrices having fast-time variations, the
semiclassical analysis fails, given that Eq. (52) does not hold
anymore.

Before the end of Sec. IV, we want to make the following
comment. Although the damping profile introduced to study
the density matrix is oversimplified as a single relaxation
time approximation where many other correlated effects have
been ignored, we believe that the arguments stated in this
section work for general damped Floquet-Bloch systems, es-
pecially when the damping term is sufficiently small. The key
ingredient of our analyses (both the semiclassical theory and
the density matrix we investigated here) is the assumption of

noninteracting electrons, which may not be true in strongly
correlated systems. Special care has to be taken to incorporate
the electron interactions or correlations into the theory.

So far, we have derived single electron behavior and also
the electronic density in a Floquet-Bloch band to show how
those two combined together in studying the response of such
a system. In the next section, we will study a simple but
physically meaningful example, showcasing its unique current
responses.

V. INTRINSIC DC CURRENT RESPONSE IN OBLIQUE
SPACE-TIME CRYSTAL

After obtaining the density matrix of the Floquet
quasiequilibrium, we are now able to discuss many responses
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in such equilibrium:

χ [Ô] =
∑

μ

∫
dkρF

μ,μ(k)〈〈�μ

k (r, t )|Ô|�μ

k (r, t )〉〉, (54)

where the operator Ô can have various possibilities. For ex-
ample, we can calculate the charge current for Ô = −ev̂,
the spin current for Ô = σ v̂, and/or the magnetization for
Ô = −er̂ × v̂. The semiclassical theory developed in Sec. III
provides a systematic way of evaluating the expectation value
〈〈Ô〉〉 even in the presence of external slowly varying fields. In
this section, we consider the intrinsic charge current response
in oblique space-time crystals as a simple application, while
more complicated cases are left to future works.

Recall the general form of the current response in Eq. (27).
Without any external field, we can simplify it to be

JIn = −e
∑

μ

∫
dkρF

μ,μ(k)ṙc

= −e
∑

μ

∫
dkρF

μ,μ(k)
∂ωμ(k)

∂k
. (55)

This expression, although very simple, is highly nontrivial
in an oblique space-time crystal. In an ordinary Bloch sys-
tem reaching a thermal equilibrium state, the intrinsic current
must vanish for two reasons: the distribution function must
be a function of the energy, and the energy is a periodic
function of momentum k, which does not necessarily hold
true for Floquet-Bloch systems given that they are essentially
nonequilibrium. However, we will need more conditions for
getting nonzero intrinsic current in a Floquet-Bloch system,
and this is why we consider an oblique space-time crystal.

In general, for this current to be nonzero, we require the
following: (i) the inversion symmetry and the time-reversal
symmetry have to be broken, otherwise the contributions from
k and −k will cancel each other exactly; (ii) more importantly,
the electron population ρF

μ,μ(k) cannot be an analytical func-
tion of the energy ωμ(k), otherwise the integration will always
produce zero due to the periodicity of the spectrum. We shall
see later that those requirements are naturally fulfilled by an
oblique space-time crystal, thus rendering a nonzero intrinsic
current.

We consider a simple toy model in (1 + 1)D where an
effective single-band Bloch system is subjected to a traveling
wave potential. Since this is a toy model, we will not discuss
its physical realization. Our starting point will be the kernel
matrix defined in Eq. (7) with no freedom in index α/β given
that the corresponding static Bloch system has only one band.
We naively choose the matrix elements to be

Hm,n(k) = E cos[(k + nκ )a]δm,n + �1δm,n+1 + �∗
1δm,n−1

+ �2δm,n+2 + �∗
2δm,n−2 − h̄n�δm,n, (56)

where �1,2 are the simplified hopping parameters in the fre-
quency domain. Here, the corresponding static Bloch system
has energy of the form EB(k) = E cos(ka) with E > 0. We
then consider a Fermi-Dirac distribution for the Bloch ther-
mal equilibrium: ρB,eq(k) = 1

e[EB (k)−μC ]/KBT +1 with μC being the
chemical potential.

In Fig. 2, we plot the Bloch band and corresponding
Floquet-Bloch band after turning on the Floquet drive, where

FIG. 2. The electron populations in (a) the original Bloch band
at the thermal equilibrium with kBT = 0.1, μC = 0, and (b) the
Floquet-Bloch band after turning on the Floquet drive with �1 =
0.3, �2 = 0.1. Here EB = 0.8 and a = 2. The color indicates the
occupation number of each state. The dashed curves are the original
Bloch band in (a) shifted by integer multiples of the phonon mode
(�, κ) in energy and momentum.

the population of each state is indicated by different colors.
One should see clearly that the Floquet-Bloch band is no
longer symmetric, and its electronic density at each state is
no longer a function of the quasienergy, since we see that
different k-states with the same quasienergy have different
colors (i.e., different populations). We claim that the inversion
symmetry and the time-reversal symmetry are naturally bro-
ken in the oblique space-time crystal since a specific driving
mode (�, κ ) is chosen that selects unique directions in both
space and time [46]. Thus, we expect a nonzero intrinsic
current in an oblique space-time crystal.

In Fig. 3(a), the intrinsic current responses of the oblique
space-time at different driving modes (�, κ) and fixed cou-
pling strength are shown. It can be seen that there is a clear
pattern for the current response in the parameter space. In
Appendix H, we show that such a pattern resembles that of
the Floquet direct band gap in the same parameter space,
from which we can conclude that a smaller Floquet gap in
general gives a higher intrinsic current. For example, we plot
in Fig. 3(b) the band structure of the Floquet-Bloch system
corresponding to the parameters marked by the red star in
Fig. 3(a) that gives the maximal intrinsic current. One should
notice that such intrinsic dc current is purely a consequence of

FIG. 3. (a) The intrinsic current of the oblique space-time crystal
with different Floquet driving modes (�, κ), where the specific point
in such parameter space giving the maximal current is marked by
a red star. The color indicates the value of the dc current achieved
at each (�, κ). (b) The Floquet-Bloch band structure corresponding
to the red star in (a). The dashed curves are the original Bloch band
shifted by integer multiples of the phonon mode (�, κ) in energy and
momentum. The other parameters used in this plot are the same as in
Fig. 2.
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the combination of the oblique Floquet drive (κ �= 0) and the
out-of-equilibrium electron populations (ρF

μ,μ is not a function
of quasienergy). In some cases, such oblique Floquet drive
can be realized by coherent acoustic waves [8], therefore the
intrinsic current can also be concluded as an acoustoelectric
effect but in the strongly driven regime.

VI. CONCLUSION AND REMARKS

In the first half of this work, we developed a semi-
classical theory for the electrons in space-time crystals or
Floquet-Bloch systems. The equations of motion of a sin-
gle Floquet-Bloch electron under external slowly varying
fields are derived, which shows similar behavior to that of
the ordinary Bloch electrons but with modified quantities
in the Floquet context. We then discussed the response of
the Floquet-Bloch system to electromagnetic fields, and we
found the intrinsic magnetization of the wave packet due to
its self-rotation in a magnetic field. Furthermore, we looked
at the polarization of a fully occupied Floquet band, which
has two contributions: one is the original Bloch polarization
modified by the Floquet coefficients, and the other comes
purely from the time variations. The latter contribution can
be shown to vanish exactly under the PT symmetry. It is
worth noting that a totally different approach to constructing
the semiclassical theory for Floquet-Bloch electrons can be
found in Ref. [47], which gives qualitatively the same re-
sults. In the second half, we investigated the density matrix
of the Floquet-Bloch system attached to a heat bath, which
shows the essential distinction between a periodically driven
Bloch system and a static one. The density matrix is shown
to be generally nondiagonal and time-dependent for nonzero
damping, while it becomes diagonal and time-independent
when the damping is turned off. By using the diagonal density
matrix, we can calculate the intrinsic dc current, which is
nonzero indicating the nonequilibrium nature of the Floquet-
Bloch system. We further discussed the implications when
finite damping is included, and we found that the semiclassical
scheme developed in this work cannot be applied to the damp-
ing Floquet-Bloch system. Further developments are certainly
needed to overcome this inapplicability. In the rest of this

section, a few remarks are given emphasizing the potential of
this semiclassical method combined with the Floquet-Bloch
systems.

First, we want to comment on the nonequilibrium nature of
the Floquet-Bloch system, which leads to strangely behaved
electron densities at different eigenstates. As we have already
mentioned in Sec. V, the electron populations in the steady
state are no longer a function of the quasienergy. For example,
the relation ∂ρ

∂k = ∂ρ

∂ω
∂ω
∂k does not hold in general. In contrast

to the equilibrium electron distribution that cares only about
the energy of the electron, the nonequilibrium distribution dis-
cussed in this work has also a strong momentum dependence.
A direct consequence of such a momentum dependence is the
intrinsic nonzero dc current. We expect more physical impli-
cations of such non-energy-dependent distribution to occur in
higher dimensions.

Secondly, we emphasize that the semiclassical theory de-
veloped and applied in this work only deals with dc responses
(slow time variations) of the Floquet-Bloch systems, given
that the oscillating part (fast time variations) has been aver-
aged. However, in periodically driven systems, there are still
physical observables sensitive to the fast time variations, such
as the higher harmonic generations in strong light-matter in-
teractions [48]. Even for dc responses, sometimes there could
be cases in which we can get contributions from the high har-
monics, as one can see from the fact that 〈〈ρÔ〉〉 �= 〈〈ρ〉〉〈〈Ô〉〉
if ρ is nondiagonal and/or contains fast time variations. In
those cases (for example, systems with finite damping), care-
ful evaluations of 〈〈ρÔ〉〉 are needed.

Lastly, in this work our scope is mostly limited to one spa-
tial dimension in the applications, where only a few physics
can be studied. Moreover, the spin degrees of freedom and
other possible internal degrees of freedom such as the valley
or pseudospins are completely ignored in our consideration.
We expect that, in future developments, the semiclassical for-
malism can be used to discuss more exotic physics with more
degrees of freedom and in higher dimensions, for example the
spin-polarized photocurrents [25], the Hall effect in period-
ically driven systems [19], the light-induced magnetization
[49], and/or the electronic transport in Floquet topological
insulators [1,50].

APPENDIX A: ORTHONORMAL CONDITION FOR THE FLOQUET-BLOCH WAVE FUNCTION

Given the Floquet-Bloch eigen-wave-function:

|�μ

k (r, t )〉 =
∑
n,β

f μ,β

n,k e−in�t |ϕα
k+nκ(r)〉, (A1)

we have

〈�μ

k (r, t )|�ν
k′ (r, t )〉 =

∑
n,m

∑
α,β

( f μ,α

n,k )∗ein�t 〈ϕα
k+nκ(r)|ϕβ

k′+mκ(r)〉e−im�t f ν,β

m,k′

=
∑

G

∑
n,m

∑
α,β

ei(n−m)�t ( f μ,α

n,k )∗ f ν,β

m,k′δα,βδ(k + nκ − k′ − mκ + G)

=
∑

G

∑
q

e−iq�t

[∑
n,α

( f μ,α

n,k )∗ f ν,α
n+q,k−qκ+G

]
δ(k − k′ − qκ + G)

=
∑

G

∑
q

e−iq�tδμ,νδq,0δ(k − k′ − qκ + G) =
∑

G

δμ,νδ(k − k′ + G), (A2)
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where we have used the relation in Eq. (10). Here G is the reciprocal-lattice vector of the corresponding static Bloch crystal. It is
worthwhile to note that the orthonormal condition of the Floquet-Bloch eigen-wave-function does not involve the time integral.

APPENDIX B: THE POSITION CENTER OF THE WAVE PACKET

The position center of a Floquet-Bloch wave packet is given by the expectation value of the position operator evaluated under
the wave-packet wave function,

rc(τs) ≡ 〈〈Wμ|r̂|Wμ〉〉 =
∑

nn′,αβ

1

T

∫ τs+T

τs

dτ f e−i(n′−n)�τ f

∫
dkdk′|a(k, τs)|eiγ (k,τs )

(
f μ,α

n,k

)∗

× 〈ϕα
n,k|r̂|ϕβ

n′,k′ 〉 f μ,β

n′,k′e−iγ (k′,τs )|a(k′, τs)|, (B1)

where the position operator r̂ sandwiched by the Bloch states can be evaluated as [31,51]

〈ϕα
n,k|r̂|ϕβ

n′,k′ 〉 = [i∂knδα,β + 〈uα
n,k|i∂k′

n′ |uβ

n′,k′ 〉]δ(kn − k′
n′ ), (B2)

with kn ≡ k + nκ. Notice that we can first integrate out the fast time dependence part: 1
T

∫ τs+T
τs

e−i(n′−n)�τ f dτ f = δn,n′ , thus the
expression for the position center becomes

rc(τs) =
∑
n,αβ

∫
dk |a(k, τs)|2{δα,β[( f μ,α

n,k )∗ f μ,β

n,k ∂kγ (k′, τs) + i( f μ,α

n,k )∗∂k f μ,β

n,k ] + 〈uα
n,k|i∂k′

n
|uβ

n,k′ 〉( f μ,α

n,k )∗ f μ,β

n,k }

+
∑
n,α

∫
dk | f μ,α

n,k |2|a(k, τs)|∂k|a(k, τs)|. (B3)

The last term actually vanishes given that
∑

n,α | f μ,α

n,k |2 = 1 and
∫

dk ∂k|a(k, τs)|2 = 0, which follows from the fact that
|a(k, τs)|2 ∼ δ(k − kc(τs)). And we also have for an arbitrary function f depending slowly on the quasimomentum k:∫

dk|a(k, τs)|2 f (k) ≈ f (kc(τs)). So, the position center can be evaluated as

rc(τs) ≈ ∂kcγ (kc, τs) +
∑
n,α

[
i( f μ,α

n,kc
)∗∂kc f μ,α

n,kc
+

∑
β

Aα,β

n,kc
( f μ,α

n,kc
)∗ f μ,β

n,kc

]
≡ ∂kcγ (kc, τs) + 〈〈ũμ

k |i∂k|ũμ

k 〉〉|k=kc , (B4)

where Aα,β

n,kc
is the interband Berry connection at kc + nκ of the corresponding static Bloch system without Floquet drive, and

|ũμ

k 〉 = ∑
n f μ,α

n,k e−in�τ f einκ·r|uα
n,k〉 is the periodic part of the Floquet-Bloch wave function.

The position center rc in the Floquet context has a special meaning. The fast variations that have been averaged over the
Floquet period correspond to oscillating motions of the electron around rc. Thus, one can view rc as the guiding center of the
electron, which then can carry dc current.

APPENDIX C: THE TIME DERIVATIVE OF THE WAVE PACKET

Next, let us look at the time derivative of the wave packet, which is the expectation value of the operator id/dt :

〈〈Wμ|i d

dt
|Wμ〉〉 =

∑
nn′,αβ

1

T

∫ τs+T

τs

dτ f ein�τ f

×
∫

dkdk′|a(k, τs)|eiγ (k,τs )( f μ,α

n,k )∗〈ϕα
n,k|i

(
d

dτ f
+ d

dτs

)
[|ϕβ

n′,k′ 〉 f μ,β

n′,k′e−iγ (k′,τs )|a(k′, τs)|e−in′�τ f ], (C1)

where we explicitly separate the contributions between slowly varying and fast varying parts. As we can see, the only fast varying
part is the time-dependent phase factors ein�τ f and e−in′�τ f , so the fast time dependence can be readily integrated out:

〈〈Wμ|i d

dt
|Wμ〉〉 =

∑
n,αβ

∫
dkdk′|a(k, τs)|eiγ (k,τs )( f μ,α

n,k )∗〈ϕα
n,k|

(
n� + i

d

dτs

)
|ϕβ

n,k′ 〉 f μ,β

n,k′ e−iγ (k′,τs )|a(k′, τs)|. (C2)

Now, we should be careful when counting the slow time dependence of the wave function. First of all, we have an explicit
slow time dependence in |a(k, τs)| and |γ (k, τs)|. The coefficient f μ,β

n,k (rc) depending on k and the position center rc has a
slow time dependence through rc(τs) and will get another time dependence after taking the k-integration [getting it from the
weight |a(k, τs)|]. Then the most tricky one is the slow time dependence of the Bloch wave function |ϕα

n,k〉, which is obtained
through the position center dependence: |ϕα

n,k〉 → |ϕα
n,k(rc)〉 = ei(k+nκ)·r̂|uα

n,k(rc)〉. Having this extra dependence, we can write
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dτs = ∂τs + ṙc · ∂rc , where Ȯ ≡ dO/dτs means a slow time derivative. Similarly, we have

〈ϕα
n,k|i

d

dτs
|ϕβ

n′,k′ 〉 =
[

i
d

dτs
δα,β + 〈uα

n,k|i
d

dτs
|uβ

n,k〉
]
δ(kn − k′

n′ ). (C3)

Therefore, by plugging Eq. (C3) into the time evolution, we get

〈〈Wμ|i d

dt
|Wμ〉〉 = ∂τsγ (kc, τs) +

∑
n,α

| f μ,α

n,kc
|2n� + 〈〈ũμ

k |i∂τs |ũμ

k 〉〉∣∣k=kc
+ ṙc · 〈〈ũμ

k |i∂rc |ũμ

k 〉〉∣∣k=kc
, (C4)

where we have used the fact that ∂τs

∫
dk |a(k, τs)|2 = 0. We want to emphasize here that there are three different lengthscales:

the lattice constant a of the static crystal, the wavelength of the propagating wave 2π/|κ|, and the typical length of the external
field L. The change of rc should only track the variation of the external field, thus we may require a separation of the external
lengthscale from the other two scales. Typically, it will be L � 2π/|κ| ∼ a or 2π/|κ| � L � a. Notice that after the momentum
integration, all k-dependent quantities will become kc(τs)-dependent inherited from the weight function |a(k, τs)|2, which then
introduces an extra slow time dependence. It is important to observe that

∂τsγ (kc, τs) =γ̇ (kc, τs) − k̇c · ∂kcγ (kc, τs) = γ̇ (kc, τs) − k̇c · [rc − 〈〈ũμ

k |i∂k|ũμ

k 〉〉∣∣k=kc
], (C5)

based on which we have

〈〈Wμ|i d

dt
|Wμ〉〉 = γ̇ (kc, τs) − k̇c · rc +

∑
n,α

| f μ,α

n,kc
|2n� + 〈〈ũμ

k |i∂τs |ũμ

k 〉〉∣∣k=kc
+ ṙc · 〈〈ũμ

k |i∂rc |ũμ

k 〉〉∣∣k=kc
+ k̇c · 〈〈ũμ

k |i∂k|ũμ

k 〉〉∣∣k=kc
.

(C6)

It is important to note that there are no fast-time derivatives in the above equation since the fast-time variations have been
integrated by taking the time average over the Floquet period. This is again based on the assumption of two separate timescales.

APPENDIX D: ENERGY OF THE WAVE PACKET AND ITS GRADIENT CORRECTION

The wave packet constructed is essentially an extended object with finite size in both real space and momentum space. Thus,
the potential energy of such an extended object will have gradient corrections additional to the energy simply evaluated at the
position center rc. The energy of the wave packet can be evaluated as

Eμ ≡ 〈〈Wμ|Ĥ (r̂, t )|Wμ〉〉 ≈ 〈〈Wμ|Ĥc(r̂, τ f ; rc, τs)|Wμ〉〉 + 〈〈Wμ|�Ĥ |Wμ〉〉 ≡ E0
μ(rc, kc, τs) + �Eμ, (D1)

where the first-order gradient correction to the Hamiltonian reads

�Ĥ = 1

2

[
(r̂ − rc) · ∂Ĥc

∂rc
+ ∂Ĥc

∂rc
· (r̂ − rc)

]
. (D2)

It is easy to show that the leading order reads

E0
μ(rc, kc, τs) = h̄ωμ(kc, rc) + h̄

∑
n,α

n�| f μ,α

n,kc
|2. (D3)

Then the gradient correction to the energy is

�Eμ = 1

2
〈〈Wμ|(r̂ − rc) · ∂Ĥc

∂rc
+ ∂Ĥc

∂rc
· (r̂ − rc)|Wμ〉〉 = Re 〈〈Wμ|∂Ĥc

∂rc
· (r̂ − rc)|Wμ〉〉. (D4)

Evaluating the gradient correction requires some algebra, which will be performed below. Let us first evaluate the following
quantity:∑

nn′,αβ

( f μ,α

n,k )∗〈�α
n,k(r, rc)|∂Ĥc

∂rc
|�β

n′,k′ (r, rc)〉 f ν,β

n′,k′

= ∂

∂rc

⎡
⎣ ∑

nn′,αβ

( f μ,α

n,k )∗〈�α
n,k(r, rc)|Ĥc|�β

n′,k′ (r, rc)〉 f ν,β

n′,k′

⎤
⎦ −

∑
nn′,αβ

∂

∂rc
[( f μ,α

n,k )∗〈�α
n,k(r, rc)|]Ĥc|�β

n′,k′ (r, rc)〉 f ν,β

n′,k′

−
∑

nn′,αβ

( f μ,α

n,k )∗〈�α
n,k(r, rc)|Ĥc

∂

∂rc
[|�β

n′,k′ (r, rc)〉 f ν,β

n′,k′]

= h̄
∂ωμ(k, rc)

∂rc
δμ,νδ(k − k′) −

∑
nn′,αβ

h̄[ων (k′, rc) − ωμ(k, rc) + (n′ − n)�]
∂

∂rc
[( f μ,α

n,k )∗〈�α
n,k(r, rc)|]|�β

n′,k′ (r, rc)〉 f ν,β

n′,k′ ,

(D5)
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where we have utilized the fact that

Ĥc

∑
n,α

f μ,α

n,k |�α
n,k(r, rc)〉 =

∑
n,α

[ωμ(k, rc) + n�] f μ,α

n,k |�α
n,k(r, rc)〉. (D6)

Now, we can proceed to evaluate the energy correction. We have

〈〈Wμ|∂Ĥc

∂rc
· rc|Wμ〉〉 = rc · 〈〈Wμ|∂Ĥc

∂rc
|Wμ〉〉

= rc ·
∑

nn′,αβ

∫
dkdk′ |a(k, τs)|eiγ (k,τs )( f μ,α

n,k )∗〈〈�α
n,k(r, rc)|∂Ĥc

∂rc
|�β

n′,k′ (r, rc)〉〉 f μ,β

n′,k′e−iγ (k′,τs )|a(k′, τs)|

= rc · ∂ h̄ωμ(kc, rc)

∂rc
, (D7)

where we have used Eq. (D5) and assumed that the spatial variation of the external field is small so that the momentum is still
preserved, namely

∂

∂rc
[( f μ,α

n,k )∗〈�α
n,k(r, rc)|]|�β

n′,k′ (r, rc)〉 f ν,β

n′,k′ = ∂

∂rc
[( f μ,α

n,k )∗〈�α
n,k(r, rc)|]|�β

n′,k′ (r, rc)〉 f ν,β

n′,k′δ(kn − k′
n′ ). (D8)

Then,

〈〈Wμ|∂Ĥc

∂rc
· r̂|Wμ〉〉 =

∑
nn′,αβ

∑
ν

∑
α′β ′,mm′

∫
dkdk′dk′′ |a(k, τs)|eiγ (k,τs )( f μ,α

n,k )∗〈〈�α
n,k(r, rc)|∂Ĥc

∂rc
|�α′

m,k′′ (r, rc)〉 f ν,α′

m,k′′

× ( f ν,β ′

m′,k′′ )∗〈�β ′
m′,k′′ (r, rc)|r̂|�β

n′,k′ (r, rc)〉〉 f μ,β

n′,k′e−iγ (k′,τs )|a(k′, τs)|, (D9)

where we have inserted an identity operator from the completeness of the Floquet-Bloch basis:

I =
∑

ν

∑
α′β ′,mm′

∫
dk′′|�α′

m,k′′ (r, rc)〉 f ν,α′

m,k′′ ( f ν,β ′

m′,k′′ )∗〈�β ′
m′,k′′ (r, rc)|. (D10)

Again, using Eq. (D5), we have

〈〈Wμ|∂Ĥc

∂rc
· r̂|Wμ〉〉 =

〈
h̄
∑
n′,β

∑
ν

∑
β ′,m′

∫
dkdk′dk′′ |a(k, τs)|eiγ (k,τs )

{
∂ωμ(k, rc)

∂rc
δμ,νδ(k − k′′)

−
∑

nm,αα′
[ων (k′′, rc) − ωμ(k, rc) + (m − n)�]

∂

∂rc
[( f μ,α

n,k )∗〈�α
n,k(r, rc)|]|�α′

m,k′′ (r, rc)〉 f ν,α′
m,k′′

}

×( f ν,β ′

m′,k′′ )∗〈�β ′
m′,k′′ (r, rc)|r̂|�β

n′,k′ (r, rc)〉 f μ,β

n′,k′e−iγ (k′,τs )|a(k′, τs)|
〉
, (D11)

which contains two terms. The first term is

h̄
∑
n′,β

∑
ν

∑
β ′,m′

∫
dkdk′dk′′ |a(k, τs)|eiγ (k,τs )δμ,νδ(k − k′′)

× ∂ωμ(k, rc)

∂rc
· ( f ν,β ′

m′,k′′ )∗〈〈�β ′
m′,k′′ (r, rc)|r̂|�β

n′,k′ (r, rc)〉〉 f μ,β

n′,k′e−iγ (k′,τs )|a(k′, τs)|

= h̄
∑
n′,β

∑
β ′,m′

∫
dkdk′ |a(k, τs)|eiγ (k,τs ) ∂ωμ(k, rc)

∂rc
· ( f μ,β ′

m′,k′′ )∗〈〈�β ′
m′,k′′ (r, rc)|r̂|�β

n′,k′ (r, rc)〉〉 f μ,β

n′,k′e−iγ (k′,τs )|a(k′, τs)|

= ∂ h̄ωμ(kc, rc)

∂rc
· rc, (D12)
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where we have used the definition for the position center rc. The second term is much more complicated, which can be calculated
as 〈

h̄
∑

nn′,αβ

∑
ν

∑
α′β ′,mm′

∫
dkdk′dk′′ |a(k, τs)|eiγ (k,τs )[ωμ(k, rc) − ων (k′′, rc) + (n − m)�]

∂

∂rc
[( f μ,α

n,k )∗〈�α
n,k(r, rc)|]

×|�α′
m,k′′ (r, rc)〉 f ν,α′

m,k′′ ( f ν,β ′

m′,k′′ )∗〈�β ′
m′,k′′ (r, rc)|r̂|�β

n′,k′ (r, rc)〉 f μ,β

n′,k′e−iγ (k′,τs )|a(k′, τs)|
〉

=
〈

h̄
∑

nn′,αβ

∑
ν

∑
α′β ′,mm′

∫
dkdk′dk′′ |a(k, τs)|eiγ (k,τs )[ωμ(k, rc) − ων (k′′, rc) + (n − m)�]

∂

∂rc
[( f μ,α

n,k )∗〈�α
n,k(r, rc)|]

× |�α′
m,k′′ (r, rc)〉 f ν,α′

m,k′′ ( f ν,β ′

m′,k′′ )∗{i∂k′δβ,β ′e−i(n′−m′ )�τ f δ(k′′
m′ − k′

n′ )

+〈�β ′
m′,k′′ (r, rc)|eik′

n′ ·ri∂k′[e−ik′
n′ ·r|�β

n′,k′ (r, rc)〉]} f μ,β

n′,k′e−iγ (k′,τs )|a(k′, τs)|
〉
, (D13)

where we have used the relation [51]

〈�β ′
m′,k′′ (r, rc)|r̂|�β

n′,k′ (r, rc)〉 = i∂k′δβ,β ′e−i(n′−m′ )�τ f δ(k′′
m′ − k′

n′ ) + 〈�β ′
m′,k′′ (r, rc)|eik′

n′ ·ri∂k′[e−ik′
n′ ·r|�β

n′,k′ (r, rc)〉], (D14)

which is an extension of Eq. (B2). Now, we have to be very careful in evaluating each term in the above expression. The term
involving i∂kδβ,β ′e−i(n′−m′ )�τ f is〈

h̄
∑

nn′,αβ

∑
ν

∑
α′β ′,mm′

∫
dkdk′dk′′ |a(k, τs)|eiγ (k,τs )[ωμ(k, rc) − ων (k′′, rc) + (n − m)�]

∂

∂rc
[( f μ,α

n,k )∗〈�α
n,k(r, rc)|]

×|�α′
m,k′′ (r, rc)〉 f ν,α′

m,k′′ ( f ν,β ′

m′,k′′ )∗i∂k′δβ,β ′e−i(n′−m′ )�τ f δ(k′′
m′ − k′

n′ ) f μ,β

n′,k′e−iγ (k′,τs )|a(k′, τs)|
〉

=
〈

h̄
∑

nn′,αβ

∑
ν

∑
α′,ml

∫
dkdk′ |a(k, τs)|eiγ (k,τs )[ωμ(k, rc) − ων (k′ + lκ, rc) + (n − m)�]

∂

∂rc
[( f μ,α

n,k )∗〈�α
n,k(r, rc)|]

×|�α′
m,k′+lκ(r, rc)〉 f ν,α′

m,k′+lκ( f ν,β

n′−l,k′+lκ )∗i∂k′e−il�τ f f μ,β

n′,k′e−iγ (k′,τs )|a(k′, τs)|
〉

=
〈

h̄
∑
n,α

∑
ν

∑
α′,ml

∫
dkdk′ |a(k, τs)|eiγ (k,τs )[ωμ(k, rc) − ων (k′ + lκ, rc) + (n − m)�]

∂

∂rc

[(
f μ,α

n,k

)∗〈�α
n,k(r, rc)|]

× |�α′
m,k′+lκ(r, rc)〉 f ν,α′

m,k′+lκe−il�τ f

⎧⎨
⎩

∑
n′,β

[( f ν,β

n′−l,k′+lκ )∗ f μ,β

n′,k′]i∂k′e−iγ (k′,τs )|a(k′, τs)|

+e−iγ (k′,τs )|a(k′, τs)|
∑
n′,β

[( f ν,β

n′−l,k′+lκ )∗i∂k′ f μ,β

n′,k′]

⎫⎬
⎭

〉

=
〈

h̄
∑

nn′,αβ

∑
ν

∑
α′,ml

∫
dkdk′ |a(k, τs)|eiγ (k,τs )[ωμ(k, rc) − ων (k′ + lκ, rc) + (n − m)�]

∂

∂rc
[( f μ,α

n,k )∗〈�α
n,k(r, rc)|]

×|�α′
m,k′+lκ(r, rc)〉 f ν,α′

m,k′+lκe−il�τ f e−iγ (k′,τs )|a(k′, τs)|( f ν,β

n′−l,k′+lκ )∗i∂k′ f μ,β

n′,k′

〉
, (D15)

where we have used Eqs. (10) and (D8). Plugging the above result into Eq. (D13), the second term becomes〈
h̄

∑
nn′,αβ

∑
ν

∑
α′β ′,mm′

∫
dkdk′dk′′ |a(k, τs)|eiγ (k,τs )e−iγ (k′,τs )|a(k′, τs)|[ωμ(k, rc) − ων (k′′, rc) + (n − m)�]

× ∂

∂rc
[( f μ,α

n,k )∗〈�α
n,k(r, rc)|]|�α′

m,k′′ (r, rc)〉 f ν,α′
m,k′′ ( f ν,β ′

m′,k′′ )∗〈�β ′
m′,k′′ (r, rc)|eik′

n′ ·ri∂k′[e−ik′
n′ ·r f μ,β

n′,k′ |�β

n′,k′ (r, rc)〉]
〉
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=
〈 ∑

nn′,αβ

∑
ν

∑
α′β ′,mm′

∫
dkdk′dk′′ |a(k, τs)|eiγ (k,τs )e−iγ (k′,τs )|a(k′, τs)|

× ∂

∂rc
[( f μ,α

n,k )∗〈�α
n,k(r, rc)|][h̄ωμ(k, rc) + nh̄� − Ĥ (r, rc)]|�α′

m,k′′ (r, rc)〉 f ν,α′
m,k′′ ( f ν,β ′

m′,k′′ )∗

× 〈�β ′
m′,k′′ (r, rc)|eik′

n′ ·ri∂k′[e−ik′
n′ ·r f μ,β

n′,k′ |�β

n′,k′ (r, rc)〉]
〉

=
〈 ∑

nn′,αβ

∫
dkdk′ |a(k, τs)|eiγ (k,τs )e−iγ (k′,τs )|a(k′, τs)| ∂

∂rc
[eikn·r( f μ,α

n,k )∗〈�α
n,k(r, rc)|]

× e−ikn·r[h̄ωμ(k, rc) + nh̄� − Ĥ (r, rc)]eik′
n′ ·ri∂k′[e−ik′

n′ ·r f μ,β

n′,k′ |�β

n′,k′ (r, rc)〉]
〉
. (D16)

After taking the time average, we will have δn,n′ and approximately momentum conservation δ(k − k′), which gives〈 ∑
nn′,αβ

∫
dk |a(k, τs)|2 ∂

∂rc

[
eik·r( f μ,α

n,k )∗〈�α
n,k(r, rc)|]e−ik·r[h̄ωμ(k, rc) + nh̄� − Ĥ (r, rc)]eik·ri∂k[e−ik·r f μ,β

n′,k |�β

n′,k(r, rc)〉]
〉

=
〈 ∫

dk |a(k, τs)|2 ∂

∂rc

∑
n,α

[
eik·r( f μ,α

n,k )∗〈�α
n,k(r, rc)|]e−ik·r[h̄ωμ(k, rc) + ih̄∂τ f − Ĥ (r, rc)]eik·r

× i∂k

∑
n′,β

[e−ik·r f μ,β

n′,k |�β

n′,k(r, rc)〉]
〉
. (D17)

Recall that the periodic part of the Floquet-Bloch wave function is defined as

|ũμ

k 〉 =
∑
n,α

f μ,α

n,k e−in�τ f einκ·r|uα
n,k〉 = e−ik·r ∑

n,α

f μ,α

n,k |�α
n,k〉, (D18)

which satisfies the Schrodinger equation at specific k:

[Ĥ (k) − ih̄∂τ f ]|ũμ

k 〉 = h̄ωμ(k)|ũμ

k 〉 (D19)

with Ĥ (k) ≡ e−ik·rĤ (r)eik·r and also the completeness relation
∑

μ |ũμ

k 〉〈ũμ

k | = Ik. Thus, the second term is reduced to〈〈
∂rc ũ

μ

kc

∣∣ · [h̄ωμ(kc, rc) − (Ĥ (kc, rc) − ih̄∂τ f )]
∣∣i∂kc ũ

μ

kc

〉〉
. (D20)

Finally, we obtain the energy correction as

�Eμ = Re 〈〈Wμ|∂Ĥc

∂rc
· (r̂ − rc)|Wμ〉〉

= Re

{
∂ h̄ωμ(kc, rc)

∂rc
· rc +

〈〈
∂

∂rc
ũμ

kc

∣∣∣∣
[

h̄ωμ(kc, rc) −
(

Ĥ (kc, rc) − ih̄
∂

∂τ f

)]∣∣∣∣i ∂

∂kc
ũμ

kc

〉〉
− ∂ h̄ωμ(kc, rc)

∂rc
· rc

}

= Im

〈〈
∂

∂rc
ũμ

kc

∣∣∣∣
[(

Ĥ (kc, rc) − ih̄
∂

∂τ f

)
− h̄ωμ(kc, rc)

]∣∣∣∣ ∂

∂kc
ũμ

kc

〉〉

= Im

〈〈
∂

∂rc
ũμ

kc

∣∣∣∣ · [ĤF (kc, rc) − h̄ωμ(kc, rc)]

∣∣∣∣ ∂

∂kc
ũμ

kc

〉〉
, (D21)

where ĤF = Ĥ − ih̄∂τ f is the Floquet Hamiltonian. Here, ∂τ f only acts on the fast-varying time-dependent variables, which is
different from ∂τs as we explained before. In the case in which there is no external inhomogeneity in time (i.e., no slow time
dependence), we may write ĤF = Ĥ − ih̄∂t as shown in Ref. [30].

In Sec. III C, we specified the external slowly varying field as the electromagnetic field, thus the energy correction can be
written as

�Eμ = Im

〈〈
∂

∂rc
ũμ

kc
(rc, τs)

∣∣∣∣[ĤF (kc, rc) − h̄ωμ(kc, rc)]

∣∣∣∣ ∂

∂kc
ũμ

kc
(rc, τs)

〉〉

= Im

[
∂eA
h̄∂rc

〈〈
∂

∂qc
ũμ

qc
|
]

· [ĤF (qc) − h̄ωμ(qc)]

∣∣∣∣ ∂

∂qc
ũμ

qc

〉〉
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= − e

2h̄
(∇rc × A)Im

〈〈
∂

∂qc
ũμ

qc

∣∣∣∣ × [ĤF (qc) − h̄ωμ(qc)]

∣∣∣∣ ∂

∂qc
ũμ

qc

〉〉

≡ −B · m, (D22)

where B = ∇rc × A(rc, τs) is the magnetic field, and

m = e

2h̄
Im

〈〈
∂

∂qc
ũμ

qc

∣∣∣∣ × [ĤF (qc) − h̄ωμ(qc)]

∣∣∣∣ ∂

∂qc
ũμ

qc

〉〉
(D23)

is the local magnetic moment of the Floquet-Bloch wave packet due to its self-rotation in the magnetic field.

APPENDIX E: THE INTEGRATION AND SUMMATION IN
EQ. (46)

The integration over the quasimomentum k and summation
over the index n (and m) should make the following equa-
tion true: ∑

n

∫ ′
dk|�μ

k+nκ(r, t )〉〈�ν
k+nκ(r, t )|

=
∫

BZ
dk|�μ

k (r, t )〉〈�ν
k (r, t )|, (E1)

so that it can run through all possible states in the first
Floquet-Bloch Brillouin zone. There are two possible sce-
narios: commensurate and incommensurate pairs of (κ, G),
where G is the reciprocal-lattice vector. Let us use a simple
(1 + 1)D space-time crystal as an example. For the commen-
surate case, we have κ = pG/q with (p, q) being coprime
numbers, where we should have

∑
n

∫ ′
dk →

q−1∑
n=0

∫ G/q

0
dk. (E2)

For the incommensurate case, one should expect that q → ∞,
which reduces the above mapping to simply (1/N )

∑∞
n=0 with

no integration over k needed (here N is a proper normalization
factor); instead, we need to choose a representative k0 for the
quasimomentum. This is counterintuitive but can be under-
stood in the following way: the set {k0 + nκ mod G|n ∈ N}
is a dense cover of the interval [0, G] if κ and G are incom-
mensurate to each other.

APPENDIX F: DENSITY MATRIX OF THE
FLOQUET-BLOCH SYSTEM WITH DAMPING

Casting Eq. (44) into the Floquet-Bloch basis, we have

〈�μ

k+nκ(r, t )|i∂t ρ̂|�ν
k+mκ(r, t )〉

= i∂t 〈�μ

k+nκ(r, t )|ρ̂|�ν
k+mκ(r, t )〉

− 〈i∂t�
μ

k+nκ(r, t )|ρ̂|�ν
k+mκ(r, t )〉

− 〈�μ

k+nκ(r, t )|ρ̂|i∂t�
ν
k+mκ(r, t )〉

= i∂tρ
F
{μ,n},{ν,m}(k, t ) + 〈�μ

k (r, t )|[Ĥ , ρ̂]|�ν
k (r, t )〉

− [ωμ(k + nκ) − ων (k + mκ)]ρF
μ,ν (k, t ), (F1)

and

〈�μ

k+nκ(r, t )|[D̂, ρ̂]|�ν
k+mκ(r, t )〉

= −�〈�μ

k+nκ(r, t )|ρ̂|�ν
k+mκ(r, t )〉

+ �〈�μ

k+nκ(r, t )|ρ̂B,eq|�ν
k+mκ(r, t )〉

= −�ρF
{μ,n},{ν,m}(k, t )

+ �
∑
αβ,pq

ρ
B,eq
α,β (k + nκ + pκ, k + mκ + qκ)

× ei(p−q)�t ( f μ,α

p,k+nκ )∗ f ν,β

q,k+mκ

= −�ρF
{μ,n},{ν,m}(k, t ) + �

∑
αβ,pl

ρ
B,eq
α,β (k + nκ + pκ)δn−m,l

× e−il�t ( f μ,α

p,k+nκ )∗ f ν,β

p+l,k+mκ, (F2)

where l ≡ q − p, and we have assumed that the Bloch
equilibrium is diagonal in momentum k: ρ

B,eq
α,β (k, k′) =

ρ
B,eq
α,β (k)δ(k − k′). Putting this all together, the Liouville

equation can be rewritten as

[i∂t − ωμ(k + nκ) + ων (k + mκ) + i�]ρF
{μ,n},{ν,m}(k, t )

= i�
∑
αβ,pl

ρ
B,eq
α,β (k + nκ + pκ)δn−m,l

× e−il�t ( f μ,α

p,k+nκ )∗ f ν,β

p+l,k+mκ. (F3)

Since we are considering the steady states, the density matrix
must also be time-periodic, so that we can write

ρF
{μ,n},{ν,m}(k, t ) =

∑
l

ρF,l
{μ,n},{ν,m}(k)e−il�t . (F4)

We can obtain

ρF,l
{μ,n},{ν,m}(k)

= −i�
∑
αβ,p

δn−m,l

× ρ
B,eq
α,β (k + nκ + pκ)( f μ,α

p,k+nκ )∗ f ν,β

p+l,k+mκ

ωμ(k + nκ) − n� − ων (k + mκ) + m� − i�

= i�
∑
αβ,p

ρ
B,eq
α,β (k + nκ + pκ)( f μ,α

p,k+nκ )∗ f ν,β

p+l,k+mκ

ωn
μ(k) − ωm

ν (k) − i�
δn−m,l .

(F5)

Here ωn
μ(k) ≡ ωμ(k + lκ) − n� is actually corresponding to

the μth Floquet-Bloch band at the nth Floquet replica. One
can think about this as an extended zero picture in the fre-
quency domain [8].
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APPENDIX G: DENSITY MATRIX FOR κ = 0 WITH
FINITE DAMPING

Our discussion now will be restricted to the case in which
κ = 0. The density matrix then becomes [16]

ρF,l
μ,ν (k) = −i�

∑
αβ,n

ρ
B,eq
α,β (k)( f μ,α

n,k )∗ f ν,β

n+l,k

ωμ(k) − ων (k) − l� − i�
, (G1)

which is clearly nondiagonal and time-dependent for finite
damping. From now on, to simplify our discussion, we con-
sider only the case in which the damping is very small such
that � � �FB. Here �FB = minμ,ν,l,k[ωμ(k) − ων (k) − l�]
is the Floquet-Bloch direct band gap. Our first goal is to
diagonalize the density matrix in Eq. (G1) up to the first order
in �, which can be done by properly rotating the nondamped
basis {|�μ

k (r, t )〉}:
|�μ

k (r, t ; �)〉 = |�μ

k (r, t )〉
+ �

∑
ν

Gμ,ν (k, t )|�ν
k (r, t )〉 + O(�2).

(G2)

One should ensure that the new basis {|�μ

k (r, t ; �)〉} has to be
also orthonormalized, namely

〈�μ

k (r, t ; �)|�ν
k′ (r, t ; �)〉

= {δμ,ν + �[Gν,μ(k, t ) + G∗
μ,ν (k, t )]}δ(k − k′) + O(�2)

= δμ,νδ(k − k′) + O(�2), (G3)

which requires that

Gν,μ(k, t ) = −G∗
μ,ν (k, t ). (G4)

Then the density matrix under this new basis becomes

ρF
μ,ν (k, t ; �)

= 〈�μ

k (r, t ; �)|ρ̂|�ν
k (r, t ; �)〉 = ρF

μ,μ(k)δμ,ν

− i�
∑
αβ,n

∑
l (μ,ν)

ρ
B,eq
α,β (k)( f μ,α

n,k )∗ f ν,β

n+l,k

ωμ(k) − ων (k) − l� − i�
e−il�t

+ �Gν,μ(k, t )[ρF
μ,μ(k) − ρF

ν,ν (k)] + O(�2), (G5)

where

ρF
μ,μ(k) =

∑
αβ,n

ρ
B,eq
α,β (k)( f μ,α

n,k )∗ f μ,β

n,k (G6)

is the time-independent and diagonal density matrix in
Eq. (G1) when � → 0, and

∑
l (μ,ν) stands for a conditional

summation over index l: summing over all l if μ �= ν or
summing over nonzero l if μ = ν. Thus, for ρF

μ,ν (k, t ; �) to
be diagonalized up to the first order in �, we have, for μ �= ν,

Gν,μ(k, t ) = i

ρF
μ,μ(k) − ρF

ν,ν (k)

×
∑
αβ,n

∑
l

ρ
B,eq
α,β (k)( f μ,α

n,k )∗ f ν,β

n+l,k

ωμ(k) − ων (k) − l� − i�
e−il�t .

(G7)

FIG. 4. The Floquet direct gap [in logarithm log10(�FB)] of the
model described in Eq. (56) as a function of parameters (�, κ) at
fixed coupling strengths.

One can check that Eq. (G4) indeed holds. However, the
diagonal terms in G cannot be determined that are only known
to be purely imaginary. The final diagonalized density matrix,
therefore, reads

ρF
μ,ν (k, t ; �) = δμ,ν

⎡
⎣ρF

μ,μ(k)

+i�
∑
αβ,n

∑
l �=0

ρ
B,eq
α,β (k)( f μ,α

n,k )∗ f μ,β

n+l,k

l� + i�
e−il�t

⎤
⎦,

(G8)

which will always contain fast-time-dependent parts. The
discussion can also be applied to cases with not-so-small
damping. In general, there is no such orthonormal basis that
can make the density matrix diagonal and time-independent
simultaneously for a nonzero �.

APPENDIX H: FLOQUET GAP OF THE OBLIQUE
SPACE-TIME CRYSTAL IN (�, κ) PARAMETER SPACE

In this Appendix, we show how the Floquet-Bloch di-
rect band gap changes in the parameter space (�, κ).
The Floquet-Bloch direct band gap is defined as �FB =
minμ,ν,n,m,k[ωn

μ(k) − ωm
ν (k)], where ωn

μ(k) ≡ ωμ(k + nκ) −
n�. In the case in which only one Floquet-Bloch band is
present, the gap is simply �FB = mink[ω(k) − ω(k + κ) +
�]. As one can see clearly in Fig. 4, the Floquet gap
shows a very similar pattern to the intrinsic current behav-
ior discussed in the main text. Moreover, we also observe
band-closing curves in the two-dimensional parameter space.
It can be shown that the exact band-closing curves are
a consequence of choosing �1 and �2 to be real, which
makes the Floquet Hamiltonian in Eq. (56) a real symmetric
matrix.
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