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We study real-time correlators 〈O(x, t )O(0, 0)〉 of local operators in chaotic quantum many-body systems.
These correlators show universal structure at late times, determined by the geometry of the dominant operator-
space Feynman trajectories for the evolving operator O(x, t ). These trajectories, which involve the operator
contracting to a point at both the initial and final time, are qualitatively different from those that dominate the out-
of-time-order correlation function. In the absence of conservation laws, local correlations decay exponentially:
〈O(x, t )O(0, 0)〉 ∼ exp ( − seq r(v) t ), where v = x/t defines a ray in spacetime, and r(v) is a rate function
associated with this ray. We express r(v) in terms of cost functions for various spacetime structures. In 1+1D
the operator histories can exhibit a phase transition at a critical value vc of the ray velocity, which leads to a
singular behavior in r(v). At low velocities, the dominant Feynman histories are “fat”: The operator grows to
a size of order tα (with α = 1/2 in the simplest case) before contracting to a point again. At high velocities
the trajectories are “thin”: The operator always remains of order-one size. In a Haar-random quantum circuit,
this transition maps to a simple binding transition for a pair of random walks, which represent the left and right
spatial boundaries of the operator. In higher-dimensional systems, thin trajectories always dominate. We discuss
the circumstances in which the butterfly velocity vB can be deduced from a time-ordered two-point function,
rather than the out-of-time ordered correlator. In the random circuit, correlators may also be computed in the
framework of an effective Ising-like statistical mechanics model: we describe this calculation, as well as a special
feature of the weights in the case of a 1+1D Haar-random brickwork circuit. The present paper addresses lattice
models, but also suggests the possibility of morphological phase transitions for real-time Feynman diagrams in
continuum quantum field theories.
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I. INTRODUCTION

This paper is about dynamical correlation functions in
chaotic quantum many-body systems. Our aim is to charac-
terize the spacetime processes that contribute to correlation
functions of the form

G(x, t ) = 〈O(x, t )O(0, 0)〉. (1)

Here, O is a local operator in (for concreteness) a lattice
spin model. Throughout most of the paper we will consider
infinite temperature, so that the expectation value is G(x, t ) =
Tr(O(x, t )O(0, 0))/ Tr 1.

In a system that is able to equilibrate, G(x, t) will decay to
zero at late times, but the nature of this decay is universal.
In systems with slow hydrodynamic modes there are tails
whose basic features can be understood from classical hydro-
dynamics [1,2]. However, our starting point will instead be
systems with no slow hydrodynamic modes, where the late
time relaxation of correlations is exponential, because even in

this simplest case there is universal structure in the relaxation
dynamics.

A correlator such as G(x, t ) may be written as a sum over
Feynman histories in operator space, describing the evolution
of the Heisenberg-picture operator O(x, t ′) from t ′ = 0 to
t ′ = t . The late time decay of the correlator along a given ray
in spacetime is generically exponential, so we define a rate
function r(v) for each velocity v,

G(x, t ) � exp (−seq r(v) t ), v = x/t (2)

(seq is the equilibrium entropy density of the system and is
included for later convenience). We will see that the rate
function r(v) may be understood in terms of “costs” asso-
ciated with different types of Feynman histories. Figure 1
is a cartoon of two kinds of history that can contribute in
1+1D. We will use random circuits as analytically tractable
examples, building on discussions of operator spreading and
the out-of-time-order correlator (OTOC) in random circuits in
Refs. [3–5].
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FIG. 1. Two types of operator Feynman history that may con-
tribute to the local correlator. In both cases an operator string
(product of local basis operators) propagates from (0,0) to (x, t ).
Left: The support of the operator string grows parametrically large
in t before shrinking to a point (α = 1/2 in the simplest case). Right:
The typical size of the string remains of order 1 throughout the
trajectory.

Our first task is to determine what kinds of history dom-
inate. We find that, for a class of 1+1D systems, there is a
phase transition between the two types of trajectory in Fig. 1
as a function of the ray velocity v. At large velocities, the
trajectories resemble the one shown on the right: the support
of the operator remains of order one size during its evolution.
At small velocities, on the other hand, the operator becomes
parametrically large before contracting again, as in the left
panel. This transition leads to a nonanalyticity in the decay
rate r(v) in Eq. (33). The phase transition, which occurs at a
critical velocity vc, maps to an unbinding transition for a pair
of random walks.

Interestingly, in the simplest 1+1D random circuit, made
of Haar-random unitary gates, the location vc of this “morpho-
logical transition” coincides with the butterfly velocity vB that
appears in the out-of-time-order correlator. However, this is
not generic, and in other 1+1D circuits vc and vB can differ;
the “fat” phase can even be eliminated entirely, for example
if interactions have a large enough range. The transition be-
tween the two phases can also be crossed by tuning a model
parameter.

In higher dimensions, in contrast to 1+1D, we find that
“thin” trajectories always dominate. (This is due to a cost for
a fat trajectory that scales with the size of the perimeter of the
operator’s footprint.) This means that in a sense the two-point
function G(0, t ) in a generic higher-dimensional circuit can in
fact be simpler than in 1+1D.

We emphasize that the operator trajectories contributing
to G(x, t ) are very different from those contributing to the
OTOC. The OTOC probes “typical” Feynman histories for
O(x, t ′), in which the operator grows ballistically and has
size proportional to vBt at the final time (rate functions may
be defined for the OTOC too [6,7]). By contrast, the tra-
jectories contributing to the two-point function are ones in
which O(x, t ′) becomes “small” at t ′ = t , in order to overlap
with the other operator O(0, 0) in the trace that defines G.
These trajectories are highly atypical, and this gives rise to
the exponential suppression of G(x, t ). In the random cir-
cuit, operator averages can be mapped to a Markov process
[3,4,8–12], and this allows “atypicality” to be understood

via an exact correspondence with rare events in the Markov
process [13]. (Despite the fundamental difference between the
OTOC and the two point function, we will argue that in a class
of 1+1D models it is possible to deduce vB from a two-point
function.)

One of our basic results is that the rate function r(v) can be
expressed in terms of “line tensions” of certain types of path
in spacetime. This is reminiscent of various lattice statistical
mechanics models, in which correlations can be given a sum-
over-paths formulation, and the decay constant, characterising
exponential decay of correlations in a disordered phase, may
be interpreted as a renormalized free energy for a path [14].
Here, however, the meaning of the relevant paths depends on
the nature of the dominant operator histories. In cases like the
left panel of Fig. 1, the relevant paths through spacetime are
the spacetime trajectories of the boundaries (left and right) of
the operator string, marked in red in the figure. But in cases
like the right panel of Fig. 1, the relevant paths are simply
paths of the operator itself. In this situation we can say that the
left and right boundaries have formed a “bound state”, and it
is the line tension of this bound state that we need to compute.

These concepts, for example the assignment of rate func-
tions (line tensions) to different types of spacetime trajectory,
can be applied to general “realistic” many-body Hamiltoni-
ans that may have no randomness, as we discuss. However,
random circuits are a useful testing ground where explicit
calculations are possible.

Since this paper contains both general phenomenology and
more technical material, we now give a brief overview to
orient the reader. The next two sections (Sec. II and Sec. III)
present the basic ideas, and they can be read in isolation from
some of the more technical material in Sec. IV and later on.
We first clarify the types of operator Feynman trajectories that
are of interest to us (Sec. II), define the basic rate functions
(Sec. III), and note some constraints that they satisfy. The
Feynman trajectory viewpoint draws on ideas used to study
OTOCs in chaotic systems, but understanding two-point func-
tions requires a closer analysis of the statistical mechanics of
these trajectories. In Sec. IV we do the simplest calculation
of the rate functions, for a 1+1D Haar-random circuit: This
illustrates many of our basic points. We also discuss some
subtleties relating to disorder. We discuss higher dimensions
in Sec. V.

In Sec. VI we revisit the calculation for the 1+1D Haar-
random circuit in a different language, that of an effective
Ising model that has been used to study various aspects of
random circuit dynamics [3,4,16–20]. This section requires
some additional technical development, but this development
allows us to clarify which features of the Haar circuit are
general. The relation vc = vB is obeyed by the simplest Haar-
random brickwork circuit, but not for more general circuits:
we explain this in terms of the vanishing of a particular vertex
weight in the effective Ising model for the brickwork circuit.
This is a special feature of the effective Ising model in the
Haar-random case, which may be relevant for other applica-
tions.

Section VII is a numerical case study of noisy 1D Hamilto-
nians whose rate functions have some differences to the Haar
case.
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In Sec. VIII we discuss applications to more general sys-
tems, in particular systems without randomness. We also make
connections with recent works on efficient numerical methods
for computing correlators [21] and on dual unitary circuits
[22]. Finally in Sec. IX we discuss various questions for the
future.

II. OPERATOR FEYNMAN HISTORIES

A. Basic setup

We will consider chaotic unitary dynamics, in discrete
time, for a lattice of q-state spins (for example, q = 2 for spin-
1/2). For concreteness we may imagine a 1+1D quantum
circuit with the brickwork layout shown in Fig. 3, although
the basic definitions in this section are independent of the
structure of evolution operator (for example, the presence or
absence of translation invariance) or the spatial dimensional-
ity. We often refer to the case where the circuit is made up
of Haar-random two site [i.e., U(q2)] unitaries in a brickwork
pattern, see Fig. 3.

The time evolution operator from time 0 to time t , written
as U (t ; 0), is a product of unitaries Uτ for individual time
steps,

U (t ; 0) = UtUt−1 . . .U1. (3)

In the brickwork circuit example, we take a single time step to
be a single layer of the circuit.

We assume for now that the model has no conserved
quantities, and (in the thermodynamic limit) a unique local
equilibrium state given by the infinite temperature Gibbs state.
We will always compute quantum expectation values in this
ensemble,

〈· · · 〉 ≡ Tr(· · · )

Tr 1
. (4)

We will study time-ordered two-point functions of the form
(we place the earlier operator at the origin for notational
simplicity)

G(x, t ) = 〈O(x, t )O′(0, 0)〉, (5)

where O(x, 0) and O′(0, 0) are local Hermitian operators at
sites x and 0 respectively, and the time-evolved operator is

O(x, t ) = U †
t O(x, 0)Ut . (6)

We may take the local operators to be traceless without loss
of generality. Then, assuming that in the thermodynamic limit
the dynamics under consideration is able to reach local equi-
librium, G(x, t ) will relax to zero in the limit of large t , and
our focus will be on the nature of this relaxation.

In the simple chaotic models we will consider, which have
a unique local equilibrium state, this relaxation is exponential
and so we may characterize it by a rate function r(v), which
is independent of the choice of local operators O and O′ [23],

|G(x, t )| � exp ( − seq r(v) t ), v = x/t . (7)

In the case where the circuit is made up of random unitaries it
will be necessary to define the meaning of the left-hand side
more precisely: for example, the rate function for the typical
value of |G(x, t )| will differ from that for the average. We
defer this point until later, see Sec. II C.

B. Evolution in Pauli string basis

Let us make a slight change to our notational conven-
tion, which will make the boundary conditions more natural
in later calculations. Equation (5) is written in the standard
Heisenberg picture, where O(x, t ) = U †

t O(x, 0)Ut . We may
also write

G(x, t ) = 〈O(x, 0)O′
r (0, t )〉, (8)

where we define O′
r (0, t ) by O′

r (0, t ) = UtO(0, 0)U †
t (the

subscript r indicates that we have reversed the convention).
This (equivalent) rewriting of the correlator will be slightly
more convenient below.

It is convenient to express the evolving operator O(0, t )
as a superposition of “strings” S , i.e., products of local Her-
mitian basis operators [24,25]. To simplify notation, let us
restrict for now to the q = 2 case. The strings may then be
taken to be products of Pauli matrices at distinct lattice sites,

O(0, t ) =
∑
S

aS (t )S. (9)

The strings are orthonormal, i.e., 〈SS ′〉 = δS,S ′ . It is conve-
nient to normalize O so that 〈O2〉 = 1; then the weights are
normalized as ∑

S
aS (t )2 = 1. (10)

Making a formal analogy between the quantum operator and
a quantum state, the coefficients aS are the wavefunction am-
plitudes in the basis of product operators S , and the weights
a2
S are the quantum probabilities associated with these basis

operators.
The amplitudes aS evolve in a given time step with a

unitary matrix V (t )
S,S ′ ,

aS (t ) =
∑
S ′

V(t )
S,S ′ aS ′ (t − 1), (11)

which is just a rewriting of the evolution for a single time
step, O(0, t ) = UtO(0, t − 1)U †

t , in the string basis. Explic-
itly, V(t )

S,S ′ = 〈SUtS ′U †
t 〉. Formally, V is the unitary evolution

operator Ut ⊗ U ∗
t that acts on the Hilbert space of operators,

written out in a particular choice of basis given by Pauli
strings. Thinking of operators as vectors in a doubled Hilbert
space—sometimes referred to as “superspace”—is useful in
many areas [26–28].

The matrix V(t ) describes allowed transitions between op-
erator strings. In a finite chain of L sites, V(t ) is a 4L × 4L

matrix (q2L × q2L in the general case). It necessarily has a
1 × 1 block for the trivial string S = 1, which is invariant
under any unitary dynamics. The action of V(t ) is constrained
by locality: for example in a circuit model a local string can
only grow within the lightcone.

For concreteness, let us take our local operators O′(0, 0)
and O(x, 0) to be the local Pauli-Z operators Z0 and Zx. Since
these will set the initial (I) and final (F ) conditions for the
strings in the Feynman path expansion below, we write from
now on

SI ≡ Z0, SF ≡ Zx. (12)
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Then the correlator (5) just extracts the amplitude of the final
(target) string SF in the time-evolved SI ,

G(x, t ) = aSF (t ), with aS ′ (0) = δS,SI . (13)

We may write the desired amplitude aSF (t ) at time t as a sum
over histories (SF ,St−1, . . . , S1,SI ) of the operator. To avoid
clutter, we suppress the arguments of G in Eq. (13),

G =
∑

St−1,...S1

V(t )
SF ,St−1

. . . V(2)
S2,S1

V(1)
S1,SI

. (14)

This product of elements of V gives the amplitude for a given
Feynman trajectory (SF ,St−1, . . . , S1,SI ). In Eq. (14) time is
discrete but analogous expressions can of course be written
for continuous time evolution.

Note that the operator string propagates from the spacetime
point (0, 0) to the point (x, t ): this was the reason for using
the nonstandard convention in Eq. (8), where the evolution
operators were grouped with O′ rather than with O.

C. Simplifications in Haar circuits

This kind of expansion can be made (in either discrete or
continuous time) for almost any model. In the Haar random
circuit there is a significant simplification when we consider
the average of aS (t )2 over circuit realisations, or equivalently
the root-mean-square (rms) value of the correlation function,

Grms(x, t )2 = G(x, t )2. (15)

The overline represents the average over random unitaries.
This object can be written as the probability of a rare event
in a classical stochastic cluster growth process [3–5]. This
mapping makes the analysis of different types of operator
Feynman history very intuitive.

In the Haar circuit the average G vanishes by trivial phase
cancellation reasons, so Grms is the simplest nontrivial av-
erage. We should be aware that Grms will in general not be
numerically close to the typical value of |G| defined by

Gtyp(x, t ) = exp ln |G(x, t )|. (16)

We will map G(x, t ) to an effective partition function for a
path (or pair of paths). Therefore the issue of typical versus
average is precisely equivalent to the issue of averaging the
free energy, versus averaging the partition function, in a dis-
ordered system (i.e., of quenched versus annealed averages
[29]). In the large t limit Gtyp [defined in Eq. (16)] correctly
captures the line tension in a typical sample. We defer these
issues to Sec. IV D. For now, studying Grms is sufficient to
understand some basic features of operator Feynman histories
that we argue are more general.

In general aS (t )2 is a double sum, over two trajectories,
(SF ,St−1, . . . , S1,SI ) and (SF , S̃t−1, . . . , S̃1,SI ). But when
we average, this double sum collapses to a single sum, because
of the result [8–11] (we restrict to nontrivial strings, S 
= 1),

V(t )
S,S ′V

(t )
S̃,S̃ ′ = δS,S̃δS ′,S̃ ′T (t )

S,S ′ . (17)

We will specify T (t ) below. The Kronecker deltas force the
two histories to be the same, and we have

G2 =
∑

St−1,...S1

T (t )
SF ,St−1

. . . T (2)
S2,S1

T (1)
S1,SI

. (18)

Furthermore, the matrix T (t )
S,S ′ is the transition matrix for a

classical stochastic process [8], in which the basis string is
randomly updated, in a local fashion, each time a unitary is
applied to a pair of sites. The transition probabilities of this
stochastic process are simple and are reviewed in Appendix A.
(The explicit t dependence of T (t )

S,S ′ is trivial and arises only
from the even-odd structure of the circuit illustrated in Fig. 3,
or analogous higher-dimensional geometries.)

For a local operator, this process simplifies to a stochas-
tic dynamics of the boundary of the operator cluster [3,4].
Let the “occupation numbers” nx of the sites be nx = 1
(represented •) if the site is in the string and nx = 0 (repre-
sented as ◦) if it is not. These occupation numbers undergo
a simple stochastic dynamics. We will refer to the occupied
sites (the support of the string) as the cluster. In 1+1D, let xL

and xR be the left and right endpoints of the operator string
(xL � xR). The two points xL, xR obey their own, autonomous,
stochastic dynamics. That is, the dynamics of the boundary
points of the cluster are independent of its internal structure.
When they are separated, each point does a simple random
walk, with a net drift velocity that is equal to −vB for xL, and
+vB for xR, reflecting the tendency of the operator support to
grow with “butterfly speed” vB [24,30]. The two walkers have
a contact interaction when they collide (Sec. IV).

With these simplifications, the dynamics of the operator
string reduces to random classical motion of two points xL(t ),
xR(t ). This reduction is exact in the Haar circuit, but we will
argue later for similar structures in a much broader range of
systems. Loosely speaking, the idea is that the two boundaries
of the cluster are the relevant “slow” degrees of freedom,
because the interior of the string S rapidly reaches a simple
local equilibrium.

This equilibrium is very simple: A given site is equally
likely to be any of the basis operators; e.g., equally likely to
be 1, X , Y , Z in the q = 2 case. As a consequence of unitarity,
the stochastic process preserves this equilibrium state.

III. CLASSES OF TRAJECTORY IN 1+1D

A. Defining line tensions

We now characterize various types of trajectory in 1+1D,
assuming for now that we have a mapping to an effective
stochastic process for a string S like that described above.
In this section we jump ahead to a coarse-grained picture,
anticipating the microscopic calculation of Sec. IV.

We will define three line tensions: one associated with
the spacetime trajectory of the right endpoint of the string
rR(v), one associated with the left endpoint rL(v), and one
associated with their “bound state” rB(v). These determine the
exponential costs associated with different kinds of spacetime
trajectory. In the Markov picture, these costs are “rate func-
tions” setting the probabilities of various kinds of rare event.

To define rR(v), imagine a semi-infinite cluster, with xL →
−∞ and xR(0) = 0, that is initially equilibrated in its interior.
At a large time t , the probability that xR(t ) has traveled a
distance vt (which can be positive, negative, or zero) scales
as

P[xR = vt] � exp (−seq rR(v) t ). (19)
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rL(v) is defined analogously by considering a left endpoint
of an operator that is semi-infinite in the opposite direction.
The rate functions rR,L(v) are non-negative, convex functions
of v. Each vanishes at a single velocity, which is the butterfly
velocity vR,L for the corresponding endpoint. This is because
if vR is the typical velocity for the right endpoint, then rR(vR)
must be zero.

Next, consider a cluster of finite size supported initially be-
tween [xL(0), xR(0)], and consider the probability that at time
t the endpoints have advanced by a distance vt to [xL(0) +
vt, xR(0) + vt]. Taking the limit of large t with xR(0) − xL(0)
fixed, there are two possibilities for the nature of the trajec-
tories. Either the typical separation xR − xL remains of order
1 throughout the trajectories, or the typical separation during
the trajectory [defined say as xR(t/2) − xL(t/2)] diverges in
the large t limit. In the former case we say that the endpoints
are bound together, for the given velocity v, and we define the
bound state line tension using the above probability,

P[(xL, xR)t = (xL, xR)0 + vt] � exp (−seq rB(v) t ). (20)

rB(v) is well defined, for a given v, only if bound trajecto-
ries dominate over trajectories in which xL and xR wander
parametrically far apart. The cost of trajectories of the latter
kind can be computed using the line tensions rR,L for isolated
endpoints, and is ∼ exp ( − seq[rR(v) + rL(v)]t ). Therefore,

if xL, xR are bound at velocity v,

then: rB(v) � rR(v) + rL(v). (21)

While rR,L(v) are well defined for any v (if we allow infinity
as a value), rB(v) is only well defined in a range where (21)
holds. This range could be empty.

Figure 2 illustrates a scenario, which holds in various
1+1D random circuits: the bound state exists for large enough
speed, but is absent below a critical speed vc at which (21)
becomes an equality.

B. Some symmetry relations

We have already mentioned that

rR(vR) = 0, rL(vL ) = 0. (22)

Additional constraints follow from symmetries. For simplic-
ity, we continue to assume the effective Markovian picture,
which holds for Grms in the random circuit (we defer a discus-
sion of symmetry constraints in the more general setting to the
future).

Time-reversal symmetry, which is present in the random
circuit after averaging, leads to detailed balance in the ef-
fective Markov process of the string S , which gives the
constraints

rR(v) = rR(−v) − 2v, (23)

rL(v) = rL(−v) + 2v, (24)

rB(v) = rB(−v). (25)

For example, the first of these comes from the relating the
probability of the process xR → xR + d (for a semi-infinite
cluster) to the probability of the reverse process xR + d → xR.

FIG. 2. Schematic of (a) rL (v) and rR(v) and (b) r(v). We show
the case where a bound state exists for v > vc but not for v < vc (as
in the Haar circuit). See Eq. (34).

The ratio of these probabilities is the inverse of the ratio of
equilibrium probabilities for the two possible situations, and
this is simply computed because the equilibrium state of a
string is trivial—see Appendix A.

Spatial reflection (parity) symmetry, which is also present
in the the random circuit after averaging, gives the symmetry
relations

rL(v) = rR(−v), rB(v) = rB(−v). (26)

Finally, in the mapping of Grms in the random circuit to an
effective Ising model that is discussed in Sec. VI, the replica-
like symmetry of the Ising model implies

rR(v) = rL(v) − 2v. (27)

Equation (27) is also implied by the combination of time
reversal and parity, but the Ising picture implies that it re-
mains valid if these symmetries are broken [31]. Equation (27)
means that in the random circuit rR and rL can be written in
terms of a single function as

rR(v) = E2(v) − v, rL(v) = E2(v) + v. (28)

The quantity E2(v) is an “entanglement line tension” associ-
ated with the averaged purity [33,34], as discussed in Sec. VI.

At this point we have two independent functions, the line
tension rR(v) for a single endpoint, and the line tension rB(v)
for a bound state. A further simplification special to the 1+1D
Haar-random brickwork circuit means that there rB(v) can
also be expressed in terms of E2(v), so that in that particular
case all of the functions introduced in this section can be
expressed in terms of a single function.

Let us briefly relate the line tension functions rL,R(v) de-
fined above to the OTOC, defined as

OTOC(x, t ) = − 1
2 〈[O(0, t ),O(x, 0)]2〉. (29)

An effective lightcone may be defined using the OTOC: it
includes those velocities v such that OTOC(vt, t ) saturates
to unity at large t . In 1+1D the lightcone is given by left
and right butterfly velocities (vL, vR). For rays outside this
lightcone there is exponential decay [6,7,35],

OTOC(x, t ) � exp (−seqλ(v)t ), (30)

which defines another rate function λ(v). This is simply re-
lated to rR,L(v).

In the random system, we must be more precise by spec-
ifying a type of average on the left-hand side. In the random
circuit, OTOC(x, t ) is proportional to the probability [in the
Markov process for a string that starts at (0, 0)] that (x, t )

224310-5



NAHUM, ROY, VIJAY, AND ZHOU PHYSICAL REVIEW B 106, 224310 (2022)

lies inside the string [3,4,12,36]. Typically the right endpoint
xR travels at velocity vR, and the left endpoint at vL, so that
λ(v) = 0 within the lightcone. For v > vR, λ(v) is set by the
probability that xR travels atypically far, so

λ(v) = rR(v) for v > vR, (31)

λ(v) = rL(v) for v < vL. (32)

C. Fat and thin trajectories

The trajectories contributing to G(x, t )2 have
xL(0) = xR(0) = 0 and xL(t ) = xR(t ) = vt , where v = x/t .
Since the dominating trajectories can be either fat or thin, we
have

Grms(x, t ) � exp ( − seq r(v) t ), v = x/t, (33)

with

r(v) = 1

2
×

{
rR(v) + rL(v)
rB(v), (34)

with the second line on the right-hand side holding whenever
the bound state exists, in which case the second line is smaller
than the first. Using reflection symmetry, rL(v) = rR(−v), and
the identity Eq. (23) we can simplify the first line,

r(v) =
{

rR(v) + v

1
2 × rB(v).

(35)

Equations (33) and (35) specify the exponential decay rate that
gives the leading scaling of ln G2 at large times. There are of
course also subleading terms (Sec. IV D).

Figure 2 in the previous subsection shows the type of
nonanalyticity we can have in r(v). In a range of |v| at large
|v| we must choose the lower branch of the figure (the bound
state tension).

IV. BINDING TRANSITION IN HAAR CIRCUIT

A. Calculation in cluster picture

Here we compute r(v) for the Haar-random brickwork
circuit using the mapping to a stochastic process. This reveals
an unbinding transition for the two paths xL(t ′) and xR(t ′) at
a critical speed vc. In the Haar circuit, vc coincides with the
butterfly velocity, vc = vB.

At the end of Sec. II C and in Appendix A we reviewed a
mapping of the operator dynamics to a Markov process. This
yields simple Markovian dynamics for the endpoints of the
operator. Because of the brickwork structure of the circuit, it
is better to think of the endpoints xL,R as living on bonds of
the 1D spatial lattice, rather than on sites [3,4]. To do this, we
simply associate a site of the spatial lattice, at a given time
t ′, with one of its adjacent bonds: namely the one, which will
receive a unitary in the next time step. In this subsection we
will label bonds by integers. Then xL,R(t ′) is an even or an
odd integer depending on whether t ′ is even or odd, but the
transition probabilities for xL,R are time-translation invariant.

In each time step xL changes be either +1 or
−1, and similarly for xR. The transition probabilities,

FIG. 3. The structure of the brickwork circuit. Crosses label the
left and right boundaries of the Pauli strings in the time evolved
operator O(0, t ).

denoted

W [xL(t ′ + 1), xR(t ′ + 1); xL(t ′), xR(t ′)], (36)

are as follows, in terms of a probability p ≡ 1/(q2 + 1):
(i) If xL(t ′) 
= xR(t ′), then W factorizes into separate

probabilities for each walk. The right-hand walker xR has
probability 1 − p for a step to the right and p for a left step,
and vice versa for the left walker. xR is biased towards right
steps (since p < 1/2), and vice versa for xL, leading to the
nonzero butterfly speed vB = 1 − 2p.

(ii) If the two walkers coincide, xL(t ′) = xR(t ′), then the
probabilities are: p if the two walkers remain together in
the next time step (i.e., if xL and xR either both increase or
both decrease); and 1 − 2p if the walkers separate (i.e., xL

decreases while xR increases). We will see below that it is
convenient to separate out factors of 1 − p and p by writing
these weights in the form

p = p(1 − p) × V × E , 1 − 2p = (1 − p)2 × V, (37)

with V and E defined in Eq. (39) below.
The correlator G2 of interest maps to a partition functions

for two paths with the schematic form

Z (x) =
∑

wL,wR

∏
t ′

W [xL(t ′ + 1), xR(t ′ + 1); xL(t ′), xR(t ′)],

(38)
where wL denotes the full trajectory xL(t ′) of the left walker
and the boundary conditions involve both walks starting at 0
and ending at x.

We can think of the walks as trajectories on a square lattice
whose axes are rotated by 45 degrees with respect to the
space/time axes, and whose sites are in correspondence with
the unitary blocks, see Fig. 3 above and Fig. 4 below. When
the walkers are separated, the weights W consist of factors
of p and 1 − p. The writing of the weights above shows that
there is an additional weight V when the two walkers meet at
a vertex of the rotated square lattice, and an additional weight
E when they share an edge of the lattice, with (see Fig. 4)

V = 1 − 2p

(1 − p)2
, E = 1 − p

1 − 2p
. (39)

Since the total number of right and left steps for each walker
are fixed by the boundary conditions of the trajectories, we
can factor out the p and 1 − p terms. Up to an unimportant
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FIG. 4. Two walks on the 45-degree-rotated square lattice. When
the left walk xL (t ) (red) and right walk xR(t ) (blue) meet at a vertex
(green) or share an edge (purple), there are factors in the effective
Boltzmann weight, given by Eq. (39) and indicated in the figure.

boundary term from the final time step,

Z (x) = [p(1 − p)]t
∑

wL,wR

V (#shared
vertices) E

(
#shared
edges

)
. (40)

The question is whether the interactions in Eq. (40) lead the
paths to bind. Thanks to translation invariance of the weights,
this reduces to a transfer matrix calculation involving only the
relative coordinate � = (xR − xL )/2. We find that the transfer
matrix has a bound state when the net speed |v| = |x/t | of the
paths is larger than a threshold [37].

In more detail, define

� = xR − xL

2
, X = xL + xR

2
, (41)

where � ∈ {0, 1, 2, . . .}. We can sum over the endpoint x
to define the partition function with a fixed “force” on this
endpoint,

Z (μ) =
∑

x

e−μxZ (x). (42)

We describe in Appendix B how this can be written using a
transfer matrix for the relative coordinate �,

Z (μ) =
∑
{�}

∏
t ′

T�(t ′+1),�(t ′ ), (43)

where the μ dependence is in the transfer matrix T .
The variable μ in Eq. (42), which is conjugate to the to-

tal displacement x = vt , determines the saddle-point velocity
v = v(μ) of the trajectories that dominate the partition func-
tion. By the definition of r(v),

lim
t→∞ t−1ln Z (μ) = − min

v
(μv + 2seqr(v)). (44)

The minimization determines the relation between v and μ.
The left hand side above is the logarithm of the leading
eigenvalue of the transfer matrix, which is easily obtained
(Appendix B).

FIG. 5. The rate function r(v) for the Haar circuit for q = 2 and
q = 3 (solid lines). Arrows show the phase transition points. The
dashed lines are the analytic continuations of the |v| < |vB| forms.

We find that there is a bound state for speeds greater than
vc, with

vc = q2 − 1

q2 + 1
. (45)

Remarkably, in this particular model this coincides with the
butterfly speed. In the present approach that looks like a co-
incidence: in Sec. VI we will explain it using the mapping of
the Haar circuit to an Ising-like statistical mechanics model.

The rate functions may be written in terms of a single
symmetric function of v,

E2(v) =
ln q2+1

q + 1+v
2 ln 1+v

2 + 1−v
2 ln 1−v

2

ln q
, (46)

whose interpretation is reviewed in Sec. VI [33,34]. They have
the remarkably simple forms

rR(v) = E2(v) − v, (47)

rL(v) = E2(v) + v, (48)

rB(v) = E2(v) + |v|. (49)

From Eq. (34), the rate function for the two-point correlator
Grms is

r(v) =
{
E2(v) for |v| < vc,
(E2(v) + |v|)/2 for |v| > vc. (50)

This form is shown in Fig. 5 for local Hilbert space dimension
q = 2 and q = 3. The nonanalyticity at vc is quite weak,
because E ′

2(vB) = 1 so that r′(v) is continuous. The above
forms have the property r(vB) = vB, because of the general
relation E2(vB) = vB.

Monte Carlo simulations of trajectories that confirm the
above predictions have been reported in Ref. [38]. They
clearly show the bound/unbound phases at v ≶ vc.

224310-7



NAHUM, ROY, VIJAY, AND ZHOU PHYSICAL REVIEW B 106, 224310 (2022)

B. Bound state size

The typical bound state size for |v| > vc is (Appendix B)

�typ(v) = 2

ln
(

1
q2 × 1+|v|

1−|v|
) . (51)

This size diverges (with a critical exponent equal to −1 [39])
as the speed |v| tends to vc from above. It vanishes as the speed
tends to the maximal speed (unity) allowed by the geometry
of the circuit. This means that spacetime trajectories simplify
in this limit. This phenomenon should occur in a larger class
of systems, allowing a perturbative treatment of correlators at
large speed.

The result for r(v) can also be obtained from the Ising
mapping, where the appearance of E2(v) is much clearer, see
Sec. VI.

C. More general models: vB and vc

A remarkable feature of the Haar circuit is that the unbind-
ing speed vc coincides with the butterfly speed vB, meaning
that in principle the butterfly velocity could be determined
from the two-point function. However, this identity does not
hold for all 1+1D systems or even for all 1+1D local random
circuits. For example, we can induce vc < vB by introducing
unitaries that act on pairs of spins at separation larger than 1,
as we will discuss in Sec. V below. In fact it is possible to
construct circuits in which the trajectories are bound for all v.
We expect, but have not proved, that it is also possible to have
the reverse situation vc > vB [40].

Nevertheless, the result in the previous section raises the
question of whether there is a way to determine the butterfly
velocity vB from a two-point function that works more gen-
erally. One possibility may be to use the relation rR(vB) = 0:
if trajectories are unbound at vB, then this relation together
with the relations for rL,R from reflection and time-reversal
symmetry (Sec. III B) suffices to fix r(vB) = vB. In a large
finite system with boundaries, the two-point function between
an operator at the left boundary and one at the right boundary
can also give a nonanalyticity at vB that could in principle also
be used to detect vB; this is discussed in Sec. VI.

D. Average versus typical

So far we have discussed the average Grms in the random
circuit and established the basic picture for the two phases. A
natural question is how this differs from G in a specific real-
ization of the circuit, or from the typical value Gtyp defined in
Eq. (16). This subsection discusses these more subtle issues.
Some readers may prefer to skip ahead.

The main claims in this subsection are: (1) Going from
Grms to Gtyp slightly modifies the quantitative values of the
rate functions, but the basic picture relating them to line
tensions for different kinds of trajectory remains intact. (2)
In a given realization, randomness of the unitaries leads
to universal subleading terms in ln G with Kardar-Parisi-
Zhang/directed polymer exponents [41,42].

As we have discussed, G2 is governed in the scaling limit
by an effective classical partition function for either a single
path (representing the bound state) or a pair of paths (rep-
resenting the two endpoints). The weights in this effective

partition function are translationally invariant. In a given real-
ization of the random circuit, we conjecture that in the scaling
limit G is governed by a similar classical partition function
for paths whose weights are no longer translation invariant,
but include quenched disorder (including random signs). The
typical properties of these paths will be captured by Gtyp in
Eq. (16).

A slightly more detailed picture for this, in the bound
phase, is given in Appendix H. In the unbound phase a more
quantitative analysis of the effect of disorder could be at-
tempted using the approach of Ref. [16], but we do not attempt
this here. Instead we summarize the consequences of this
conjecture regarding the effects of disorder.

Disorder will “dress” the rate functions, so that the asymp-
totics of Gtyp involve rate functions rtyp

R,L,B(v) that in general
differ from the rate functions rR,L,B(v) calculated above for
Grms. We expect this dressing effect to be quantitatively small
in the Haar circuit (see footnote below), so that the rate func-
tions r and rtyp are numerically close. (In Sec. VII we study
another random model, where the effect of dressing again
seems to be small.)

Spatiotemporal disorder also changes some universal prop-
erties of the paths, which will now be those associated with
directed polymers in a random medium (a well-studied prob-
lem [41,42]). The distinction between bound and unbound
phases still makes sense for paths in a random potential [43].
One effect of disorder will be on universal subleading terms
in ln G.

For simplicity, consider the bound regime, where after
coarse graining we have only a single path to consider. For
Grms, the mapping to a random walk means that

G2
rms ∼ c(v)√

t
exp (−seqrB(v)t ), (52)

where c(v) is a function of v only. For Gtyp, or indeed G
in a single realization of the circuit, there is a characteristic
subleading term in the free energy of order t1/3 [41,42],

G ∼ exp

(
− seq

2
rtyp

B (v)t + t1/3χ + . . .

)
. (53)

Here rtyp
B (v) is self-averaging, i.e., independent of the real-

ization. χ = χ (x, t ) is a random variable that depends on
the realization, but which is of order 1; for Gtyp, we use the
average value of χ , which is nonzero.

Disorder also changes the typical lengthscale for wander-
ing of the paths (for example, tα in Fig. 1) from the diffusive
scale t1/2 to t2/3.

Finally let us note some more subtle points. The first is to
do with the sign of G. In the bound phase, G (in a realization)
is essentially a partition function for a path with random
weights of both signs [15,45–47], see Appendix H. These
random signs mean that G = 0 in the Haar circuit. In more
general spatiotemporally random models G is not identically
zero, but nevertheless G/|G| � 1 for generic 1+1D models
with spatiotemporal randomness (see Appendix H for a com-
parison with higher dimensions).

Second, the quantities rR,L(v) computed for Grms obey
identities relating them to a quantity λ(v) defined using the
OTOC [Eq. (31)] and to a version of the entanglement line
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tension E2(v) (see Sec. VI). Disorder will also “dress” the
values of λ and E2 [48], although this dressing effect is known
to be small in the Haar circuit [49]. It is natural to ask whether
the identities between these quantities still hold when dressing
is taken into account. We leave a proper investigation of this
to the future. We do expect the identity rtyp

R (vB) = 0 to remain
valid. On the other hand the relation between rB(v) and E2 [the
second line of Eq. (50)] is special to Grms in the Haar circuit,
as shown in Sec. II C.

For the most of this paper we will put the subtleties dis-
cussed in this section aside, for the following reason. If our
ultimate aim is to model translationally invariant systems,
the simple translationally invariant effective model that arises
from Grms may be a more useful guide. We will return to this
in Sec. VIII.

V. HIGHER DIMENSIONS

For unitary dynamics in higher spatial dimensions (d > 1)
composed of Haar-random, local unitary gates, the root-mean-
square correlator Grms(x, t )2 = G(x, t )2 [Eq. (15); recall
that · · · denotes an average over the choice of Haar-random
unitary gates] is described by a classical Markov process for
the growth of a d-dimensional cluster. The support of the
cluster at time t is labeled by a binary occupation number
ny,t ∈ {0, 1} denoting an unoccupied or occupied site of the
cluster, respectively. The cluster trajectories in the description
of Grms(x, t )2 must obey the boundary conditions ny,0 = δy,0

and ny,t = δy,x so that the cluster is exclusively supported at
a single site at the initial and final times. Since the cluster’s
typical behavior without this final-time condition would be
to grow ballistically outwards, the cluster trajectories con-
tributing to Grms(x, t )2 describe rare events. In this section, we
argue that the cluster remains thin throughout these trajecto-
ries in dimensions d � 2, for any velocity, in stark contrast to
the one-dimensional case. We argue that this conclusion—that
the trajectories contributing to G(x, t ) are thin for all v—holds
generally for chaotic models in higher dimensions, even when
there is no mapping to a classical Markov process.

For concreteness, we specialize to spatial dimension d =
2. Consider a “fat” spacetime trajectory, which grows to a
large size with linear dimension ∼tα (α > 0) at intermediate
times: We will argue that the contribution of such trajecto-
ries to to Grms(x, t )2 is suppressed. This contribution may be
understood in terms of an effective coarse-grained Markov
process for the one-dimensional boundary of the cluster. At
a given intermediate time in the evolution, we may focus
on a portion of the cluster boundary, of a linear extent �

that is much larger than the lattice spacing but much smaller
than the average radius of curvature ∼tα of the cluster. We
assume that, after coarse graining on scales ��, this portion
is approximately flat, with outward normal vector oriented in
the direction θ .

In the absence of conditioning, the cluster boundary will
on average advance in the direction of its normal at a butterfly
speed vB(θ ), which in general depends on θ [3]. Advancing
(or retreating) with any other speed is a rare event. By spa-
tiotemporal locality, the probability that this portion of the
cluster boundary subsequently evolves with a constant normal

velocity of magnitude v over time interval �t scales as

P � exp[−��t γ (v, θ )], (54)

where the surface tension γ (v, θ ) vanishes when v = vB(θ )
and is positive for all other velocities. Therefore, unless it
grows outwards at the butterfly speed, this patch of the cluster
boundary incurs a cost in probability, which is exponentially
small in the surface area of the spacetime trajectory.

In a “fat” history of the cluster, the local growth rate of the
cluster boundary must differ from the butterfly speed, at most
points on its “worldsurface”, on order to meet the condition
that the cluster is of size 1 at the initial and final times. It
follows that the overall contribution of a “fat” history of the
cluster to Grms(x, t )2 is exponentially small in the total surface
area of the trajectory traced out by the boundary of the cluster.
“Thin” trajectories of minimal surface area, where the cluster
remains an O(1) size at any point in the evolution, are thus
always favored so that a binding/unbinding transition in the
histories of operator trajectories is not expected to occur in
dimensions d � 2.

We anticipate that this scaling argument also applies to
the operator histories contributing to two-point correlations
G(x, t ) in generic, chaotic models even when there is no
exact mapping to a classical Markov process (and even in the
presence of conservation laws). In this setting, a membrane
tension may still be associated with fat operator trajectories
(Sec. VIII), which penalizes local growth rates that deviate
from the butterfly velocity, so that thin trajectories are always
preferred.

Our result is confirmed in numerical simulations of the
Markov process for the cluster in one and two spatial dimen-
sions. In contrast to quantum circuits with a regular brickwork
array of unitary gates considered in previous sections, here
we consider unitary dynamics in which two-site, Haar-random
unitary gates are randomly applied to nearest-neighbor qubits
(on-site Hilbert space dimension q = 2) in both one and two
spatial dimensions. In both cases, one time step of the unitary
evolution in an N-site system is defined by the application of
N/2 gates so that each site is acted upon by a single gate
on average in a single time step. Simulations of the Markov
process for the 1+1D brickwork circuit, using Monte Carlo
on the ensemble of trajectories, were presented in Ref. [38].

In one spatial dimension, we observe that the cluster his-
tories contributing to Grms(0, t )2 have a spacetime volume,
which scales with time as t3/2, as shown in Fig. 6(a). This
behavior is consistent with the dominant contribution being
from fat operator trajectories, which grow to a width ∼t1/2

at intermediate times. In contrast, the spacetime volume of
trajectories contributing to Grms(0, t )2 in two spatial dimen-
sions only grows linearly in time, as shown in Fig. 6(b),
which is consistent with operator histories being thin. Fur-
thermore, an exponential decay of Grms(0, t )2 � exp(−�t )
in time is observed in Fig. 7 in two dimensions. Here
� = 2seqr(0) = seqrB(0) in our conventions. An approxima-
tion to this decay rate is obtained by analytically summing
over all cluster trajectories, which remain maximally thin dur-
ing the evolution, so that the cluster is supported at a single
site at any time. In Appendix D, we demonstrate that this
“thin cluster approximation” gives an estimate Grms(0, t )2 =
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(a) (b)

FIG. 6. Scaling of the spacetime volume of clusters in the clas-
sical Markov process, which contribute to G(0, t )2 in dynamics with
randomly-applied two-site unitary gates in (a) one and (b) two spatial
dimensions. The growth of the spacetime volume as t3/2 in (a) is
consistent with the growth of operators to a large size at intermediate
times in one dimension, while the linear scaling in (b) suggests that
operator histories remain an O(1) size in two spatial dimensions.

exp (−�thin(q)t ) where

�thin(q) = q2 − 1

q2 + 1
(55)

and q is the on-site Hilbert space dimension. A comparison of
this approximation to the data can be seen in Fig. 7.

These results for higher dimensions also suggest a way
to modify a 1D model so as to remove the unbound phase.
Loosely speaking, a basic lesson of the foregoing is that
spacetime operator trajectories with a large surface area are
suppressed. Therefore, consider a quasi-1D system in the
shape of a cylinder that is infinitely extended in the x direction
and of circumference � in the y direction. The circumference
� will be taken finite, but sufficiently large. In this setup, a
bound trajectory can be constructed using operator clusters

FIG. 7. The behavior of G(0, t )2 in Haar-random unitary dy-
namics with randomly-applied two-site unitary gates in two spatial
dimensions is shown in blue. An approximation of this quantity by
analytically summing over “maximally thin” trajectories of clusters
in the classical Markov process is shown in green.

of size ��, so that the surface area in spacetime does not
grow with �. However, in an unbound trajectory, the x extent
of the clusters becomes arbitrarily large (by definition), and
therefore much larger than �. In this situation the cluster fills
up the periodic direction, and the surface area in spacetime
scales with �, giving exponential suppression in �. Therefore
if � is large enough the bound trajectories are guaranteed to
dominate. We can also achieve a similar effect in a strictly
1+1D circuit by including gates with a longer range (this
has the effect of increasing the effective surface area of the
cluster).

VI. ISING PICTURE FOR HAAR CIRCUIT TRANSITION

A. Setup and calculation

In Sec. IV, we mapped G2(x, t ) to a rare event probability
in a Markov process for the two endpoints of the operator
string. In that picture, the transition in r(v) was interpreted
as a binding transition for these endpoints. We also found that
the rate function r(v) could be expressed in terms of the func-
tion E2(v). This function is referred to as an “entanglement
line tension” since it also determines entanglement generation
[33,34,50,51].

In this section we provide a complementary perspec-
tive by mapping G2(x, t ) to an Ising-like lattice magnet
[3,4,16,17,20,34], where the entanglement line tension func-
tion emerges naturally [33,34]. We first give a schematic
review of this mapping.

When written as a tensor network, the dynamical quantity
G2(x, t ) contains two forward-evolving copies of the circuit
[i.e., of the evolution operator U (t )] and two backward-
evolving copies [i.e., of U (t )∗, complex conjugated in a given
basis]. We can imagine these as stacked on top of each other
so that they share the same (x, t ) coordinate system. Inside,
each individual two-site gate u is replicated (stacked) to give
a tensor u ⊗ u∗ ⊗ u ⊗ u∗. Altogether, this replicated tensor
has 8 input legs and 8 output legs, each of dimension q, so
is formally an operator acting on a q8-dimensional Hilbert
space. However, the Haar average over u [52–54] transforms
u ⊗ u∗ ⊗ u ⊗ u∗ into a projection operator that projects down
to a two-dimensional subspace of this large space, with basis
states labeled {+,−}. These ± states are our Ising spins.

Formally these two states represent two ways of pairing up
the four layers 1, 1̄, 2, 2̄ in the stacked circuit. The two pairing
patterns are

(56)

Physically, pairings arise in a way analogous to the discus-
sion in Sec. II C: most Feynman trajectories of the multilayer
circuit will be killed by phase cancellation when the Haar
average is performed. Those that survive have a locally paired
structure that allows compensation of opposite phases from u
and u∗ layers.

After averaging, G2(x, t ) is a partition function Z for a 2D
lattice model of Ising spins, with one spin for each “block” in
the initial unitary circuit, and with boundary conditions that
we specify below. These boundary conditions induce domain

224310-10



REAL-TIME CORRELATORS IN CHAOTIC QUANTUM … PHYSICAL REVIEW B 106, 224310 (2022)

walls in the bulk. The rate function r(v) is proportional to the
free energy of this effective 2D model, defined here as − ln Z .

The same Ising model, but with different boundary con-
ditions, can also be used to compute other quantities, such
as the purity of the time-evolved state. Its properties are best
understood in terms of domain walls between + and −. The
geometry of these domain walls is highly constrained. Events
in which a pair of domain walls annilate, as we proceed
upwards in the time direction, are forbidden [55]. Since an
annihilation event is also an event in which a domain wall
“turns around”, this leads to a simple picture in terms of
domain walls that are directed in the time direction. At large
scales these are characterized only by a line tension, defined
as the free energy divided by the temporal extent. Due to
homogeneity after averaging, this line tension only depends
on the local velocity v = dx(s)/ds. The explicit expression
for a single isolated domain wall is in Eq. (46).

For left-right symmetric systems, the domain wall tension
satisfies

E2(v) � |v|, E ′′
2 (v) � 0, (57)

E2(vB) = vB, E ′
2(vB) = 1. (58)

where vB is the butterfly velocity. These constraints indicate
that the line tension function is a convex function whose graph
is tangential with that of the function |v| at ±vB.

Returning to the quantity G2(x, t ), we now determine
the equilibrium domain wall configurations. Here we give a
coarse-grained picture, details are similar to Refs. [3,4,16]. To
begin with we consider a spatially infinite system.

If we take the local operators whose correlator we are
computing to be identity operators, then we find that all the
spins in the system are equal to +, and the partition function
is equal to 1, giving a trivial correlator as expected. Here we
take the local operators to be traceless. Then we find that
at the top (final time) boundary of the spacetime patch, all
the spins, with the exception of that at the location of the
operator insertion (x, t ), are forced to be +. At the bottom
(initial time) boundary, the spin at the location of the operator
insertion (0,0) is forced to be −. The other spins on the
bottom boundary can be either + or −, but each − spin on
the bottom boundary incurs a free energy cost 2 ln q = 2seq,
corresponding to a cost seq per unit length of boundary (since
each Ising spin is associated with a two-site unitary gate).

These boundary conditions, together with the fact that do-
main walls cannot annihilate in the bulk, imply that a pair
of domain walls must span the system from the bottom to
the top, where they meet at (x, t ). The dynamical quantity
G2(x, t ) is therefore determined by the free energy of the two
nonintersecting domain walls, see Fig. 8.

We now find the configurations that minimize the total free
energy ftot. In general, in the scaling limit, the left and right
domain walls will be straight lines with some velocities v1 and
v2 [56]. The total free energy is a sum of the domain wall free
energies tseqE (v1,2) together with a possible contribution from
the bottom boundary. The boundary contribution is present if
v1 > v2 (as this leads to − spins on the boundary) and is equal

FIG. 8. Some disallowed [(a)–(c)] and allowed (d) configurations
of Ising spins for G2. Time runs upwards. At the bottom the site (0,0)
where the initial operator is placed must lie in a domain of −. Thus
(a) and (b) are not allowed. Domain wall annihilation events (note
that time runs upwards) are forbidden in the bulk: for this reason
configuration (c) is not allowed. The absence of annihilation events
also means that a − domain must propagate all the way up to the top
of the sample. At the top boundary, − is allowed only at the point
(x, t ) where the other operator is inserted, so the domain pinches
off there as in (d), which shows an allowed configuration. Allowed
configurations consist of two domain walls connecting the bottom
boundary to the point (x, t ) at the top. Next, free energy minimization
ensures that the domain walls are straight at the largest scales, with
fixed velocities, see Fig. 9.

to tseq(v1 − v2). Altogether

f = tseq[E2(v1) + E2(v2) + (v1 − v2)], (59)

which must be minimized over v1,2 within the allowed ranges.
It is convenient view the configuration as containing two

paths from (0,0) to (x, t ). One of these paths may contain a
segment of the bottom boundary; see Fig. 9(b).

Let the free energy of the left and right paths be seq fL(v)
and seq fR(v) respectively (one of these may include a bound-
ary contribution). Note that the parameter v = x/t is the
velocity of the ray connecting the operator insertion points
(not necessarily equal to the velocity of a given domain wall).

FIG. 9. Equilibrium configurations for (a) v � vB and (b) v �
vB. Here we have taken v > 0: the left domain wall then always has
slope x/t = v. This figure shows the geometry on scales of order t .
The wandering of the domain walls on scales much smaller than t is
not shown. For example, in (a) the left and right domain walls wander
apart by an amount of order

√
t .
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Since the problem is symmetric, we have fL(v) = fR(−v) and
only need to work out fR(v).

Let the right domain wall start at (x0, 0) with x0 � 0. The
boundary cost is seq x0. Hence at leading order, we compute
the free energy as an optimization over domain wall slope,

seq fR(v) = seq min
x0�0

(
E
(

x − x0

t

)
+ x0

t

)
= seq min

−1�v2�v
(E (v2) − v2 + v). (60)

According to the properties of the line tension function in
Eq. (57), the minimum is

fR(v) =
{
E (v) if v � vB (in which case v2 = v)

v if v > vB (in which case v2 = vB).
(61)

The domain wall configurations for these two cases are pre-
sented in Fig. 9. We infer the free energy of the left path by
symmetry

fL(v) =
{
E (−v) v � −vB

− v v < −vB
. (62)

Summing them up, we have

r(v) = fL(v) + fR(v)

=
{
E2(v) |v| � vB

(E2(v) + |v|)/2 |v| > vB
,

(63)

in agreement with (50). The nonanalyticity is weak because

lim
v↗vB

r(v) = lim
v↘vB

r(v) = vB, (64)

lim
v↗vB

r′(v) = lim
v↘vB

r′(v) = 1, (65)

and the discontinuity occurs in the second derivative at vB.
The rate functions for the random circuit with q = 2 and 3
were shown in Fig. 5.

The result above agrees with that from the calculation in
terms of the operator Markov process, and in fact by consid-
ering slightly more general boundary conditions (in order to
separately control the velocities of the right and left string
boundaries in the cluster growth picture) it can be argued
that rR(v) = E2(v) − v and rL(v) = E2(v) + v, as stated in
Sec. IV. However, the spacetime trajectories that appear in
the present formulation are somewhat different [57]. The dif-
ference comes from a different choice of basis. The ± basis
is nonorthogonal, but it is convenient because it exposes a
+ ↔ − symmetry arising from the possibility of permuting
the layers. The cluster picture used in previous sections arises
from looking at the effective dynamics in a different (orthog-
onal) basis associated with the cluster occupation numbers
{◦, •} discussed towards the end of Sec. II C. The different
pictures are convenient for different calculations [3,4].

B. A special feature of the Haar circuit

In this section (which is not essential to the main develop-
ment) we discuss a more subtle feature of the Ising picture.

We noted above that the domain wall configurations are
highly constrained by unitarity. However, the domain wall

configurations for the Haar brickwork model in fact obey
an additional restriction (beyond those imposed by unitarity),
which is generically relaxed when the distribution of the ran-
dom unitaries is perturbed away from the Haar measure. Such
a perturbation leads to an additional allowed “vertex” in the
effective Ising model, which we discuss here.

It is convenient to use a transfer matrix language to specify
the allowed configurations. For the purposes of this subsec-
tion, we will think of a transfer matrix that acts from the top
of the spacetime patch to the bottom, i.e., we use the transfer
matrix to go backwards by one time step.

Above we associated one Ising spin with each “block” in
the unitary circuit, but in fact the Ising model can equiva-
lently be formulated with one spin ± living at each spatial
site. A local two-site transfer matrix is then associated with
each “block” in the circuit. In the Haar case, the transition
amplitudes for this transfer matrix T̂Haar [see Eq. (E21) in
Appendix E for a more formal statement of the amplitudes]
are

++ → + + with amplitude 1, (66)

++ 
→ + − (forbidden), (67)

+− → + + with amplitude K, (68)

+− 
→ − + (forbidden), (69)

together with those related either by spatial reflection or Ising
symmetry. Here K = q/(q2 + 1).

The prohibition ++ 
→ +− is a consequence of unitarity
[58], and can be given a meaning in any unitary circuit even
without randomness [34]. This rule means that, as we proceed
downwards, it is not possible to nucleate a pair of domain
walls inside a uniform spin domain. (Equivalently, as we
proceed upwards, it is not possible to annihilate an isolated
pair of domain walls.)

In contrast the prohibition +− 
→ −+ is special to the
Haar distribution. This can easily be seen by considering a
modified distribution in which the local unitary has some
probability (1 − p) to be a Haar unitary, and the complemen-
tary probability p to be a “swap” gate that exchanges the states
at the two physical sites. In this ensemble the action of the
single-block transfer matrix is

++ → + + with amplitude 1, (70)

++ 
→ + − (forbidden), (71)

+− → + + with amplitude (1 − p)K, (72)

+− → − + with amplitude p (73)

(together with the symmetry-related amplitudes). The new
“vertex” allows for one domain wall to split into three
(and vice versa), for example + + −− ↔ + − +−. In this
Haar/swap ensemble the new vertex appears with a positive
weight in the transfer matrix, but we can also define ensembles
in which it has negative weight. The Brownian circuit is a
notable example, which is touched on in Sec. VII C.
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FIG. 10. Consequences of the domain wall splitting vertex.
(a) One dominant configuration for v > vB in Haar circuit. (b) Con-
figuration with one domain wall splitting event. (c) Configuration
with multiple domain wall splitting event. Frequent splittings are
favorable due to entropic considerations, leading to a “bound state”
of left and right paths.

Figure 10(b) shows an example of a new spacetime con-
figuration that becomes possible when the new vertex is
included.

We briefly consider the effect of this vertex on the coarse-
grained Ising picture.

First, this vertex will “dress” the local structure of a domain
wall, in a way that changes the quantitative value of E (v)
[34]. For many applications of the Ising picture, including
the calculation of the OTOC and the entanglement purity, this
dressing is the only effect that needs to be taken into account,
so that the structure of the coarse-grained calculation is the
same as for the Haar case.

This will also be true for the present correlator G2 when
|v| < vB, if the two Ising domain walls remain unbound [62].

However, the boundary conditions for G2 are such that
when v > vB the splitting events can also change the large
scale structure of the configurations. This can be seen by
considering the configurations in Fig. 10. For simplicity, we
consider the case where the vertex has a positive weight, so
that the model has a simple classical interpretation.

Configuration (a) shows a domain wall with velocity
v > vB. Configuration (b) is forbidden for the Haar model,
but allowed in a more general model. In this configuration
we have used the “new” vertex to produce two additional
domain wall segments, with velocities ±vB. One may check
that (a) and (b) have exactly the same free energy at leading
order in t . The additional cost in (b) from the bulk domain
walls is compensated by the additional − region on the lower
boundary. (This cancellation is special to the case where these
additional domain walls have the optimal speed vB; other
choices of velocity would give a larger free energy.)

By similar reasoning, we can introduce further insertions
of the new vertex without paying an extensive cost. Figure 10
(c) shows a schematic. It follows that (in order to capitalize
on the entropy of configurations with such insertions) the
dominant configurations will have an extensive number of
insertions of the new vertex. This produces a “thin” domain
of − spins (whose typical width remains finite when t → ∞)
whose coarse-grained speed is v. After coarse graining, this
thin domain can be assigned a line tension. This line tension
is precisely rB(v) (defined in Sec. III), as can be seen by
comparing with the expression [63] for G2 obtained from the
operator cluster picture in previous sections. It should be noted
that the line tension of this thin domain is no longer simply
related to the line tension E2 of a single isolated Ising domain
wall [64].

For the correlator, the main lesson from the above is the
following. We believe that in a general noisy model the quan-
tities rR,L(v) are simply related to the line tension E2(v) of a
single Ising domain wall. (Here we are discussing quantities
involving averages of U ⊗ U ∗ ⊗ U ⊗ U ∗, as relevant to Grms:
other kinds of averages will involve further dressing effects
that we do not compute here, see Sec. IV D.) But for the bound
state rate function rB, there is a simple relation with E2 only
for the simplest averages in the Haar circuit, and not in more
general models.

VII. MODELS WITHOUT A BOUND STATE?

We have calculated the rate functions in the 1+1D Haar
circuit using two different formalisms, and noted a special
feature of this circuit. To get insight into more general 1+1D
models, we now present a numerical case study of 1D models
in which the data is consistent with there being no bound
state for any v. This is interesting because in the absence of
a bound state there is a specific relationship between G(x, t )
and OTOC(x, t ), at large v, which is different from that of the
Haar circuit. However, it is also possible that the models in
this section do have a bound state at large v, just with very
weak binding; this requires further examination.

We will discuss a noisy spin chain model and also the
(qualitatively similar) “Brownian circuit” [35,65–68]. We are
restricted to modest sizes in numerics, so we maximize the
spatial distance x between the two operators by placing them
at opposite ends of a system with open boundaries. We denote
this edge-edge (EE) correlator by GEE(x, t ), where x = L − 1
for an L-site system. We also define OTOCEE(x, t ) as the
OTOC with operators at the opposite ends. As before we
define rate functions

GEE
rms(vt, t ) � exp[−seqrEE(v)t], (74)

OTOC
EE

(vt, t ) � exp[−seqλ
EE(v)t] (75)

Note that v defines the aspect ratio of the space-time rectangle.
For the OTOC the rate function is in fact the same as in

the case where the operators are not at the boundaries, i.e.,
λEE = λ, but we will retain the superscript to indicate how
the numerical data was obtained. We will estimate asymp-
totic values of rEE(v) by computing − ln GEE

rms(L − 1, t )/seqt
for t = (L − 1)/v and extrapolating the data to L → ∞, and
similarly for OTOCEE. See Appendix F for details.

A. Morphologies for edge-edge correlators

Before discussing specific models, let us classify possible
morphologies of the operator history for edge-edge correla-
tors. Note that we are returning to the language of the operator
string, which should not be confused with the Ising language
in Sec. VI.

To simplify the discussion we assume the rate functions
are parity-symmetric, so that the left and right butterfly speeds
are equal: vR = |vL| = vB. In this case there are three possible
morphologies, shown in Fig. 11. The new possibility in the
finite system is the leftmost one, in which the operator string
grows to span the entire system during part of the trajectory.
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FIG. 11. The three possible morphologies of the operator history
for the edge-edge correlators. (a) The system-spanning cluster, which
can appear only for v � vB. (b) The cluster where the boundaries
are unbound and which can appear only for v > vB. (c) The case
where the two strings form a stable bound state, which a priori can
appear for both v � vB and v � vB. In the Haar case, the cluster
shape switches directly from (a) to (c) at v = vB whereas in a model
with no bound state it transitions from (a) to (b) at vB.

The others were already present in the bulk discussion: the
thin (bound) and fat (unbound) trajectories respectively.

Let us now consider a situation where there is no bound
state for any v. Trajectories of the type in Fig. 11(c) are then
never dominant. Then, using the properties of the functions
rR,L in Sec. III A we find that for v � vB, the system-spanning
type configurations are dominant and the nontrivial boundary
segments move at ±vB, as shown in Fig. 11(a). On the other
hand, for v � vB, the morphologies with the unbound strings,
Fig. 11(b) dominate. We therefore have

rEE(v) =
{
v; v � vB

rR(v) + v; v � vB
. (76)

The second line is the expression for the bulk rate function,
in the case where trajectories are unbound. In models where
there is a bound state for some range of velocities, rEE(v) is
the minimum of Eq. (76) and rB(v)/2. The Haar circuit is a
special case where there is a switch from the system-spanning
trajectories to bound trajectories exactly at vB for the edge-
edge correlators (Appendix C).

Here, however, we focus on the case without a bound
state, where Eq. (76) applies. In this case, from Eq. (31) and
Eq. (76), we see that rEE has a very simple relationship with
the rate function for the OTOC,

rEE(v) − v = λEE(v). (77)

We now describe models in which this identity appears to be
obeyed to good precision, which is consistent with the absence
of a bound state (or perhaps a bound state with only very weak
binding at large v).

B. Noisy spin-1/2 chain

In this section and the next we study Hamiltonian models
where the couplings fluctuate randomly in time. Operator
trajectories exist for arbitrarily large speeds in these models,
unlike the brickwork circuit where the circuit geometry im-
poses a strict causal cone at speed 1.

The first such model has a stroboscopic-like protocol where
the Hamiltonian changes whenever time �t has elapsed. The

FIG. 12. Left: r̃EE(v) ≡ rEE(v) − v and λEE (v) defined in
Eq. (75) as a function of v for the model defined via Eqs. (78) and
(79), suggesting that r̃EE(v) = λEE(v) in this case, consistent with the
absence of a bound state. Right: The rates rEE

typ and λEE
typ obtained from

the typical values of (GEE )2 and OTOCEE are close to the those in the
left panel (obtained from the mean).

evolution operator is

U (t ) =
T∏

n=1

exp[−i�tH (n)], (78)

where t = T × �t and

H (n) = J
L−1∑
l=1

ZlZl+1 +
L∑

l=1

[
h(n)

l Zl + g(n)
l Xl

]
. (79)

Here {Xl ,Yl , Zl} are the Pauli matrices at site l , and {h(n)
l }

and {g(n)
l } are uncorrelated random numbers drawn from the

uniform distribution on [h − W, h + W ]. We use �t = 0.2,
J = 0.5, h = 1, and W = 3.

We show the results in Fig. 12 (left) where XX denotes
the case where the two operators are X1(0) and XL(t ), and
similarly for ZZ . (See Appendix F for details.) The data are
consistent with Eq. (77).

The right panel of Fig. 12 shows similar results, but for rate
functions defined using the typical values of G2 and OTOC,
rather than the mean values. The typical and the mean values
are close here, indicating that the “dressing” effects discussed
in Sec. IV D are weak.

C. Brownian circuit

Since the time step �t = 0.2, after which the couplings
in the Hamiltonian (79) change randomly, is quite small, the
model is reminiscent of the “Brownian circuit”—a continuous
time model with fields and spin-spin couplings that fluctuate
like white noise [35,65–68] and which allows for a partial ana-
lytical simplification. We show here that data for the Brownian
circuit is qualitatively similar to that in the previous section.

Averaging over the randomness gives an effective “classi-
cal” description for the Brownian circuit, in continuous time.
As in the Haar circuit, this can be formulated either as a
Markov process in the basis of strings, or, using a different
basis, as an effective Ising model; see Appendix E for details.

First we note that the trajectories of the Markov process
can be shown to simplify if we take the limit v → ∞ at fixed
large x. The left and right operator endpoints xL,R then become
unbound, biased random walkers, i.e., there is no bound state
(we will discuss this elsewhere). This limit v → ∞ at fixed x
is distinct from the limit t, x → ∞ at fixed v, however, it is
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FIG. 13. Left: The cluster mass m for the edge-edge correlator
in the Brownian circuit. Data is shown as a function of velocity
for several L. Right: Effective scaling exponent from a numerical fit
m ∼ a + bLα for the data at a given v.

possible there is a bound phase at large v, with the strength of
binding vanishing only as v → ∞.

We have studied the correlator numerically for general
v using the classical mappings (treating the state as a 2L-

dimensional vector). GEE
rms and OTOC

EE
are shown in Fig. 14

(left). Extracting the rate functions as in Sec. VII B gives
excellent agreement with the identity in Eq. (77), consistent
with G being in an unbound phase.

This suggests that there is no bound state, for any v, in the
Brownian circuit. However, there is an alternative possibility,
which is a very weakly bound state (i.e., with a large typical
size and a small binding energy).

For an initial exploration we have plotted the average
mass m, defined as the average number of occupied sites at
the time t/2 midway through the trajectory (Fig. 13). For
configurations of type (a), (b), and (c) in Fig. 11, this average
mass should be of order L, of order L1/2, and of order 1,
respectively. We find the expected L scaling for v � vB, and
we find the expected L1/2 scaling in the limit v → ∞ (at fixed
L). But for intermediate v the cluster mass is growing with L
but more slowly than L1/2 (see Fig. 13, right) i.e., finite size
effects prevent a conclusion as to which phase we are in. This
could be resolved with Monte Carlo studies of the Markov
trajectories for large t [38].

FIG. 14. Left: The edge-edge correlator, GEE
rms (dashed), and the

edge-edge OTOC for the Brownian circuit for different L. Right: The
corresponding rates rEE and λEE as a function of v follow Eq. (77) to
a very good precision.

VIII. NONRANDOM FLOQUET
AND HAMILTONIAN SYSTEMS

Random circuits are a convenient laboratory for exploring
the structures that we have discussed, but these structures are
also relevant to more conventional many-body Hamiltonians,
which need not have any randomness (and need not have a
circuit structure).

In Sec. II B we began by formulating the sum over operator
trajectories [Eq. (13)] in a given system (i.e., without any
averaging)

G =
∑

St−1,...S1

V(t )
SF ,St−1

. . . V(2)
S2,S1

V(1)
S1,SI

. (80)

We discussed the case of a particular instance of a Haar circuit
in Sec. IV D, but we could also consider a Floquet system with
discrete space and time translation invariance (i.e., without
randomness), or indeed a system with a fixed Hamiltonian and
therefore with continuous time-translation invariance. (In the
latter case there is an additional feature, energy conservation,
which we comment on below.) For simplicity we continue to
use the language of discrete time evolution, but this is not
crucial.

In a particular circuit we no longer have a simple mi-
croscopic mapping to a Markov process. We argue in this
section that the basic structures that we have discussed sur-
vive, in particular the distinction between bound and unbound
phases in 1+1D. We restrict here to a qualitative discussion.

A. Bound phase

The universal physics of the bound phase is the simplest,
and also the most generic once we go beyond 1+1D, so we
start with this. We describe the simplest scenario (additional
features are possible which are mentioned briefly below).

By definition, the dominant operator histories in the bound
phase involve operator strings with a finite typical length ξ .
The simplest scenario is then that coarse graining to scales
beyond ξ gives an effective theory for the path of a point-like
“particle”, i.e., for the position xcm of the operator string.
Heuristically, this particle is then characterized by an am-
plitude Kt ;�t (x′; x) for the particle to propagate from x to x′
in a coarse-grained time interval �t � 1. In the case with
both space and time translation symmetry we can write this as
K�t (x′ − x). K is real, but can be either positive or negative.
At first sight it looks similar to the propagator for Schrodinger
evolution of a particle, but a key difference is that K�t (x′ − x)
is not unitary [69]. This is because we have effectively pro-
jected the full unitary dynamics of the operator string to a
restricted subspace of small strings. This leads to exponential
decay [70]. Below we discuss one way to make this more
precise in the microscopic model.

In the bound phase it is possible to compute the rate func-
tion r(v) = rB(v) perturbatively, taking into account larger
and larger strings at higher order. As discussed below, this
picture of a simple bound phase connects with recent work
in Refs. [21,22] that appeared after the results in this paper
for the random circuit were obtained. The perturbation theory
will simplify in any limit where the typical cluster size (ξ
above) becomes small: for example, in the Haar circuit, this
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happens when v approaches its maximal value, as can be seen
in Eq. (51).

Above we discussed a propagator for an effective “particle”
in a heuristic coarse-grained language. For a practical pertur-
bative computation of the bound state tension we must work
with objects defined directly at the lattice scale. A conceptu-
ally simple possibility, which is practical in the strongly bound
regime, is to use the “short” operator strings (taken to be single
Pauli operators σα) as the starting point, and “integrate out”
events in which the operator temporarily becomes a longer
string. In the strongly bound regime, these events typically
have a short duration. It is possible to define amplitudes for
excursions of any given duration �t outside the subspace of
short strings, in analogy to the discussion of the entanglement
domain wall in Ref. [34] (see also Ref. [72].) In the strongly
bound phase these amplitudes decay rapidly with �t , and they
can be used to extract the rate function while avoiding finite
size effects that would arise from directly fitting the two-point
function.[73]

In Ref. [22], a perturbation theory for correlation functions
in a quantum circuit close to the “dual-unitary” [71,74–82]
limit was developed. In the dual unitary circuit, correlations
are confined to a lightcone, so that the only contributing op-
erator trajectories consist of a cluster of size 1 traveling along
the light cone. The perturbation theory about this limit can be
developed in terms of segments of such paths connected by
vertices [22]. The authors found that there was a regime in
which this perturbation theory was convergent. In the present
language, this regime lies within the bound phase.

The fact that the operator trajectories that dominate
two-point functions involve much smaller strings than the tra-
jectories that dominate the OTOC has practical consequences
for numerical simulations [21,83]. References [21,83] develop
a matrix-product-operator based approach to calculating two-
point functions in the Heisenberg picture (for a model with a
conserved density), which exploits the possibility of discard-
ing long strings.

B. Conserved densities

If the model has a conserved density this will affect the
nature of the trajectories and the rate functions. If for example
the two-point function is sensitive to a diffusive mode, then
for |x| � t we have G(x, t ) ∼ c(v)t−1/2 exp(−x2/2Dt ) (as-
suming parity symmetry), which means that the rate function
close to v = 0 obeys

r(v) � v2

2seqD
+ O(v4) (81)

[in the convention of Eq. (7)]. The dominating trajectories in
this regime of small v are thin ones, that can be thought of
heuristically as being dominated by the short local operators
that represent the conserved density [12,21,36]: for example,
the Pauli Zx operators, in a random circuit with conserved∑

x Zx, or local energy densities in a model with conserved
energy.

Once v is of order 1 (i.e., when x and t are taken to
be large and of the same order) it is no longer guaranteed
that the conserved densities will dominate the correlator: in
principle we might imagine a 1+1D model with a bound

phase at small v (in which the strings had significant overlap
with the conserved density), which gave way to an unbound
phase, dominated by longer strings, at larger v. However, in
spatial dimensions above 1 we expect thin trajectories for
all v, regardless of the presence or absence of a conserved
density, for the reasons discussed in Sec. V.

C. Unbound phase

Above we have discussed how to think about the bound
phase in a particular circuit, without any averaging. The un-
bound phase is perhaps more interesting, since the sum over
diagrams for G in Eq. (80) is more nontrivial, involving space-
time histories, or Feynman diagrams, of spatial width much
larger than the lattice spacing. Here we suggest that a picture
similar to the one we developed in Sec. III survives.

We continue to think of G as a partition function for
spacetime diagrams (cluster histories). A difference from a
standard partition function for a classical model is that the
local weights defining the partition function (determined by
VS,S′ ) can be either positive or negative (they are always real
since we use a basis of Hermitian operators). Nevertheless,
we may try to define free energy densities associated with
different types of local structure. Given the minus signs, this
is only a conjecture.

Consider a cluster whose typical spatial size is much larger
than microscopic scales. The free energy density of the “vac-
uum” outside the operator cluster is manifestly zero (V acting
on the identity gives the identity). There will be a nontrivial
free energy associated with cluster boundary, precisely as in
earlier sections. What remains to consider is the bulk of the
cluster. At first sight we should associate a free energy density
fbulk with this interior. However, we expect that fbulk = 0, in
order to be consistent with operator spreading (for example
when we modify the final-time boundary condition so as to
pick out the weight aS of a long string) [84]. If these as-
sumptions are correct, then we recover a picture like the one
discussed in Sec. III A, with the asymptotics of G(x, t ) in
the unbound phase set by coarse-grained line tensions rL,R.
However, as we have discussed, we expect the unbound phase
to be special to 1+1D models (absent fine tuning).

IX. OUTLOOK

We list some unresolved questions and directions for the
future.

We have argued that it is useful generally to classify space-
time Feynman diagrams according to their coarse-grained
geometry, and to characterize them by line tensions for var-
ious types of paths, and that in 1+1D there can be phase
transitions between distinct classes as a function of velocity
or model parameters. It would be interesting to explore this
phenomenology in other contexts.

First, it would be interesting to explore realistic models
numerically and potentially in experiment.

Numerical exploration of the unbinding transition as a
function of v would benefit from optimized methods for calcu-
lating two-point functions. Directly computing the two-point
function and fitting its asymptotic form is unlikely to be the
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optimal approach, because this involves boundary effects from
the initial and final time.

There is also a numerically more tractable version of the
unbinding transition that could be explored. In 1+1D (if there
are no conservation laws) we can have an unbinding transition
for a correlator at a single position, 〈O(x, t )O(x, 0)〉, as a
function of a parameter in the model. Numerically, the sim-
plest case is where x lies at a spatial boundary of the system.
The parameter driving the transition could be the strength of
a boundary coupling. The trajectories can either “stick” to the
spatial boundary or unbind from it. Since the correlator has
v = 0 this case is less demanding numerically. Therefore this
seems like a promising target for an initial numerical explo-
ration of the binding transition in a translationally-invariant
Floquet system.

In the bound phase with a thin cluster, r(v) is (in principle)
efficiently computable on a classical computer, while at first
sight it is much more challenging to compute r(v) in the
unbound phase due to the large Hilbert space of long operator
strings. However, our results suggest that there should exist
efficient numerical techniques that isolate the contributions
from near the boundary of the cluster, which determine the
rate function. More generally, it is interesting to ask about the
computational complexity of evaluating correlators in various
settings and phases. A transition in complexity as a function
of circuit depth in a dual unitary circuit was found in Ref. [87].

Second, it will be interesting to attempt analytical calcula-
tions in settings where we cannot exploit simplifications from
random averaging.

The bound phase can be handled by a direct perturbation
theory, at least in principle, which should make it possible
to examine a wide range of models quasi-analytically if they
are in this phase. This could include simple quantum field
theories. Spacetime Feynman diagrams may simplify at large
v in some cases, in analogy to the random circuits (both Haar
when v → 1 and Brownian when v → ∞).

The calculations here were for models with a simple
infinite temperature equilibrium state, so that equal-time cor-
relations vanish. More generally they will be present. How do
they modify the spacetime picture?

In the unbound phase, where we have to handle the interior
of the operator string, it may be enlightening to explore further
the simpler setting of lattice models at infinite temperature.
The OTOC can be handled even in the translation-invariant
case by locally separating the multicopy Hilbert space into
different sectors [34,88], but the treatment of the two-point
function may be more subtle.

There are also outstanding questions even within the realm
of random circuits. For example, it would be technically
interesting to study fluctuations of G in the Haar circuit us-
ing replicas [16]. This would shed light on which identities
(Sec. III B) are special to Grms and which hold even at the
level of a single realization of the circuit (this may also shed
light on the status of these identities in translationally invariant
models).

It may be interesting to explore the consequences of the
vanishing vertex weight discussed in Sec. II C for more gen-
eral (e.g., higher-point) correlation functions in the Haar
circuit.

Perturbative calculations may shed light on the phase di-
agram in various limits. The numerics in Sec. VII C did not
show signs of a bound state in the Brownian circuit; this
could be examined further, perhaps using the fact that tra-
jectories simplify when v → ∞. We have argued that the
identity vc = vB is special to the 1+1D Haar circuit; it would
be interesting to calculate vc(λ) and vB(λ) as a function of
a small parameter λ that tuned the random circuit ensemble
away from the Haar ensemble.
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APPENDIX A: REVIEW OF TRANSITION PROBABILITIES

The transition probabilities for the process on Pauli strings
[8–10] or clusters [3,4] associated with the brickwork Haar
circuit (see Secs. II C and IV) are as follows.

Consider a time step where a pair of sites (x, x + 1) receive
a unitary. The operator string on these two sites (which is part
of the possibly larger string S ′) is updated probabilistically.
The trivial string 1 ⊗ 1 is left unchanged by the update. If the
string is nontrivial then the probabilities for the outcomes are
independent of which nontrivial initial string we have to start
with: this string is randomly replaced with any of the other
nontrivial basis operators on these two sites, with equal proba-
bility for each of the q4 − 1 possibilities. For the a qubit chain,
the 15 possible nontrivial strings are of the forms 1 ⊗ σ j , or
1 ⊗ σ j , or σ j ⊗ σ k , for for Pauli labels j, k = x, y, z.

As mentioned in Sec. II C, the string S ′ defines an occupa-
tion number nx for each site, which is equal to 1 (represented
•) if the site is in the support of S ′, i.e., if the site hosts a
nontrivial basis operator, and to zero (represented ◦) if it does
not. The stochastic process above defines a simple stochas-
tic process for these occupation numbers. When a unitary
is applied to a pair of unoccupied sites we have ◦◦ → ◦◦,
i.e., they remain unoccupied. When a unitary is applied to
a pair of sites whose total occupancy is nonzero, then the
outcome is either ◦• with probability p, •◦ with probability
p, or •• with probability 1 − 2p, where these probabilities are
determined simply by the fraction of nontrivial strings that are

224310-17



NAHUM, ROY, VIJAY, AND ZHOU PHYSICAL REVIEW B 106, 224310 (2022)

of each type, giving p = 1/(q2 + 1), i.e., p = 1/5 for the case
of qubits.

The simple, symmetric structure of these rules means that
the endpoints of the operator string S ′ satisfy autonomous
random walk dynamics. The transition probabilities were re-
viewed in Sec. IV.

The stochastic process above satisfies detailed balance with
respect to a simple equilibrium measure in which sites are
uncorrelated, and a given site is equally likely to be any of
the basis operators. Since these include the q2 − 1 nontrivial
operators, together with the identity, this means that in the
equilibrium state a given site is occupied with probability
(q2 − 1)/q2, i.e., 3/4 for a qubit chain.

In Sec. III, detailed balance with respect to this distribution
was used to relate rR(v) to rR(−v), and similarly for rL(v).
There we needed the fact that the state xR + d is more likely
than xR by a factor exp(2seqd ), which in the case of a qubit
chain is 4d . This is just the number of possible states for the
extra length of string in the region (xR, xR + d].

APPENDIX B: TRANSFER MATRIX FOR WALKS

The Laplace-transformed partition function is

Z (μ) =
∑

x

e−μxZ (x). (B1)

In this partition function, the final time boundary condition
for the center of mass coordinate X = (xL + xR)/2 is free (but
there is a “force” μ on this point). The final time bound-
ary condition for the relative coordinate � = (xR − xL )/2 is
�(t ) = 0. The initial boundary conditions are X = � = 0.

The factors of eμ can be absorbed into the weights.
Schematically,

Z (μ) =
∑

{X (t ′ )}

∑
{�(t ′ )}
�(t )=0

∏
t ′

(W × e− μ

2 (δxR+δxL ) ), (B2)

where δxL,R is the change of xL,R in a given time step. We can
sum over the possibilities for the center of mass coordinate
X (t ′), with the trajectory �(t ′) fixed. If δ� = ±1 in a given
time step that means that the walkers move in opposite direc-
tions, so that X (t ′) does not change. If δ� = 0 in a given time
step, then there are two possibilities to sum over, one where
the two walks move to the right, with an additional weight
e−μ, and one where they move to the left, with an additional
weight eμ. We obtain

Z (μ) = [p(1 − p)]t
∑
{�}

∏
t ′

T�(t ′+1),�(t ′ ). (B3)

The sum is now over �(1), . . . ,�(t − 1), with
�(t ′ + 1) − �(t ′) = ±1 and � � 0. T is a semi-infinite
transfer matrix

T = T1T2, (B4)

with

T1 =

⎛
⎜⎜⎝

EM 1 0 0 . . .

1 M 1 0 . . .

0 1 M 1 . . .

. . .

⎞
⎟⎟⎠,

T2 =

⎛
⎜⎜⎝

V 0 0 0 . . .

0 1 0 0 . . .

0 0 1 0 . . .

. . .

⎞
⎟⎟⎠ (B5)

where

M = eμ + e−μ. (B6)

Up to boundary terms that we are not considering here, we
can replace T with the symmetrized transfer matrix T ′ =
T 1/2

2 T1T 1/2
2 ,

T ′ =

⎛
⎜⎜⎝

V EM V 1/2 0 0 . . .

V 1/2 M 1 0 . . .

0 1 M 1 . . .

. . .

⎞
⎟⎟⎠. (B7)

We would like to consider when T ′ has a bound state. If a
bound state is present its form will be

ψ = (1, A, Ak, Ak2, . . .) (B8)

with T ′ψ = λψ , so that

AV 1/2 + V EM = λ, (B9)

A(k + M ) + V 1/2 = Aλ, (B10)

1 + Mk + k2 = kλ. (B11)

To find the point at which the bound state appears, we fix k =
1; this gives

Mc = q2 + q−2 �⇒ eμc = q2. (B12)

The bound state exists when |μ| is larger than μc. When |μ|
is smaller than μc there is no solution with k < 1.

Next we ask what critical velocity this corresponds to.
The velocity is a function of μ, which will be continuous
but nonanalytic at μc. This is easy to determine for |μ| < μc

(no bound state). Since the walks then wander far apart we
can neglect the contact interactions, and the factors of p and
(1 − p) are independent of v, so the the only weights we
need take into account are factors of eμ/2 or e−μ/2 each time
one of the walks takes a step to the left or right respectively.
Averaging over these possibilities gives the velocity in the
unbound regime,

v(μ) = eμ/2 − e−μ/2

eμ/2 + e−μ/2
for |μ| < μc, (B13)

so from (B12) the critical speed (above which there is a bound
state) is

vc = q2 − 1

q2 + 1
. (B14)

This critical velocity coincides with the butterfly speed vB in
the circuit.

In the unbound regime, where the two walks are well-
separated, the scaling of the partition function is given by the
rate functions for isolated walks, so it is enough to consider
the unconstrained dynamics of an isolated xR walker. The
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probability to travel a distance x is

PR(x) = (1 − p)(t+x)/2 p(t−x)/2

(
t

(t + x)/2

)
. (B15)

Setting PR(x) ∼ exp ( − seqrR(v)t ), with seq = ln q and v =
x/t , this gives

rR(v) = E2(v) − v (B16)

where E2(v) is symmetric in v,

E2(v) =
ln q2+1

q + 1+v
2 ln 1+v

2 + 1−v
2 ln 1−v

2

ln q
. (B17)

In the bound state regime μ > μc (where v < −vc; results
for v > vc are analogous) the transfer matrix has the leading
eigenvalue [from Eqs. (B9)–(B11)]

λ(μ) = (q + 1/q)(qe−μ + q−1eμ) (B18)

and typical size �typ,

1/�typ ≡ − ln k = ln(eμ/q2). (B19)

The free energy − ln Z (μ) at large t may be written either in
terms of the line tension for the bound state or in terms of the
transfer matrix eigenvalue λ(μ),

min
v

(μv + seqrB(v)) = − ln λ(μ) − ln p(1 − p) (B20)

[the final term is from the prefactor in Eq. (B3)]. The Laplace
transform is inverted by

rB(v) = E2(v) + |v|. (B21)

The velocity appearing in (B20) is v(μ) =
(q2 − e2μ)/(q2 + e2μ), so we can write the bound state
size (B19) as

�typ(v) = 2

ln
(

1
q2 × 1+|v|

1−|v|
) . (B22)

The size of the bound state diverges as |v| → vc,

�typ(v) = 4q2

(q2 + 1)2

(
1

|v| − vc

)
+ . . . (B23)

and it vanishes as v approaches the maximal possible speed
|v| = 1 allowed by the geometry of the brickwork circuit.

APPENDIX C: BOUNDARY EFFECTS IN HAAR CIRCUIT

The presence of a boundary can change the scaling of
G. We analyze the boundary effect in the Ising domain wall
picture.

For simplicity, we take v > 0 and place (0,0) at the left
boundary. If v is small, the domain wall has an alternative path
to exit through the left boundary as shown in Fig. 15(a) (the
microscopic mechanism is shown in Fig. 15 of [16]). There
is no contribution to the free energy cost from the spatial
boundary of the system.

Let us do a quantitative comparison. When (x, t ) is far
away from the right boundary, the line tension of the right
domain wall is the same as Eq. (61). For v > 0, we have

fR(v) =
{
E (v) 0 � v � vB

v vB < v
. (C1)

FIG. 15. The Ising domain wall configurations when one (top
row) or both of the operators (bottom row) are at the spatial bound-
aries. When v < vB, the left domain wall has the option of exiting
from the boundary [(a),(c)]. Configurations (d) and (e) are degenerate
and have the same free energy. In [(b),(d)], the right-hand domain
wall is of speed vB.

The left domain wall costs

fL(v) = min
v′�v

E (v′)
x

v′
1

t
= v min

v′�v

E (v′)
v′ . (C2)

By the properties of the line tension function, it is

fL(v) =
{
v 0 � v � vB ⇒ v′ = vB

E (v) vB < v ⇒ v′ = v
. (C3)

Therefore the rate function becomes

r(v) = 1
2 ( fL(v) + fR(v)) = 1

2 (E (v) + v) (C4)

and the transition in r(v) disappears.
When we also place (x, t ) on the right boundary, a transi-

tion emerges again. The analysis the of the left domain wall
is the same as Eq. (C3). However, in the presence of the
right boundary, the right domain wall can legitimately exit the
system as in Figs. 15(b) and 15(d). In that case, the cost of the
right-hand path from (0,0) to (x, t ) comes from the segment
on the lower boundary and is equal to vt . Since this is never
greater than the cost in Eq. (61), we have

fR(v) = v. (C5)

Therefore, the rate function is

r(v) =
{
v 0 � v � vB
1
2 (v + E (v)) vB < v

. (C6)

This phenomenon is useful in eliminating the finite size effect
in small system numerics.

APPENDIX D: THIN CLUSTER APPROXIMATION IN d = 2

Consider q-dimensional qudits on the sites of an L × L
square lattice. We consider dynamics of this system, which
consist of choosing a random bond on the lattice, and applying
a two-site unitary gate to the qudits at the ends of the bond.
The unitary gate is chosen from the Haar measure over the
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unitary group U(q2). A single time step of the dynamics is
defined by applying L2/2 such gates, so that each qudit is
acted upon by a single unitary operator in each time step, on
average.

The evolution of G(0, t )2 ≡ 〈O(0, t )O(0, 0)〉2 where · · ·
denotes an average over the Haar-random unitary gates is
given by a Markov process for a two-dimensional cluster,
whose support at the initial and final times is exclusively at the
origin x = (0, 0). While many trajectories contribute to this
averaged correlator, we may focus our attention on completely
thin trajectories where the cluster does not grow, and remains
supported exclusively at a single site at every time step of the
evolution.

To determine the contribution of these trajectories to the
correlator, we first observe that when a unitary gate is applied,
the probability that a particular site is not acted upon by that
gate is p0(L) = (2L2 − 4)/(2L2) since each site is attached to
four distinct bonds, and there are 2L2 bonds in the system. On
the other hand, the probability that the same site is acted upon
by unitary gates in a single time step, and afterwards remains
exclusively supported at a single site is

p1(L) = [1 − p0(L)]
2(q2 − 1)

q4 − 1
. (D1)

The total weight w(L) of cluster histories, which (i) start at
the origin, (ii) are maximally thin, and (iii) are allowed to end
at any point at the final time is then given by

w(L) = [p0(L) + p1(L)](L2t/2). (D2)

In the thermodynamic limit L → ∞, this simplifies to

lim
L→∞

w(L) = e−�(q)t (D3)

with the q-dependent decay rate

�(q) = q2 − 1

q2 + 1
. (D4)

APPENDIX E: BROWNIAN CIRCUIT: CLUSTER
AND ISING PICTURES

In Sec. VI, we derived the Ising picture for the correlator
transition in the Haar random circuit. The ± Ising spins in
Eq. (56) and their evolution rules [Eqs. (66) to (69)] come
from averaging of the tensor product u ⊗ u∗ ⊗ u ⊗ u∗.

In this Appendix, we review a continuous time noisy spin
chain model, the Brownian circuit, and derive the evolution
rules in the +/− basis. The average of U ⊗ U ∗ ⊗ U ⊗ U ∗
with H given by the Brownian circuit generates a slightly
different rate matrix compared to the Haar-random gate. We
also write the rate matrix in the ◦/• basis.

A Brownian circuit [35,65–68] with general two-body in-
teractions has the infinitesimal Hamiltonian increment dH
(playing the role of “Hdt”),

dH =
∑
i< j

Ji jdhi j,

dhi j =
q2−1∑
μi=0

q2−1∑
μi=0

σ
μi
i σ

μ j

j dB(t )μiμ j

i j . (E1)

The Ji j are fixed coupling strengths that can be chosen ar-
bitrarily. Each two-body term dhi j contains a collection of
random interaction terms with fluctuating strengths given by
Brownian motions. They are statistically independent. In the
Itô formalism,

dB(t )μiμ j

i j dB(t )μkμl

kl = δikδ jlδμiμk δμ jμl dt . (E2)

Here σ
μi
i is a set of Hermitian basis on site i that generalizes

the Pauli matrices to a local Hilbert space of dimension q. We
assign them to be (using the convention in [67])

σμ =
{
Iq μ = 0√

2qTa μ = a > 0
. (E3)

where Ta are the standard SU(q) generators with the normal-
ization convention

TaTb = 1

2q
δabIq + 1

2

q2−1∑
c=1

(
dab

c + i fab
c
)
Tc. (E4)

We then have the inner product

tr(σμσ ν ) = qδμν. (E5)

Define U (t + dt ) = G × U (t ), where G is the infinitesimal
evolution operator. For evolution with Brownian motions, we
expand to the second order,

G = 1 − idH − 1
2 dH dH. (E6)

The infinitesimal (multiplicative) change of
U ⊗ U ∗ ⊗ U ⊗ U ∗ is then G ⊗ G∗ ⊗ G ⊗ G∗. We take
the average, and will interpret the result in terms of an
operator Ŵ acting in the replicated (tensor product) space,

G ⊗ G∗ ⊗ G ⊗ G∗ = eŴ dt . (E7)

There are simplifications resulting from the Itô calculus in
Eq. (E2):

(i) The change factorizes into separate contributions from
each interaction term (i j), i.e.,

G ⊗ G∗ ⊗ G ⊗ G∗

=
∏
i< j

gi j ⊗ g∗
i j ⊗ gi j ⊗ g∗

i j

= 1 +
∑
i< j

(gi j ⊗ g∗
i j ⊗ gi j ⊗ g∗

i j − 1) (E8)

where

gi j = 1 − iJi jdhi j − 1
2 J2

i jdh2
i j (no summation). (E9)

(ii) The contribution from the interaction (i j) that survives
the average is proportional to J2

i j .
Therefore, it is sufficient to work out the result for a fixed

i and j (a two-site example), and to set Ji j = 1. With this
simplification, we suppress the i, j indices in g and h for
clarity. The infinitesimal change is

dg = 1 − idh − 1

2

q2−1∑
μ=0

q2−1∑
ν=0

σ
μ
i σ ν

j σ
μ
i σ ν

j dt

= 1 − idh − 1

2
q4Idt, (E10)
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where we have used an identity for a complete set of Hermi-
tian orthonormal operators A�∑

�

A�
αβA�

σγ = δαγ δβσ (E11)

with A�=(μ,ν)
αβ = q−1(σμ

i ⊗ σ ν
j )αβ (where α, β run over q2

values). Hence

g ⊗ g∗ ⊗ g ⊗ g∗

= −4
1

2
q4dtI ⊗ I ⊗ I ⊗ I

+ (1 − idh) ⊗ (1 + idh�) ⊗ (1 − idh) ⊗ (1 + idh�).
(E12)

We use Eq. (E11) to compute the possible contractions in the
last term, and denote it diagrammatically as

(E13)

In the middle, a line with an up arrow represents a product
of Paulis, σ

μ
i σ ν

j , and a line with a down arrow represents the
transposed version, (σμ

i )�(σ ν
j )�. Note that each line repre-

sents two spatial sites, and the two lines stand for the two
terms in the tensor product (the two “replicas”). On the right-
hand side, the lines without arrows denote the identity maps
between the corresponding Hilbert spaces, i.e., a δab, where
a, b run over q2 values because of the two spatial sites. If
we label the state on each site explicitly, then δab = δα,βδα′,β ′ ,
where a is the two-site multi-index (α, α′) and similarly for b.

With this setup, we have the following Wick contractions:

(E14)

Writing

g ⊗ g∗ ⊗ g ⊗ g∗ = I ⊗ I ⊗ I ⊗ I + Ŵ dt, (E15)

the average of the infinitesimal evolution for a two-site Brow-
nian interaction gives

(E16)

We then work out the evolution in the space of +/− states.
For a single site we have , , so that
for two sites we have the identification

(E17)

The states such as represent the identity maps between
the Hilbert spaces (they are the definitions of the boundary ±
states, see notations in [16]).

In this basis, we have

Ŵ | + +〉 = 0

Ŵ | + −〉 = −2q4| + −〉
+ 2q3(| + +〉 + | − −〉) − 2q2| − +〉

Ŵ | − +〉 = −2q4| − +〉
+ 2q3(| + +〉 + | − −〉) − 2q2| + −〉

Ŵ | − −〉 = 0. (E18)

In general the above transition operator is proportional to the
squared coupling strength J2, which we have so far set to
unity. To simplify the factors let us now take J2 = (2q3)−1,
this gives the transition operator

ŴBrownian

⎡
⎢⎢⎣

| + +〉
| + −〉
| − +〉
| − −〉

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣1 −q − 1

q 1
1 − 1

q −q 1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
W �

Brownian

⎡
⎢⎢⎣

| + +〉
| + −〉
| − +〉
| − −〉

⎤
⎥⎥⎦.

(E19)
(Here ŴBrownian is viewed as an operator on the Hilbert space
spanned by the ± states, while W �

Brownian is a matrix defined
componentwise.)

An infinite time evolution with a Brownian two-body in-
teraction will lead to a uniformly (Haar) random unitary
evolution operator. Therefore we expect

T̂Haar = lim
t→∞ exp(ŴBrowniant ) (E20)

to agree with the transition matrix corresponding to a Haar
gate, whose action was specified in Eqs. (66)–(69).

The result

T̂Haar

⎡
⎢⎢⎣

| + +〉
| + −〉
| − +〉
| − −〉

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1
q

q2+1 0 0 q
q2+1

q
q2+1 0 0 q

q2+1

1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
T �

Haar

⎡
⎢⎢⎣

| + +〉
| + −〉
| − +〉
| − −〉

⎤
⎥⎥⎦ (E21)

is consistent with the Haar average Eqs. (66)–(69).
We can also define a “continuous time” Haar circuit dy-

namics in which, in a time interval dt , each bond has a
probability γ dt of receiving a Haar random unitary. This
is equivalent (in the thermodynamic limit) to the dynamics
in Sec. V and Appendix D. Then the evolution operator for
infinitesimal time is eŴ (γ )

c-Haardt = (1 − γ dt ) + γ dtT̂Haar,

Ŵ (γ )
c-Haar = γ (T̂Haar − 1). (E22)

Define Ŵc-Haar (without a superscript) as the case where γ =
q2+1

q , such that the rate for the transition | + −〉 → | + +〉 is
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unity, as in Eq. (E19),

Ŵc−Haar

⎡
⎢⎢⎣

|++〉
|+−〉
|−+〉
|−−〉

⎤
⎥⎥⎦=

⎡
⎢⎢⎢⎣

0
1 − (q2+1)

q 1

1 − (q2+1)
q 1

0

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
W �

c−Haar

⎡
⎢⎢⎣

| + +〉
| + −〉
| − +〉
| − −〉

⎤
⎥⎥⎦.

(E23)
We can also consider mixed dynamics, in which the spins

are acted on by the Brownian circuit with coupling strength
J2 = (2q3 )−1

1+κ
and Haar unitaries applied at rate γ = q2+1

q
κ

1+κ
.

Then we have the continuous time evolution operator

Ŵκ = 1

1 + κ
ŴBrownian + κ

1 + κ
Ŵc-Haar, (E24)

which interpolates between Brownian circuit and continuous
time Haar circuit dynamics.

For completeness, we list the basis transformations from
the +/− to the ◦/• basis.

|◦〉 represents an identity operator and |•〉 represents a
nonidentity operator, therefore

(E25)

where

F ≡ 1√
q2 − 1

q2−1∑
a=1

√
2qTa ⊗

√
2qTa. (E26)

The normalization ensures tr(F 2) = 1.
From their inner products with the +/− basis, we have the

transformation

(E27)

Therefore

(E28)
and

(E29)

(E30)

APPENDIX F: DATA FOR EDGE-EDGE CORRELATIONS

In this Appendix we provide some numerical details per-
tinent to the extrapolation of rEE and λEE to the L → ∞

FIG. 16. Extrapolation of rEE and λEE to L = ∞ for the ZZ cor-
relation function and the ZZ OTOC for the noisy spin chain described
in Sec. VII B. The top and bottom rows correspond to GEE

rms and

OTOC
EE

respectively. The top left panel shows −v ln GEE
rms(vt, t )/seq

as a function of L for several v (color bar) such that its asymp-
totic slope corresponds to the asymptotic value rEE. The top right
shows the finite-size approximations rEE

L (v) for different L, with the
black dots denoting the extrapolated result. Similar analysis for the

OTOC
EE

in the bottom row.

limit. A given velocity v corresponds to t = (L − 1)/v for the
edge-edge correlator/OTOC for a system of size L. Therefore

−v ln GEE
rms(vt, t )/seq = (L − 1)rEE(v), (F1)

so that plotting the left-hand side of the above equation against
L should yield a straight line whose slope is asymptoti-
cally equal to rEE(v). This is shown in the top left panel
in Fig. 16 for the the ZZ correlator in the noisy spin chain
(Sec. VII B). The results are similar for the XX correlator.
The asymptotic rEE(v) so obtained is superposed on the finite-
sized rEE

L (v) ≡ − ln GEE
rms(vt, t )/seqt in the top right panel of

Fig. 16. The lower row corresponds to an identical analysis

for the OTOC
EE

and λEE.

APPENDIX G: BOUNDARY CONDITIONS
IN ISING MAPPING

In this section, we record details of the boundary condi-
tions required for the calculation of G2(x, t ) (and OTOC [3])
in the Ising language and discuss numerical implementation.

From the definitions of the correlator G2(x, t ), the bottom
(t = 0) boundary of the stacked circuit has kets
attached at all of the sites except at the site where the initial
operator O is placed. The site with the operator has the state

attached, which we denote |O+〉, or call it a O+ spin.
Similarly on the top boundary, we have 〈+| bras attached at
every site except the site with the operator O′, which has 〈O′

+|.
That is,

G2(x, t ) = 1

q2L
〈+ · · · O′

+ · · · + |U ⊗ U ∗ ⊗ U ⊗ U ∗|

+ · · · O+ · · · +〉. (G1)
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We will also average G2 over the choice of operators, O →
uOu† where u is a single-site Haar unitary. In the Haar-random
circuit this does not change the result at all, since the state
|O+〉 is contracted with (copies of) a random gate: the unitary
invariance of the Haar measure means that further single-site
unitary averaging does not change anything. For the Brownian
circuit this is not an identity at the microscopic level, but we
are free to perform the additional operator averaging without
changing the asymptotics.

Thus |O+〉 can be replaced with u ⊗ u∗ ⊗ u ⊗ u∗|O+〉
without affecting G2(x, t ). For a traceless operator, this av-
erage is

u ⊗ u∗ ⊗ u ⊗ u∗|O+〉 = tr(O2)

q2 − 1

(
|−〉 − 1

q
|+〉

)
, (G2)

where tr(O2) is restricted to the local Hilbert space of O2

[thus tr(σ 2
a ) = q in contrast to Tr(σ 2

a ) = qL]. We notice that
1

q2−1 (|−〉 − 1
q |+〉) is the dual basis state |−∗〉, which is or-

thogonal to +, and has inner product 1 with |−〉. Thus the
boundary condition at the site with O is −∗. This forces the
spin associated with the gate directly above this boundary
point to be −. We then replace 〈O′

+| by the averaged value

〈O′+| = tr(O′2)

q2 − 1

(
〈−| − 1

q
〈+|

)
. (G3)

The contribution from the second term gives zero; this is
because it gives a term of the form

〈+ · · · + · · · + |U ⊗ U ∗ ⊗ U ⊗ U ∗| + · · · −∗ · · · +〉
= 〈+ · · · + · · · + | + · · · −∗ · · · +〉 = 0, (G4)

where we used the invariance of the all + state under unitary
evolution. Therefore in (G3) we keep only the 〈−| term. This
gives

G2(x, t ) = tr(O2) tr(O′2)
1

q2L

1

q2 − 1

×〈+ · · · − · · · + |U ⊗ U ∗ ⊗ U ⊗ U ∗|
+ · · · −∗ · · · +〉. (G5)

Next we consider the boundary condition of the OTOC,

OTOC = −1

2

1

qL
Tr([O(x, t ), O′(0, 0)]2). (G6)

Except for the locations with operator insertions, there are
always + spins on the top boundary and − spins at the bottom
boundary. At the site with O′, we have 〈O′

+|, while at the
site with O, we have − . Again we perform an
additional averaging of the operators,

(G7)

〈O′
+| → tr(O′2)〈−∗|. (G8)

We expand 〈−∗| into the 〈+| and 〈−|. The 〈+| branch vanishes
for the same reason as in the correlator. Therefore we have

OTOC(x, t ) = tr(O2) tr(O′2)
1

qL

q

(q2 − 1)

×〈+ · · · − · · · + |U ⊗ U ∗ ⊗ U ⊗ U ∗|
− · · · −∗ · · · −〉. (G9)

Now we discuss how to implement the calculation numer-
ically, in the case where the operators are placed at the two
spatial boundaries as in Sec. VII.

The |+〉 and |−〉 basis states are not orthogonal; they have
inner product

〈+|+〉 = 〈−|−〉 = q2, (G10)

〈+|−〉 = 〈+|−〉 = q. (G11)

However, this does not significantly change a transfer matrix
calculation. We give one way to do it in coordinates. In the
case of continuous time dynamics we have

U ⊗ U ∗ ⊗ U ⊗ U ∗ = eŴ t , (G12)

where the operator Ŵ was specified in Appendix E. Let the
coordinate of the initial state | − + · · · +〉 in terms of the
|+〉 and |−〉 basis on each site to be v1, then the coordi-
nate of U ⊗ U ∗ ⊗ U ⊗ U ∗| − + · · · +〉 is eW t v1 (note that W
transpose without hat has been worked out in Appendix E).
When evaluating the inner product in the expression 〈+ · · · −
|U ⊗ U ∗ ⊗ U ⊗ U ∗| − + · · · +〉/q2(L−1), each + in the ex-
pansion basis expansion of U ⊗ U ∗ ⊗ U ⊗ U ∗| − + · · · +〉
contributes a factor of 1, and each − contributes a 1/q. Hence

G2(x, t ) = tr(O2) tr(O′2)

q(q2 − 1)

∑
v,σL=−

v† · eW t v1

qN−
, (G13)

where v enumerates the coordinates of all the +/− basis on L
sites with the right most one to be −. N− is the number of −
in each basis. Similarly the OTOC can be evaluated as

OTOC(x, t ) = qL tr(O2) tr(O′2)

q(q2 − 1)

∑
v,σL=−

v† · eW t v1

qN+
.

In a random circuit, their saturation values are

G2(x, t → ∞) → tr(O2) tr(O′2)

q2L+2
, (G14)

OTOC(x, t → ∞) → tr(O2) tr(O′2)

q2
. (G15)

When taking the local operators O = σa and O′ = σb, we have
tr(O2) = tr(O′2) = q and

G2(x, t → ∞) → 1

q2L
, (G16)

OTOC(x, t → ∞) → 1. (G17)

Both are consistent with the cluster picture calculation.

APPENDIX H: SIGN PHASE TRANSITION
FOR G(x, t ) IN d > 1

We discuss the sign of the correlator G(x, t ) in the random
circuit, adding to the discussion in Sec. IV D. We restrict here
to the bound phase.

In the Haar circuit the amplitudes Kt,�t (x′; x) (see
Sec. VIII A) have a random sign (because V(t )

S,S′ can be pos-
itive or negative). Therefore we expect the path sum for
the bound state coordinate to be in the universality class of
the partition function for a directed path with random signs.
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This is a well-studied problem that appears for path expan-
sions of correlation functions in various disordered media
[15,45–47]. The amplitude G2 has the scaling forms discussed
in Sec. IV D. A similar picture will apply for the Haar circuit
in higher dimensions, for any value of v (since in higher
dimensions we have binding for all v).

The random signs in the weights mean that the average
sign of the correlator, i.e., the average of sgn G = G/|G|,
vanishes in the Haar case. In 1+1D, the average sign is be-
lieved to vanish as t → ∞ for any (non-fine-tuned) random

path model where negative weights are allowed [47,89]. In
higher dimensions a phase where the sign does not average to
zero at large t is also possible (the two phases are separated
by a “sign phase transition” [15]). It is likely that this other
phase can be accessed in a higher-dimensional circuit that
is more weakly random (such as a Floquet circuit perturbed
by randomness that weakly breaks space and time translation
symmetry). Varying the strength of disorder would then give
a transition between a phase with G/|G| � 1 at large t and a
phase where G/|G| is of order 1.
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