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This work provides a convenient and powerful means towards the engineering of Floquet bands via Bloch
oscillations, by adding a tilted linear potential to periodically driven lattice systems. The added linear field
not only restricts the spreading of a time-evolving wave packet but also, depending on the ratio between the
Bloch oscillation frequency and the modulation frequency of the periodic driving, dramatically modifies the
band profile and topology. Specifically, we consider a driven Aubry-André-Harper model as a working example,
in the presence of a linear field. Almost flat Floquet bands or Floquet bands with large Chern numbers due to
the interplay between the periodic driving and Bloch oscillations can be obtained, with the band structure and
topology extensively tunable by adjusting the ratio of two competing frequencies. To confirm our finding, we
further execute the Thouless pumping of one and two interacting bosons in such a lattice system and establish
its connection with the topological properties of single- and two-particle Floquet bands.
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I. INTRODUCTION

Topological Thouless pumping describes the quantized
adiabatic transport of particles in a one-dimensional (1D) lat-
tice, which is induced by the slow and time-periodic variation
of the lattice potential [1]. It reveals the deep connection
among geometric phase, band topology, and quantum adia-
batic process [2–6]. The observations of Thouless pumping
in setups like cold atoms and photonics not only demonstrate
the topology of integer quantum Hall effect from a dynamical
perspective, but also provide a powerful tool for the detection
of topological invariants through quantum dynamics [7–11].

In the conventional Thouless pump, the applied adiabatic
driving field plays the role of a second synthetic dimension
[5]. To guarantee the pumping quantization, the initial state
of the system needs to be a Wannier state or a uniformly
filled Bloch band along the physical dimension, which can be
rather challenging to prepare in experiments [8,9]. Recently,
Bloch oscillations induced by a linearly tilted potential were
found to be able to facilitate the initial state preparation in
Thouless pump [12]. Especially, the Bloch oscillations assist
in the uniform sampling of eigenstates at all quasimomenta
in the first Brillouin zone, so that nearly perfect pumping
quantization can be achieved for an arbitrary initial state se-
lected in a band of interest. Adding more interest to studies
of Bloch oscillations versus topological phases, Bloch os-
cillations have also been used in experiments to probe the
band topology [13–15]. For systems with many-body inter-
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actions, the introduction of a linear potential is also of great
interest because a time-evolving state can be localized by
such a linear potential due to the so-called Stark many-body
localization [16].

Beyond the adiabatic limit, time-periodic driving fields
were found to induce rich Floquet topological phases [17–42].
An extension of the Thouless pump to Floquet systems was
introduced as a powerful dynamical framework to probe the
large Chern number phases of Floquet topological insulators
[19,43,44]. However, the Floquet-Thouless pump defined in
Ref. [43] requires the system to be prepared in a localized
Wannier state or as a uniformly populated Floquet-Bloch
band, which is even more challenging to achieve in exper-
iments due to the lack of a Fermi surface in periodically
driven systems [45–47]. One may then consider adding a
linear potential to a Floquet system, and await the resulting
Bloch oscillations to assist the initial state preparation in a
Floquet Chern band and thus yielding the quantized Thouless
pumping. The actual situation is, however, more subtle and
complicated. Indeed, in Floquet systems, once a linear field is
introduced, the resulting effective Hamiltonian of the system
associated with one whole period of driving is not the original
effective Hamiltonian plus the linear field under considera-
tion. Qualitatively, this is because of the interplay between the
linear field and the microscopic motion within one driving pe-
riod. Specifically, let Ĥ [θ1(t )] + F̂ = Ĥ [θ1(t + 2π/�)] + F̂
be the time-periodic Hamiltonian of a tight-binding lattice
under a linearly tilted potential F̂ , where T1 = 2π/� is the
Floquet driving period and � is the driving frequency. By
transforming Ĥ [θ1(t )] + F̂ into a rotating frame, the linear
potential F̂ can be replaced by an oscillating phase factor
θ2(t ) = ωFt in the hopping amplitude of the lattice, where
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T2 = 2π/ωF is the oscillation period and ωF is the field
strength of the linear potential. The rotated Hamiltonian
Ĥr[θ1(t ), θ2(t )] now recovers the translational symmetry
along the physical dimension, but as a cost carries two sep-
arate time dependencies through the parameters θ1(t ) and
θ2(t ). If the ratio between the two driving frequencies �/ωF

is irrational, the rotated Hamiltonian can no longer describe
a Floquet system. When the frequency ratio �/ωF ∈ Q,
Ĥr[θ1(t ), θ2(t )] could still describe a Floquet model, but with
a new driving period T that is equal to the least common
multiple of T1 and T2. Nevertheless, the two driving fields
may couple and interplay strongly in this case, yielding Flo-
quet topological bands and Thouless pumping that are totally
different from those that one could expect in the system de-
scribed by Ĥ [θ1(t )]. Therefore, the impacts of a linearly tilted
potential (and its resulting Bloch oscillations) on the topology,
initial state preparation, and adiabatic transport in Floquet
systems are highly nontrivial and deserve to be explored in
detail.

Specifically, the second modulation frequency arising
from Bloch oscillations offers three advantages over single-
frequency driving to facilitate Floquet engineering. First, the
topological band structure of the Floquet system is highly
tunable by changing the ratio �/ωF , thus yielding topological
phases with large Chern numbers and many chiral edge states.
Second, even using a simple initial state such as a Gaussian
wave packet which is easier to prepare in experiments, all
quasimomentum states within one Floquet band may still be
swept rather uniformly. This is an excellent feature because,
so far it has been unclear how to achieve such a uniform
Floquet band sweeping in Floquet systems due to the lack
of a Fermi surface in nonequilibrium systems. Our strategy
here may be also useful for the initial state preparation in
many-body systems for the study of Floquet-Thouless pump-
ing. Third, the linearly tilted field can localize a time-evolving
state and hence greatly suppress its spreading during an adia-
batic protocol.

It is also of interest to mention related studies. In
Refs. [48–50], the driving frequencies are incommensurate
and they are regarded as synthetic dimensions along with the
physical dimensions. With this perspective, energy is pumped
nonadiabatically from one field to another. In Ref. [51], a
driving field on resonance with the Bloch frequency is intro-
duced, mainly to restore the hopping dynamics frozen by the
linear field. In Ref. [52], two types of periodic driving with
commensurate frequencies were introduced to a cold-atom
system to create nontrivial Floquet topological phases. The
focus of our work is markedly different. Here we explore
how Bloch oscillations can have a large impact on Floquet
topological phases and also facilitate Floquet-Thouless pump-
ing. Indeed, we uncover how the Bloch oscillation induced
by a linear potential could explicitly modify the topology of
quasienergy bands and control the Thouless pumping in a
Floquet system. We find that the added linear field could not
only restrict the spreading of a time-evolving wave packet, but
also dramatically modifies the profile and topology of Floquet
bands when the Floquet driving frequency and the linear field
strength are set at appropriate rational ratios. Focusing on a
driven commensurate Aubry-André-Harper (AAH) model in
the presence of a linear field as a working example, we find

almost flat Floquet bands or Floquet bands with large Chern
numbers due to the interplay between the periodic driving
and Bloch oscillations. The band structures and topology are
further found to be highly tunable by adjusting the ratio of two
competing frequencies of the fields. To confirm our findings,
we further execute the Thouless pumpings of one and two in-
teracting bosons in the system, and establish their connections
with the topological properties of single- and two-particle
Floquet quasienergy bands.

The rest of the paper is structured as follows. In Sec. II,
we introduce a theoretical framework to describe the Floquet
band structure and the dynamics of bosons in a 1D super-
lattice subject to time-periodic driving fields, particle-particle
interactions, and an onsite linear potential. In Secs. III and IV,
we apply our theory to reveal the Floquet band topology and
quantized Thouless pumping in one- and two-particle systems
with an emphasis on the role played by the linear potential
and the resulting Bloch oscillations. In Sec. V, we summa-
rize our results and discuss potential future directions. Some
further calculation details and results are presented in the
Appendixes A–C.

II. THEORY

In this section, we introduce the system that we are going
to explore and outline the theoretical framework that will be
used to study its spectral, topological, and transport features.

A. Hamiltonian and pumping dynamics

We start with a harmonically driven commensurate AAH
model [43] plus a linear onsite potential and an interaction
term. The resulting Hamiltonian reads as

Ĥ =
∑

j

[
J

2
(â†

j â j+1 + H.c.) + V cos(λ j − β ) cos(�t )n̂ j

]

+
∑

j

U

2
n̂ j (n̂ j − 1) +

∑
j

ωF jn̂ j . (1)

Here â†
j (â j) creates (annihilates) a boson on the sublattice site

j. J is the hopping amplitude. V is the driving strength. � is
the driving frequency. ωF is the strength of linear potential.
λ = 2π p/q, with p and q being coprime integers. We choose
p/q = 1

3 in this work, so that the spectrum of Ĥ possesses
three bands in the absence of the linear potential and many-
body interactions. In order to explore topological properties
of Floquet bands, we should avoid the integer ratio p/q � 1
because in this case there will only be one topologically trivial
band for the one-particle case. The parameter β ∈ [0, 2π ] is a
phase shift of the superlattice potential, which can be regarded
as as a quasimomentum along a synthetic dimension [53]. To
execute adiabatic pumping, β will be tuned adiabatically from
zero to 2π in a pumping protocol.

The reason that we start with a commensurate AAH model
is that it forms a paradigm in the study of topological phases
and adiabatic transport in both static and Floquet systems
[19,53–62]. Adding a continuous driving term to the AAH
model will lead to interesting nonequilibrium topological
phases compared to static cases, as shown in a previous study
[43]. There, by tuning some system parameters and the driving
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frequency, a variety of different Floquet topological phases
can be generated. Here, we further introduce a linear poten-
tial plus an interaction term to a periodically driven AAH
model. The interplay among Bloch oscillations, periodic driv-
ing fields, as well as many-particle interactions is expected to
take us to new Floquet topological phases, as shown below.

Instead of directly studying the above Hamiltonian in the
laboratory frame, we apply a rotation to eliminate the linear
potential term, so as to recover translational invariance in real
space [63]. The rotation is defined as

R̂ =
∑
|n〉

eiωF t
∑

j jn j |n〉 〈n| , (2)

following which we get the Hamiltonian in the rotating frame,
i.e.,

Ĥr =
∑

j

J

2
(e−iωF t â†

j â j+1 + H.c.)

+
∑

j

[
V cos(λ j − β ) cos(�t )n̂ j + U

2
n̂ j (n̂ j − 1)

]
.

(3)
Note that the above rotating-frame transformation is nothing
but a gauge transformation. Because the Bloch oscillations
can be induced by an electric field, a magnetic field gradient,
or a gravitational force field, etc., it is indeed intuitive to write
the system Hamiltonian with a linear potential present, as
in Eq. (1). However, the time-dependent hopping in Eq. (3)
resulting from a different gauge is useful to the development
of theoretical insights. That is, though the two gauges used in
Eq. (1) and in Eq. (3) are equivalent, the rotated Hamiltonian
in Eq. (3) is more convenient for us to construct initial states
such as Wannier states. In our numerical propagation of an
initial state in real space, we can directly use the Hamiltonian
in Eq. (1).

As shown in Eq. (3), Ĥr is subject to drivings with two fre-
quencies ωF and �. In order to apply the Floquet formalism,
we assume that ωF and � are commensurate, i.e., letting their
ratio be a rational number,

ωF /� = a/b, (4)

where a, b are coprime integers. Let T1 = 2π/� and T2 =
2π/ωF . The smallest common period of the two driving fields
is then

T = aT2 = bT1. (5)

Let T be the time-ordering operator, Floquet operator of the
system at each fixed β reads as

Û (β ) = T exp

[
−i

∫ T

0
dt Ĥr (t, β )

]
. (6)

Û (β ) governs the dynamics of the system over each common
driving period of the two-color field. In the next subsection,
we discuss how to use the translational invariance of the
system to block diagonalize Û (β ) in such a system under the
periodic boundary condition (PBC).

B. Multiparticle Floquet-Bloch bands

We now generalize the approaches of Refs. [43,64] to
construct multiparticle Floquet-Bloch bands. We consider an

N-particle system with L unit cells. For each cell, we focus
on the case with three sublattices. The situations with other
numbers of sublattices can be treated in a similar fashion. To
simplify the demonstration and without loss of generality, we
require N and L to be coprime for N > 1. Since λ = 2π/3,
the onsite potential term in Ĥr is a periodic function of period
3. Thus, there are three sublattices in each unit cell. We next
define a cotranslation operator T̂3 that acts on Fock states as

T̂3 |n1, n2, . . . , n3L〉
= |n3L−2, n3L−1, n3L, n1, . . . , n3(L−1)〉 , (7)

i.e., T̂3 translates the center of mass of particles over three
sublattices to the left under the PBC. One can readily verify
that T̂3 reduces to the familiar translation operator in the one-
particle case. For the rotated Hamiltonian in Eq. (3) and under
the PBC, we have

T̂3Ĥr (t, β )T̂ †
3 = Ĥr (t, β ). (8)

For two arbitrary Fock states |n1〉 and |n2〉, there may not
exist a j ∈ Z such that |n2〉 = T̂ j

3 |n1〉. We define a set S
comprising of the so-called seed states [64]. The elements of
S include all the Fock states such that any two of them cannot
be transformed into each other by T̂ j

3 for any j ∈ Z. Note that
the set S is in fact an equivalence relation. For example, for
one-particle case, with a particle on either sublattice of the
first unit cell, we get one S comprised of three seed states as
S = {|1〉 , |2〉 , |3〉}. For a general N , the dimension of Fock
space is D = (3L+N−1

N

)
. Under the assumption that L and N are

coprime, each seed state will go back to itself after being acted
by T̂3 over L times. If L and N are not coprime, the number
of actions of T̂3 to recover a seed state is not unique, and
we will not consider this case. With L and N being coprime,
the number of seed states, i.e., the cardinality of set S, is
DS = D/L. Because of Eq. (8), T̂3 also commutes with Û (β )
and they have common eigenstates |ψ〉, i.e.,

Û (β ) |ψ〉 = eiε |ψ〉 , (9)

T̂ −1
3 |ψ〉 = eiφ |ψ〉 . (10)

In the above two equations, ε is the quasienergy, whereas
φ is just the quasimomentum. (In some literature, the
quasienergy term is written as eiεT .) Both of them are defined
modulo 2π . After some algebra (see Appendix A for more
details), we find for any |m〉 ∈ S that

eiε 〈m|ψ〉 =
∑
|n〉∈S

〈m| Û (β )
L−1∑
j=0

ei jφ T̂ j
3 |n〉 〈n|ψ〉 . (11)

Therefore, in order to calculate the quasienergies and eigen-
states, we can reduce the full matrix Û (β ) of dimension
D × D to a reduced Floquet operator Ũ (β, φ) of dimension
DS × DS , whose matrix elements are

Ũmn(β, φ) = 〈m| Û (β )
L−1∑
j=0

ei jφ T̂ j
3 |n〉 , |m〉 , |n〉 ∈ S.

(12)

The eigenstates of DS × DS matrix Ũ (β, φ) are given by

|ψ̃ (β, φ)〉 = [〈m|ψ〉]�|m〉∈S. (13)
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Here � means matrix transpose, so that |ψ̃ (β, φ)〉 is
a DS-dimensional column vector. Note that |φ, n〉 =

1√
L

∑L−1
j=0 ei jφ T̂ j

3 |n〉 is just a Bloch eigenstate, and

|ψ̃ (β, φ)〉 = [〈m|ψ〉]�|m〉∈S is just the full D-dimensional
eigenvector |ψ〉 from Eqs. (9) and (10) projected over
DS seed states, thus with dimension DS . By solving this
eigenvalue problem, we get DS quasienergy bands. Note that
there is a distinction between one-particle and multiparticle
cases. For the one-particle case, the number of bands is always
three, i.e., DS = 3, regardless of the value of L. We can use
a splitting operator scheme to calculate the 3 × 3 reduced
Floquet operator Ũ (β, φ) for one-particle case, which is
much faster than evaluating Ũ (β, φ) for the two-particle case
(see the Appendix A of Ref. [65] for more derivation details).

For the two-particle case, the value of DS changes with
L. As long as DS � 1, the exact number of bands DS does
not generate a difference in the overall band structure. In
the subsequent calculation, we take L = 21. The number of
bands is thus DS = 96 for N = 2, and D = 2016. We can
then exponentiate the full D × D Hamiltonian, and multiply
these exponentials according to their time ordering. For the
one- or two-particle case, the exponential of Hamiltonian is
manageable. If we have more particles, the computation will
be more challenging as the dimension of the Hamiltonian
increases exponentially and quickly becomes computationally
prohibitive for exact diagonalization treatments. Once we ob-
tain a reduced eigenvector |ψ̃ (β, φ)〉 of dimension DS over
seed states, we can recover the D-dimensional full eigenstate
|ψ〉. We also use |ψ̃ (β, φ)〉 to calculate the Chern number of
an isolated band. For the nth band, it is explicitly given by [66]

Cn =
∫ 2π

0

∫ 2π

0

dβ dφ

2π i
(〈∂βψ̃ (β, φ) |∂φψ̃ (β, φ)〉 − H.c.).

(14)

Note that for the many-body case, φ should be interpreted as
the center-of-mass quasimomentum of the particles.

Our pumping scheme uses Wannier and Gaussian states as
initial states. Their (unnormalized) expressions are explicitly
given by (i) Wannier state

|W (R0, β )〉 =
∑

φ

e−iφR0 |ψ (β, φ)〉 , (15)

and (ii) Gaussian state

|G(R0, β )〉 =
∑

φ

e−iφR0− 1
4σ2 φ2 |ψ (β, φ)〉 . (16)

In the pumping process, we use |W (R0, β = 0)〉 or
|G(R0, β = 0)〉 as the initial state, and β will be tuned adia-
batically over a cycle in the Floquet-Thouless pumping. More
precisely, we consider the evolution over a time duration
MT with M � 1 and T the driving period in the pumping
dynamics. Within the mth driving period (m = 1, 2, . . . , M −
1, M), we let β = 2π (m − 1)/M and evolve the state using
the Hamiltonian in Eq. (1) from t = (m − 1)T to t = mT .
The pumping is revealed by the expectation value of position
operator x̂ = 1

qN

∑
j jn̂ j at the end of each driving period,

with N the particle number. In the construction of Wannier
and Gaussian states, we always choose R0 = L/2 for each
isolated band, such that the Wannier and Gaussian states are

approximately localized around L/2, away from which the
amplitude of wave packet is rapidly decreasing in real space.
The value L/2 is chosen such that during the evolution, the
wave packet is always far away from the boundary, and the
drift of wave packet center will be quantized. Another choice
of R0 that is close enough to the center of the lattice will also
do the job. The Gaussian state in Eq. (16) is constructed in
momentum space. Since the Fourier transform of a Gaussian
state is again a Gaussian state, Eq. (16) is also a Gaussian
state in real space. We choose the width parameter σ such that
the wave packet is narrow in both momentum and real spaces.
Under this condition, the pumping result is not sensitive to
the exact value of σ . In the study of adiabatic pumping, we
impose PBC for the rotated Hamiltonian Ĥr . We also obtain
the Floquet bands with respect to the phase shift β and center-
of-mass quasimomentum φ ∈ [0, 2π ] by diagonalizing the
Floquet operator under the PBC. It is also useful to describe
how to choose the system parameters in order to find an iso-
lated Floquet band to do Floquet-Thouless adiabatic pumping.
In our calculation, we choose J = V = 2.5 for all cases. For
the one-particle case, we first choose a value of T1, and then
scan the values of a and b under the constraint that they are
coprime integers. Next, we choose the a and b such that all
the three Floquet bands are isolated from each other. For the
two-particle case, once we fix the value of T1, we scan the
values of U as well as a and b, with a and b still being coprime
integers. We then select the cases where some of the bands are
isolated [see Fig. 3(a) for an example, where the topmost band
is isolated]. Following our routine, there are many situations
in which well-isolated Floquet bands could be found in both
one- and two-particle systems. Some representative cases are
presented and discussed in detail below.

III. CONTINUOUSLY DRIVEN AAH MODEL
WITH ONE BOSON

We first demonstrate the Floquet band engineering in the
single-particle case. In this case, we find topological transi-
tions induced by changing the commensurate ratio ωF /� =
a/b between the two driving frequencies. Moreover, the
change of linear potential strength ωF leads to new topolog-
ical phases with large Chern numbers and many chiral edge
states. We further employ the quantized adiabatic pumping of
both Wannier and Gaussian states to reveal the rich Floquet
topological properties induced by Bloch oscillations in the
system from a dynamical perspective. Throughout this work,
we work in dimensionless units and set the system parameters
J = V = 2.5.

We first present the Floquet bands under the PBC and the
adiabatic pumping of Wannier and Gaussian states |W (R0, 0)〉
and |G(R0, 0)〉 in Figs. 1 and 2, where we take T1 = 2, a = 3,
and b = 1 in Fig. 1, and T1 = 4 in Fig. 2. We observe that the
quasienergy bands are flat along the direction of quasimomen-
tum φ, as shown in Figs. 1(a) and 2(g). This holds true in other
cases with T1/T2 > 1. The flat dispersion is originated from
Bloch oscillations induced by the linear potential. It could lead
to the uniform sampling of initial states in momentum space,
which is essential for the realization of quantized pumping
for an arbitrary single-band state. Regardless of the initial
momentum distribution, each state is linearly swept in the
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FIG. 1. Floquet spectrum under the PBC, the pumping of Wannier and Gaussian initial states in real space for T1 = 2, a = 3, and b = 1.
(a) The three quasienergy bands with Chern numbers −2, 4, −2. (b) Pumping of Wannier states prepared in the three Floquet bands over an
adiabatic cycle (t = 2000T ). (c) Pumping of Gaussian states initialized in the three Floquet bands over an adiabatic cycle (t = 2000T ). For
each Wannier or Gaussian initial state, the shift of wave-packet center over an adiabatic cycle yields the Chern number of the corresponding
Floquet band.

momentum space multiple times in a single Floquet period
when T1/T2 > 1, as shown in Appendix B (see Fig. 5), leading
to the flat band in the φ direction. The easiness of the flat-
band generation is one of the benefits of employing the tilted
potential, as it allows us to perform the Thouless pumping
with arbitrary single-band initial states. To demonstrate the
availability of quantized pumping with an arbitrary single-
band initial state, we use the Gaussian state as an example.
In Figs. 1(b) and 1(c), we show the pumping of Wannier and
Gaussian states prepared in the three Floquet bands over an
adiabatic cycle consisting of 2000 driving periods. For each
case, we observe that the pumping is quantized and the net
drift of wave-packet center coincides with the Chern number
of the corresponding Floquet band. Importantly, the quantized
pumping of Gaussian initial state is made possible due to the
flat quasienergy band along the φ direction. Compared with
the Wannier state, a Gaussian wave packet is easier to prepare
in experiments. Therefore, the linear potential provides us
with a flexible route to achieve Thouless pumping and mea-
sure Chern numbers of Floquet bands in quantum simulators
like ultracold atoms in optical lattices.

By changing the strength of the linear potential, the band
topology of the system is modified. We consider a group of
spectrum and pumping results with other frequency ratios
including ωF = 0, T1/T2 = 2

5 and 5
2 . The Floquet spectrum

under the PBC without linear potential is shown in Fig. 2(a)
[43]. Here, we observe three dispersive bands with Chern
numbers 4, −8, 4. In Fig. 2(b), the pumping of Wannier states
indeed gives the Chern numbers of different Floquet bands. In
Figs. 2(d) and 2(e), we turn on the linear potential ωF such that
T1/T2 = 2

5 . Interestingly, we see that the curvature of Floquet
bands changes dramatically in response to the linear potential,
and their Chern numbers could reach values as large as −20,
40, −20. Therefore, we could get topological phases with
huge Chern numbers by simply changing the value of linear
potential strength ωF . Physically, the Floquet bands with large
Chern numbers are originated from the interplay between the
Bloch oscillations induced by linear potential and the external
periodic driving field. In Fig. 2(g), we take T1/T2 as the inverse

of 2
5 . Although the Floquet bands in this case have the same

Chern numbers as those in Fig. 2(a), their local band curva-
tures are totally different. Figure 2(g) has flat band along the
φ direction, while along φ the band in Fig. 2(a) is curved. The
pumping results of Wannier states in Fig. 2(h) are consistent
with the Chern numbers of the corresponding Floquet bands.
We present three more groups of Floquet bands and pumping
results by adjusting the ratio of ωF /� in Fig. 6. They indeed
show that we can generate rich Floquet topological phases
with different frequency ratios ωF /�. For completeness, we
show the Floquet spectrum of the system under the OBC in
Figs. 2(c), 2(f), and 2(i), and observe that the band Chern
numbers correctly predict the number of chiral edge modes
traversing the bulk gap at each edge.

Putting together, we conclude that the competition between
the periodic driving e±iωF t in the hopping terms (due to the
linear potential) and the harmonic driving term cos(�t ) (in the
onsite superlattice potential) determines the spectral topology
and also has a clear impact on the wave-packet dynamics. The
interplay between the two driving fields further induces rich
topological structures in Floquet bands, leading to quantized
adiabatic transport of wave packets over a long spatial range in
the lattice due to the large band Chern numbers. The unique
feature of this system is that with the driving frequency �

fixed, by applying a linear field
∑

j ωF jn̂ j that breaks the
translational invariance of the lattice, the motion of the wave
packet can be strongly affected/tuned by Bloch oscillations
and exhibits highly nontrivial transport signatures.

Some necessary discussions are in order. First, although
the drift in the rotated frame of reference is the same as in
the laboratory frame, there is also one subtlety. That is, work-
ing with a rotated Hamiltonian via the aforementioned gauge
transformation with translational invariance is valid only for
states far from the boundary. For this reason, in actual simula-
tions done in real space, we take a sufficiently long lattice and
make sure that the wave packet never reaches the boundary of
the system. The translational invariance of the rotated Hamil-
tonian thus becomes valid, yielding the Bloch momentum φ

to block diagonalize the Floquet operator and to compute
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FIG. 2. Floquet spectrum under the PBC, pumping of Wannier states, and Floquet spectrum under the OBC for (T1 = 4, ωF = 0) in
(a)–(c) and T1/T2 = ( 2

5 , 5
2 ) in (d)–(i). The legends in (a), (d), and (g) include the Chern numbers of three Floquet bands.

the spectrum. Second, although our work and Ref. [12] have
both demonstrated quantized adiabatic pumping under a linear
potential, there are notable differences. In Ref. [12], the linear
potential assists the uniform sampling in the Brillouin zone,
and the quantization of pumping is independent of the strength
of linear potential. By contrast, here the strength of the linear
field is crucial as it controls the Floquet band topology, leading
to rather different pumping results depending on the frequency
of the Bloch oscillations induced by the linear field.

IV. CONTINUOUSLY DRIVEN AAH MODEL
WITH TWO BOSONS

In this section, we study the Floquet spectrum and Thou-
less pumping of two interacting bosons in our system. We
use the python package QUSPIN [67] to treat the two-boson

case, where exact diagonalization is applied. With two bosons,
we have a total of DS = 96 bands under the PBC (still for
a unit cell there are three sublattice sites), and it is tedious
to visualize all Floquet bands using three-dimensional plots.
Therefore, we focus on the Floquet bands obtained along
a cut at φ = 0. The band structures obtained at other val-
ues of φ do not show noteworthy differences. We shall see
that rich topological structures of Floquet bands, topological
phase transitions, and pumping dynamics can be generated by
changing the ratio T1/T2 between two driving periods and the
interaction strength U . The interplay among the periodic driv-
ing, interactions, and Bloch oscillations thus induce nontrivial
many-body Floquet topological phases.

The main results of this section are presented in Figs. 3
and 4. In Fig. 3(a), we show the two-particle Floquet
spectrum under the PBC for T1 = 2, U = 20, and T1/T2 = 3

2 .
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FIG. 3. Floquet spectrum under the PBC and adiabatic pumping of two interacting bosons. The driving period T1 = 2 and interaction
strength U = 20 are chosen for all panels. (a) Two-particle quasienergy spectrum for T1/T2 = 3

2 along φ = 0. (b) Pumping of a Wannier initial
state for T1/T2 = 3

2 . (c) Pumping of a Gaussian initial state for T1/T2 = 3
2 . (d) Quasienergy spectrum for ωF = 0 along φ = 0. (e) Pumping of

two Wannier initial states for ωF = 0.

The highest Floquet band (denoted by band 95) is found to
be isolated from the rest of spectra. We hence choose to pre-
pare the Wannier and Gaussian initial states on this band. Here
Gaussian states refer to a Gaussian profile of the translational
state of the center of mass of the bipartite system. Results of
our adiabatic pumping using Wannier and Gaussian states as
the initial states are shown in Figs. 3(b) and 3(c). The width
of the Gaussian state in momentum space is set as σ = 0.7.
We find that the drift of wave-packet center over an adiabatic
cycle is the same for the Gaussian and Wannier initial states.
They both reproduce the Chern number C = −2 of band 95.
Therefore, we have successfully observed quantized pumping
for two types of initial wave packets. Of particular interest,
the quantization of the pumping using only a two-particle
Gaussian state is made possible by the linear potential induced
Bloch oscillations as in the single-particle case. This indicates
that the stage of initial state preparation in Thouless pumping
can be greatly simplified even in many-body interacting cases
thanks to the Bloch oscillations. As a comparison, we show in
Figs. 3(d) and 3(e) the two-particle Floquet bands under the
PBC without a linear potential, the pumping of Wannier states
prepared on the lowest band (named band 0), and the highest
band (named band 95) without the linear potential. The results
show that the presence of a linear potential leads to quantized
pumping at different integer values. As such, in the case of
two interacting bosons, topological phase transitions can be
also induced by turning on a linear potential ωF .

Next, we present four groups of results in Fig. 4 for
two-body Floquet spectrum under different boundary condi-
tions, in connection with the quantized two-particle pumping.
We set T1 = 1 in all panels of Fig. 4, while choosing the

interaction strengths to be U = 2, 10 and setting the ratios of
T1/T2 as 1

1 and 1
2 . One goal here is to examine the impact

of interaction on the topological pumping. First, comparing
the results presented in Figs. 4(a) and 4(g), we see that the
decreasing of the ratio T1/T2 from 1

1 to 1
2 for U = 2 makes

the lowest band more dispersive. Meanwhile, the number of
groups of Floquet bands is kept to be the same as seven. On the
other hand, by comparing Figs. 4(d) and 4(j), we see that for
U = 10 the decreasing of ratio T1/T2 from 1

1 to 1/2 leads to
more apparent differences. Both cases have the highest band
(band 95) as an isolated band, while three more isolated bands
appear at the bottom in Fig. 4(j), as denoted by bands 0, 1, and
2. The change of interaction strength U also generates signif-
icant differences in the spectrum, topological, and transport
nature of the system. With the same ratio T1/T2 = 1

1 , Figs. 4(a)
and 4(d) show the same number of seven groups of bands,
but the isolated band goes from the bottom to the top. We
can also observe that Fig. 4(a) is similar to the image being
turned upside down of Fig. 4(d). Likewise, by comparing the
results shown in Figs. 4(g) and 4(j), we see that with the same
ratio T1/T2 = 1

2 , the number of isolated bands increases from
one to four by increasing U from 2 to 10, and the number of
groups of bands increases from seven to nine. We conclude
that not only the change of the ratio T1/T2, but also the change
of the interaction strength U will lead to topological phase
transitions in the two-particle system. The Chern numbers in
each case of Figs. 4(a), 4(d), 4(g), and 4(j) are obtained by
calculating Berry curvatures of Floquet bands under the PBC,
and are validated by the quantized two-particle pumpings in
Figs. 4(b), 4(e), 4(h), and 4(k). Therefore, we provide con-
crete examples of topological phase transitions and quantized
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FIG. 4. Floquet spectrum under the PBC along φ = 0 in (a), (d), (g), (j), pumping of Wannier states in (b), (e), (h), (k), and Floquet
spectrum under the OBC in (c), (f), (i), (l) for the interaction strengths U = 2, 10 and the driving period ratios T1/T2 = 1

1 , 1
2 .

transport in two-particle Floquet systems that are induced by
the interplay among a periodic driving field, interactions, and
Bloch oscillations.

FIG. 5. Time evolution of the single-particle density distribution
in momentum space. The chosen parameters are T = T1 = 2, T2 =
0.5, and J = V = 2.5.

In Appendix C, we have presented more computational
examples. There it is seen that Floquet bands with very high
Chern numbers can be obtained by simply adjusting the ratio
of the Bloch oscillation frequency to that of the periodic
driving. These additional results further strongly indicate that
the introduction of a linear field to periodically driven lattices
is a powerful means towards Floquet band engineering.

V. DISCUSSION AND SUMMARY

Experimentally, our model and the pumping dynamics
may be realized in cold-atom systems. A 1D static AAH
model can be realized by superimposing two optical lattices
with different lattice constants, which result from stand-
ing waves created by retroreflected single-frequency laser
beams [68]. To realize the continuously driven AAH model,
we may periodically modulate the strength of lattice lasers.
The tunable linear field can be generated by a magnetic
field gradient along the lattice direction [69]. Different mag-
netic field gradients lead to different band topologies of
the system, thus generating different quantized pumping
results.

We have shown that a linear potential applied to a Flo-
quet system can induce quasienergy bands with large Chern
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FIG. 6. Floquet bands under the PBC, pumping of Wannier states, and Floquet bands under the OBC for the single-particle case with
T1 = 4 and T1/T2 = 5

7 [in (a), (b), (c)], 7
10 [in (d), (e), (f)], 8

11 [in (g), (h), (i)], respectively. The legends in (a), (d), and (g) include the Chern
numbers of the three Floquet bands.

numbers and rich topological phase transitions. This is ver-
ified by calculating the topological invariants as well as
adiabatic Thouless pumping of Wannier states. Moreover,
we have shown that we can use Gaussian initial states on
relatively flat bands to achieve quantized pumping, which is
easier to implement in experiments. It is the Bloch oscillation
that facilitates the uniform sweeping of eigenstates for such
flat bands. Certainly, in Floquet systems, there is no longer
uniform sampling of momentum by the Bloch oscillations, as
evidenced by the existence of nonflat bands. In these cases,
the linear potential can even induce new topological phases.
This is the main message from this work, and we hence
expect that the introduction of a linear field can be generally
useful to the multicolor engineering of Floquet bands [70].
For a two-particle interacting system, not only the ratio of the
two driving periods, but also the interaction strength deter-
mines the topological phases and hence changes the result of

Floquet-Thouless pumping. In future work, we may consider
situations with more bosons or interacting fermions [71], in
connection with many-body Stark localization and quantum
prethermalization.
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APPENDIX A: DERIVATION OF THE FLOQUET
EIGENVALUE EQUATION

In this Appendix, we give derivation details of Eq. (11) in
the main text. For common eigenstates of the Floquet operator
Û (β ) and cotranslation operator T̂ −1

3 , we have

Û (β ) |ψ〉 = eiε |ψ〉 , (A1)

T̂ −1
3 |ψ〉 = eiφ |ψ〉 . (A2)

For the set S of all seed states, the identity operator is

1 =
∑
|n〉∈S

L−1∑
j=0

T̂ j
3 |n〉 〈n| T̂ − j

3 . (A3)

Then we obtain

eiε |ψ〉 = Û (β ) |ψ〉

= Û (β )
∑
|n〉∈S

L−1∑
j=0

T̂ j
3 |n〉 〈n| T̂ − j

3 |ψ〉

=
∑
|n〉∈S

Û (β )
L−1∑
j=0

ei jφ T̂ j
3 |n〉 〈n|ψ〉 . (A4)

Multiplying |m〉 ∈ S from the left, we get

eiε 〈m|ψ〉 =
∑
|n〉∈S

〈m| Û (β )
L−1∑
j=0

ei jφ T̂ j
3 |n〉 〈n|ψ〉 . (A5)

This is the Eq. (11) in the main text. Note that our scheme
of evaluating the reduced Floquet operator in Eq. (12) is
equivalent to the Eq. (3) in Ref. [64]. Meanwhile, our scheme
has one computational advantage. That is, in order to get each
matrix element of Ũ , we do not need to compute matrix-vector
products. Instead, we only need to compute the inner product
between vectors. Since 〈m| Û (β ) is a row of Û (β ), we only

need to select this row to perform the inner product with√
L |φ, n〉 = ∑L−1

j=0 ei jφ T̂ j
3 |n〉.

APPENDIX B: EVOLUTION OF PARTICLE DENSITY
IN MOMENTUM SPACE

In this Appendix, we provide details for the time evolution
of the single-particle density distribution in the momentum
space. It allows us to directly observe the effect of Bloch
oscillations in Floquet systems. The density distribution is
given by

|ψk|2 = |φ0,k|2 + |φ1,k|2 + |φ2,k|2, (B1)

where for i = 0, 1, 2 we have

φi,k = 1√
L

L∑
j=1

e−ik jψ j,i. (B2)

In numerical calculations, we choose L = 500 as the number
of unit cells. In a single Floquet driving period, the momentum
is linearly swept through the first Brillouin zone multiple
times when T1/T2 > 1 as shown in Fig. 5, leading to flat
quasienergy bands along the direction of the Bloch quasimo-
mentum k.

APPENDIX C: MORE EXAMPLES OF THE
SINGLE-PARTICLE SPECTRUM AND PUMPING

In this Appendix, we present three more examples of Flo-
quet quasienergy spectrum and Thouless pumping results in
Fig. 6. We can see that by changing the ratio of T1/T2, one
can easily obtain topological phases with very high Chern
numbers. It is also observed that the actual Chern numbers
obtained can be rather sensitive to the strength of the applied
linear field. This provides us with more flexibility to control
topological phase transitions in Floquet systems.
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