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Dissipative time crystals can appear in spin systems, when the Z2 symmetry of the Hamiltonian is broken by
the environment, and the square of total spin operator S2 is conserved. In this paper, we relax the latter condition
and show that time-translation-symmetry-breaking collective oscillations persist, in the thermodynamic limit,
even in the absence of spin symmetry. We engineer an ad hoc Lindbladian using power-law-decaying spin
operators and show that time-translation-symmetry breaking appears when the decay exponent obeys 0 < η � 1.
This model shows a surprisingly rich phase diagram, including the time-crystal phase as well as first-order,
second-order, and continuous transitions of the fixed points. We study the phase diagram and the magnetization
dynamics in the mean-field approximation. We prove that this approximation is quantitatively accurate, when 0 <

η < 1 and the thermodynamic limit is taken, because the system does not develop sizable quantum fluctuations,
if the Gaussian approximation is considered.
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I. INTRODUCTION

Spontaneous symmetry breaking is a cornerstone of
physics occurring at the most diverse energy scales, from
cosmology and high-energy physics to condensed matter,
just to mention some relevant cases. Thermal or quantum
fluctuations can drive a system into a state that breaks, in
the thermodynamic limit, some of the symmetries present
in its (thermo)dynamical potentials [1,2]. Time-translational
symmetry can also be spontaneously broken [3], as first con-
jectured by Wilczek, leading to the existence of time crystals
(TCs). The mere definition of spontaneous breaking of time-
translational invariance prompted an immediate and intense
discussion [4–8]. Since then, the interest on the topic has
grown enormously. A comprehensive review of this activity
can be found in Refs. [9,10].

Time-crystal ordering can occur only with nonlocal
Hamiltonians [11] or under nonequilibrium conditions [12].
A key step in this direction has been achieved in Refs. [13,14]
where Floquet time crystals [13] were introduced. Here
a unitary system, subject to an external periodic driving,
has observables whose expectations break the discrete time-
translational symmetry imposed by the external drive. Floquet
time crystals were intensively theoretically explored, see, e.g.,
Refs. [15–21], and recently experimentally observed [22,23].

The time-crystal phase can also be realized in many-
body open quantum systems [24–39] where the competition
between quantum driving and dissipation can give rise to per-
sisting oscillations of a collective observable. For Markovian
dynamics, the possibility of spontaneous time-translation-
symmetry breaking in the steady state is embedded in the
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properties of the Lindbladian spectrum and its scaling with
the system size [24,25,28,32]. In the thermodynamic limit, the
real part of the Lindbladian spectrum becomes gapless, giving
rise to persistent oscillations related to the imaginary part of
the corresponding eigenvalues. Dissipative time crystals can
also be seen as cases in which only a macroscopic portion
of a system (the boundary) undergoes symmetry breaking
when the remaining degrees of freedom (the bulk) act as
an effective nonequilibrium bath. We address these systems
as boundary time crystals (BTCs), as the boundary behaves
effectively as a dissipative (or open) quantum system, pos-
sibly described by a Lindblad equation. The BTC phase has
also been observed for Z2-symmetric generalized (p, q)-spin
models in the presence of collective dissipation [36], while the
TC phase does not appear when the Hamiltonian is not parity
invariant [40]. More recently, the origin of BTCs has been
attributed to the Lindbladian steady state being parity-time
symmetric [41]. Most notably, in the case of open-system
dynamics it is possible to realize continuous time crystals,
whose first experimental implementation has been reported in
Ref. [42].

Despite the vibrant scientific activity surrounding this
topic, many aspects of time crystals in open systems remain
yet to be fully understood. The spontaneous generation of a
collective periodic oscillation in classical dissipative systems
has a long history. Examples in this sense are, for instance,
the synchronization in the Kuramoto model [43,44], the laser
[45,46], the salt oscillator [47], and, in some sense, also the
Belusov-Zhabotinski reaction [48]. Moreover, already in the
1990s, Refs. [49,50] provided an extensive analysis of when
the generation of subharmonics can and cannot occur in
the case of many-body classical dissipative driven systems
(see also Ref. [51]). The great interest in time crystals has
brought new examples of this sort [52–54], opening also the
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possibility for a deeper understanding of possible connection
with these phenomena.

A very useful framework to understand time crystals in
open systems is to link their existence to the emergence of
decoherence-free subspaces [55,56] in the thermodynamic
limit. It is thus natural to expect that symmetries in the cou-
pling to the external bath should play a major role. Indeed
all spin models supporting dissipative TCs so far implicitly
assume a collective (infinite-range) coupling to the external
environment.

In this work we make one step further, and introduce a
class of long-range dissipators that spatially decay as a power
law and allow nevertheless a BTC phase. The resulting phase
diagram is very rich as a function of the range of the dis-
sipation and the coupling parameters, with both first-order,
second-order, and continuous transitions of the fixed points,
as well as a coexisting region.

BTC phases are believed to appear in spin models in the
presence of two fundamental ingredients, which are (i) a Z2

symmetry of the Hamiltonian that is explicitly broken by
the environment [36], and (ii) “strong” rotational symmetry
[57], which allows one to decouple the eigenspaces of the
total angular momentum operator. Here, “strong” means that
both the Hamiltonian and the Lindblad operators are functions
of collective spin operators [36], expressed as uniform sums
of on-site spins. As a result, the square of the total angular
momentum S2 = S2

x + S2
y + S2

z is conserved at the operator
level for any finite size.

In this paper we inquire about the role of condition (ii).
In particular we break it and study whether the boundary time
crystal is still present. We focus on the Lindblad operators, and
substitute the collective spins with power-law-decaying oper-
ators. Our finding is that condition (ii) is not strictly necessary
in order to have a boundary time crystal. In analogy with the
Hamiltonian case [21,58,59] also here the time-crystal phase
is supported up to a critical value of the exponent governing
the power-law decay. This is the first example of a phase
transition engineered by tuning the range of dissipation.

The paper is organized as follows. In Sec. II, we introduce
our model Lindbladian with power-law-decaying Lindblad
operators and discuss its general properties. In Sec. III, we
resort to mean-field theory to derive the equations of mo-
tion of the magnetization components and we use them to
study both the dynamics and the phase diagram of our model.
In Sec. IV we discuss the dynamics of the magnetization
at the third order in the cumulant expansion and show that
correlations provide only a small correction to the mean-
field dynamics when the power-law exponent is below a
threshold, in the thermodynamic limit. We finally summarize
and comment on our results in Sec. V. Some technical as-
pects of our analysis are discussed in a number of dedicated
appendices.

II. MODEL AND PHASE DIAGRAM

The simplest model providing a boundary time crystal
phase is given by the following Lindbladian, first proposed

and studied in Ref. [24]:

ρ̇ = −i[2J Sx, ρ] + γ

N

(
S+ρS− − 1

2
{S−S+, ρ}

)
, (1)

where

Sα = 1

2

N∑
i=1

σα
i , α ∈ {x, y, z}, (2)

are collective spin operators with algebra [Sα, Sβ ] = i εαβγ Sγ ,
S± = Sx ± iSy, and S is the total spin. The σα

i are Pauli
matrices and σ±

i = (σ x
i ± iσ y

i )/2. The number of particles
is N , and the components of the magnetization are defined
as mα = 2〈Sα〉/N , where the expectation is taken over the
density operator ρ.

The Hamiltonian part describes noninteracting (free) spins
in a uniform magnetic field oriented in the x direction. The
resulting Hamiltonian, as seen in the first term on the right-
hand side of Eq. (1), is H = 2J Sx. This Hamiltonian is
time-independent: the bare system is invariant by continuous
time translations. The second term on the right-hand side of
Eq. (1) is the environment, acting by orienting the spins in
the z direction, toward the state with a positive magnetization.
If S+ and S− are exchanged, the model still features a BTC
phase.

The Hamiltonian and the jump operators commute with
S2 = S2

x + S2
y + S2

z , and the conditions (i) and (ii), mentioned
in Sec. I, are satisfied; indeed this model possesses a TC
phase. This phase exists in the thermodynamic limit and
can be analyzed using mean-field theory, since, for large
N , correlations between collective variables vanish as 1/N ,
[Sα, Sβ ]/N2 = O(1/N ), and the magnetization behaves like a
classical variable. The dissipative phase diagram of the model
features a critical point χ = γ /4J = 1 separating the bound-
ary time crystal phase for weak dissipation (χ < 1) from an
ordered magnetic phase where the spin state is magnetized
(χ > 1) and the Z2 symmetry is manifestly broken.

Motivated by Refs. [60–62] we consider a generalization of
this model. We consider a system of N spin-1/2 particles de-
scribed by Pauli matrices σα

i with α ∈ {x, y, z}. The dynamics
is governed by a Lindblad equation

ρ̇ = −i[H, ρ] + γ

N∑
i=1

(
Li(η)ρL†

i (η) − 1

2
{L†

i (η)Li(η), ρ}
)

.

(3)

We take the same Hamiltonian as in Ref. [24], H = 2J Sx, and
the following Lindblad operators,

Li(η) =
N∑

j=1

fi j (η) σ+
j , fi j (η) = K (N )(η)

D(|i − j|)η , (4)

where η ∈ [0,∞) is the power-law exponent, and D(r) is
a distance function between lattice sites defined as D(r) =
min(r, N − r) + 1 in order to provide periodic boundary
conditions [63–69]. The Kac normalization factor K (N )(η)
ensures that

∑N
j=1 fi j (η) = 1 [70] and, for this choice of D(r),

it can be computed analytically for any η (see Appendix A for
details). Notice that fi j (η) = f|i− j|(η).
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A dissipative term in the Lindbladian with power-law-
decaying correlation can be realized, for example, in cold
atoms inside a cavity. As discussed in Ref. [60], a key element
in this proposal is the presence of three-level atoms, trapped
inside an optical cavity. In the presence of a magnetic field
gradient, and a Raman beam, several sidebands of tunable
frequency and amplitude appear, which make pairs of atoms at
long distance apart interact. In these conditions, one can show
that the dynamics of the atoms is described by a Lindblad
equation, with long-range Lindbladians of the form of our
Eq. (4). A detailed analysis of the protocol leading to the
power-law dissipator is described in Appendix A of Ref. [60].

The operators in Eq. (4) are sums of local spins, and these
sums are not uniform, but have a coefficient decaying with
distance as a power law, with exponent η. In this way, for any
finite size and any η > 0, S2 is not conserved, although the
model is still translationally invariant.

Let us first focus on two limiting cases. For η = 0, the so-
called infinite-range case, we have that

fi j (0) = 1

N
, Li(0) = S+

N
∀i, j; (5)

here, the Lindbladian of Eq. (3) coincides with the collective
one of Eq. (1). In the opposite, zero-range limit we have that

fi j (η → ∞) = δi j, Li(η → ∞) = σ+
i ;

the corresponding Lindbladian acts independently on each
spin, and thus the zero-range Lindbladian cannot generate
correlations during the open-system evolution. In some cases,
collective and independent baths give rise only to quantita-
tive changes in the physics [71,72], but there are also many
examples where these two kinds of dissipation give rise to
qualitative differences (e.g., superradiance in the Dicke model
[28]). The model discussed in this paper falls in the latter
category, because the two limiting cases are qualitatively
different.

The Lindbladian of Eq. (4) interpolates between the
infinite-range one of Eq. (1) and a local Lindbladian where
each spin is independently coupled to its own environment
via σ+

i . For every choice of η, the Lindblad operators act
by orienting the spins in the z direction, thus breaking the
Z2 symmetry. For the two limiting cases, η = 0 and η =
∞, correlations are negligible: Here, the mean-field approx-
imation is (for different reasons) quantitatively accurate. For
intermediate values of η less is known. In the following, we
are going to show that quantum correlations are negligible
also for 0 < η � 1. In this regime the dynamics of the mag-
netization components is well described by the mean-field
theory.

Before moving to the next section, we would like to sum-
marize the main results of this paper. The mean-field phase
diagram of our model is very rich. We can plot it, taking as
parameters the decay exponent η and the normalized strength
of the dissipator χ = γ /4J . We show the phase diagram in
Fig. 1. We can see for 0 � η � 1 a transition from a time-
crystal phase to a phase with an asymptotic nonvanishing z
magnetization. Notice that the transition point in χ does not
depend on η in this interval, as occurs for Hamiltonians with
long-range interactions. Indeed, we find collective persistent
oscillations in the thermodynamic limit, for χ < 1. Quite re-

FIG. 1. Sketch of the phase diagram of the model studied in this
paper. The boundary time crystal phase is observed for 0 � η � 1
and χ � 1. For η � 1, the phase transition to the magnetized phase
is independent of η. For η > 1, the BTC phase no longer exists. For
1 < η � 1.625, the system undergoes a first-order phase transition
as a function of χ , separating a phase where the steady-state mag-
netization is close to zero without featuring persistent oscillations
and a coexistence phase where there are two stable fixed points with
different magnetization. For η > 1.626 this phase transition is no
longer present and the system qualitatively resembles its zero-range
limit (η = ∞). The three points marked in the figure are A = (1, 1),
B = (

√
2, 1), and C = (1.225, 1.625).

markably, in this time-crystal regime the dynamics conserves
the expectation of S2 in the thermodynamic limit but not for
finite system sizes. Our results set up an interesting parallel
with Hamiltonians with long-range interactions. In that case,
in dimension d = 1, the unitary dynamics is equivalent to
the case η = 0 whenever 0 < η � 1 [73–77], and we find
the same here for power-law dissipators. The two regimes
0 < η � 1 and η > 1 will be loosely denoted long range and
short range, respectively.

For η > 1, the magnetization always relaxes to an asymp-
totic value and there are no time-crystal oscillations. The line
η = 1, separating these two regimes, is a phase-transition line
where the fixed point is nonanalytic. The nature of the phase
transition depends on the value of χ . For χ < 1, there is a con-
tinuous phase transition between the vanishing-magnetization
fixed point of the BTC phase and a phase with small but
nonzero magnetization. At the critical line, the magnetization
is infinitely differentiable, but nonanalytic.

For χ > 1, the phase transition as a function of η is
of first order and the magnetization is discontinuous. We
observe a region where there are two coexisting stable
fixed points: one corresponding to a small steady-state mag-
netization (similar to a low-density, gas phase) and one
to a large magnetization (similar to a high-density, liquid
phase). The coexistence region terminates at the critical point
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C = (χC, ηC ) = (1.225, 1.625). The line BC is a first-order
critical line; above the critical point C, there are no phase
transitions and the steady state is always unique, smoothly
interpolating the gas and liquid phases as a function of χ ,
as occurs in the limit η → ∞. A similar first-order transition
line ending with a critical point, separating a low-density gas
phase from a high-density liquid phase, can be seen in the
equilibrium phase diagram of water [1].

In the transient regime before these asymptotic values set
in, interesting effects occur for 1 < η � 1.625. Here, for small
values of χ , the relaxation to the unique stable steady state
occurs through decaying oscillations toward an asymptotic
value that is close to zero. For high enough values of χ ,
there is again a single stable steady state and the oscillations
are quickly damped. Between these two regimes, there is the
coexistence regime, and each of the two stable fixed points has
its own basin of attraction. Initializing near the boundary be-
tween the two basins of attraction, there is a transient approach
to the large-magnetization fixed point, and then damped os-
cillations with convergence to the small-magnetization fixed
point.

In the next section, we discuss the phase diagram in more
detail.

III. MEAN-FIELD ANALYSIS

In this section we discuss the results obtained with the
mean-field approximation, summarized in the phase diagram
of Fig. 1, where the parameters are the exponent η and the
normalized dissipation strength χ .

The mean-field equations of motion for the magnetization
components can be derived analytically by only exploiting
the model’s translational invariance; see Appendix B. In the
thermodynamic limit, they read

ṁx = −γ

2
mxFη − γ

2
mxmz(1 − Fη ),

ṁy = 2Jmz − γ

2
myFη − γ

2
mymz(1 − Fη ),

ṁz = −2Jmy + γ (1 − mz )Fη + γ

2

(
m2

x + m2
y

)
(1 − Fη ), (6)

where, considering Eq. (2), we have defined the magnetization
components as the expectations of the total spin components

mα (t ) = 2 lim
N→∞

Tr[ρ(t )Sα]

N
(α ∈ {x, y, z}) (7)

and omitted time dependencies for shortness. The coefficient
Fη is given by

Fη = lim
N→∞

1

N

N∑
i, j=1

f 2
i j (η) =

{ 2ζ (2η)−1
[2ζ (η)−1]2 , η > 1,

0, 0 � η � 1,
(8)

where ζ (z) is Riemann’s Zeta function. We plot Fη versus
η in Fig. 2. We also plot the functions F (N )(η) for finite
values of N .

The highlighted light-blue range 0 � η � 1 in Fig. 2 marks
the parameter region where, in the thermodynamic limit, Fη =
0. This is the so-called long-range regime: here, the power-law
Lindblad operators do not affect the thermodynamic limit
behavior of the coefficients of local and collective pump. In

FIG. 2. F (N )
η as a function of η for several values of N . For N =

∞, Fη = 0 for 0 � η � 1. This is the long-range regime (highlighted
in light blue).

this case, since Fη = 0, the equations of motion [Eqs. (6)]
are exactly the same as the ones derived in Ref. [24] for
the Lindbladian of Eq. (1). Thus, the boundary time crystal
phase is not affected by the power-law decay of the jump
operators in the long-range regime and exists for all val-
ues of 0 � η � 1, as one can see in Fig. 1. Here, the two
quantities

N = m2
x + m2

y + m2
z , M = mx

my − 1/χ
(9)

are constants of motion, even if [Li(η), S2] 	= 0.
In the next two subsections we are going to see how the

properties of the system change by moving away from this
range of parameters. In Sec. III A we consider the situation
from the point of view of the fixed points of the dynamics,
and in Sec. III B from the point of view of the dynamics.

A. Fixed points

In order to find the fixed points, we impose ṁx = ṁy =
ṁz = 0 in Eq. (6). Let us start by considering the situation
in the long-range regime η < 1. In this case, the fixed-point
solution is

mx = 0, my = 1

χ
, mz =

√
χ2 − 1

χ
, if χ � 1,

mx =
√

1 − χ2, my = χ, mz = 0, if χ < 1. (10)

At χ = 1, there is a second-order phase transition between
the BTC phase (χ < 1) and the ordered ferromagnetic phase
(χ > 1), because one can see a discontinuity of ∂χmz at
χ = 1. We notice also that at χ = 1 the nature of the fixed
point changes, from an elliptic fixed point around which the
trajectories orbit, to a stable attractive fixed point onto which
the trajectories fall asymptotically.

Let us now move to another simple limit, η → ∞ (zero
range), which has been thoroughly analyzed in Ref. [78]. In
this limit, the Hamiltonian and the Lindblad operators act
independently on single spins; thus correlations never build
up in the system and the equations of motion for mα can be
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FIG. 3. Steady-state magnetization as a function of χ . (a) η = 1.2; (b) η = ηC = 1.625; (c) η = 2. For η < ηC , we observe the coexistence
of two stable solutions in the shaded area (solid red lines) and a single unstable one (dotted red line). For η = ηC , the derivative ∂χ mz is infinite
at χ = χC = 1.225.

written down exactly without even resorting to the mean-field
approximation. The resulting equations for the expectation
values are given by Eq. (6) with Fη = 1 and the steady-state
solution is

mx = 0, my = 2χ

2χ2 + 1
, mz = 2χ2

2χ2 + 1
. (11)

Here there are no critical points or conserved quantities. We
find that a qualitatively similar picture characterized by the
absence of a phase transition holds whenever η � 1.625: in
this short-range regime, the dynamics are mostly controlled
by local pump processes.

When one crosses the η = 1 line from η < 1 to η > 1, the
fixed point changes in a nonanalytic way and features there-
fore a phase transition. Crossing this line, there is a sudden
change in the equations of motion for mα , due to the fact that
for η > 1 the two quantities in Eq. (9) are no longer conserved
and the BTC phase is destroyed. For η > 1 the fixed-point
solutions to Eqs. (6) is found from the following system of
equations:

mx = 0,

my = mz

χ [Fη + mz(1 − Fη )]
,

m3
z − (1 − 2λ)m2

z − λ

[
2 − λ

(
1 + 1

2χ2F 2
η

)]
mz − λ2

=
3∏

k=1

(
mz − m(k)

z

) = 0, (12)

where λ = Fη/(1 − Fη ). Since, in this range of η, λ 	= 0, we
find that m(k)

z = 0 is never a solution to these equations.
A special regime occurs when 1 < η < 1.625. In this

regime Eq. (12) can either have one or three real solutions
depending on the value of χ . Small values of χ result in
a unique gas-like steady state, while large values of χ lead
to a unique liquid-like steady state. In between the gas-like
and liquid-like phases, there is a coexistence region, shown
in Fig. 1 with a dashed filling pattern, where there are three
real solutions to Eq. (12). The analysis of the stability of these
fixed points shows that one of them is always unstable and
repulsive, whereas the remaining two are stable and attractive.
One of these solutions, m(1)

z , corresponds to a steady state with

large total magnetization N ≈ 1, while the other one, m(2)
z ,

has a small total magnetization N ≈ 0. We show an example
of the fixed point mz versus χ for η = 1.2 in Fig. 3(a). The
shaded area shows the coexistence of two stable fixed points,
denoted by the solid lines. The dotted line represents the third,
unstable fixed point. This situation corresponds to a first-order
phase transition, because mz changes discontinuously as a
function of χ .

This coexistence situation disappears for η > 1.625, where
the equation for the fixed point mz always has two complex
roots and a real one, the latter corresponding to a stable
fixed point. The magnetization curve is therefore continuous
and regular without phase transition and coexistence regime
[see Fig. 3(c) for η = 2]. Exactly at η = ηC = 1.625,
the magnetization curve is continuous and regular but at
χ = χC = 1.225, where it has a vertical-tangent flex, as
shown in Fig. 3(b). So, there is a discontinuity in ∂χmz,
corresponding to the critical point marked as C in Fig. 1. So,
decreasing η, one has first one real stable and two complex
solutions of Eq. (12) for all χ , then a value of χ with three
coinciding real solutions (the critical point), and then an
interval of χ where there are two real stable solutions and a
real unstable one (coexistence regime). This phenomenon is
standard in nonlinear dynamics and is known as imperfect
pitchfork bifurcation (or cusp catastrophe) [79,80].

Let us now comment on how the fixed points change when
the η = 1 line is crossed. For χ > 1 they change in a discon-
tinuous way, featuring a first-order transition. For χ < 1 the
transition is between the BTC phase (η < 1) and the gas-like
phase (η > 1) and is a continuous ∞-order transition for the
fixed point. Indeed, crossing the η = 1 line, the fixed point
mz is infinitely differentiable with continuous derivatives but
is not analytic. This can be seen in Fig. 4, where we plot the
fixed-point magnetization and its first and second derivative
as a function of η for χ = 0.5. We see that mz is well fitted
around η = 1 by a function of the form

mz(η) = ae− b
(η−1)c , (13)

where a, b, and c are fitting parameters.
In the next subsection we discuss the dynamics around

these fixed points, leading to persistent oscillations in the BTC
phase, and to relaxation to an attractive fixed point otherwise,
with interesting observations when two attractive fixed points
coexist.
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FIG. 4. Magnetization mz and its derivatives as a function of η

for χ = 0.5. The curve for mz is well described by the function in
Eq. (13), which is nonanalytic in η = 1 (best-fit parameters: a = 2.5,
b = 4.4, c = 0.66).

B. Dynamics

BTC phase. Let us start by considering the BTC phase.
Here the time crystal supported by the long-range power-law
Lindblad operators with η � 1 is the same as the one stud-
ied in Ref. [24], i.e., a mean-field semiclassical time crystal.
We can see some time traces for η = 0.5 in Figs. 5(a)–5(c).
Figure 5(a) corresponds to the time-crystal phase, and
one can see the persisting oscillations of the magnetiza-
tion components. Figures 5(b) and 5(c) correspond to the
symmetry-broken phase for χ > 1, and one can see the mag-
netization components reaching the asymptotic value given by
Eq. (10). In all these cases, M and N are conserved.

Short-range regime. Some examples of dynamics in the
short-range regime η > 1 are shown in Figs. 5(d)–5(i). In
Figs. 5(d) and 5(e), we see oscillations decaying to a value
close to zero; in Fig. 5(f) the magnetization relaxes to an
asymptotic value in the liquid phase. Both M and N [see
Eq. (9)] are not conserved and decay. For η = 2, the oscil-
lations of the magnetization are only seen in the gas phase
[Fig. 5(g)] but they quickly decay in time, whereas in the liq-
uid phase the magnetization immediately relaxes [Figs. 5(h)
and 5(i)].

In summary, the BTC exists only in the region of the phase
diagram given by 0 � η � 1, 0 � χ < 1. The amplitude of
oscillation of mz at infinite times has a finite value in this
region due to the persistent BTC oscillations, and are zero
everywhere else, with a finite discontinuity at the boundary.
So, while the fixed point changes in a continuous way across
the boundaries of the BTC region, the amplitude of the BTC
oscillations changes discontinuously, featuring a first-order
transition.

Focusing on the gas phase, for χ = 0.7, we see that the
magnetization immediately starts to oscillate and the os-
cillations decay in time [Fig. 5(d)]. We checked that the
oscillations exponentially decay in time, with the amplitude
of the envelope following the law A(t ) = A0 exp[−B(η)Jt].
For η → 1+, the decay rate B(η) = 0.7(η − 1)2 as shown in
Fig. 6, hinting at long-lived oscillations near the BTC phase.
For η = 1, one falls in the BTC phase, the oscillations are
persistent, and B(1) = 0.

In order to better understand the short-range regime, let
us consider some phase-space portraits of the dynamics in
the plane mx = 0. For small values of χ , the steady-state
magnetization is close to zero and the system falls to the
fixed point following rapidly decaying oscillations, signaled
by spiraling orbits in the phase-space portraits in the plane
mx = 0 [Fig. 7(a); compare with Fig. 5(g)]. This is the gas-like

FIG. 5. Dynamics of the magnetization components, mα , and of the two functions M and N described in the main text, for several choices
of the exponent η and the dissipation rate χ . Top row: η = 0.5; center row: η = 1.4; bottom row: η = 2.0. Left column: χ = 0.7; center
column: χ = 1.0; right column: χ = 1.3. In panel (a), highlighted with a bold red frame, we observe a BTC phase. For η = 0.5, M and
N are conserved quantities. Technical details: dynamics numerically performed with implicit backward differentiation formulas [81], initial
condition mα (0) = 1/

√
3 ∀α.
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FIG. 6. Decay rate of the amplitude of mz(t ) for η = 1.1
and χ = 0.7.

phase shown in the leftmost part of Fig. 1. Instead, for larger
values of χ we are in the liquid-like phase (see Fig. 1), and
the system converges to a fixed point with large mz with no
oscillations [Fig. 7(b); compare with Fig. 5(i)].

Coexistence region. Some interesting dynamical behaviors
occur when η is close to 1, inside the coexistence region of
the phase diagram. Here, there is a regime where the mag-
netization starts oscillating around mz = 0 after a delay. As
an example, here we discuss the case of η = 1.1. For three
choices of χ , we numerically solve Eq. (6) and plot the time
evolution of mz(t ) in Figs. 8(a)–8(c).

For 1 < χ � 1.4, mz(t ) starts to oscillate at a later time.
The time at which oscillations start becomes longer with χ

approaching 1.4. It also becomes longer for η → 1+ since, for
η = 1, the system goes back to the infinite-range case where,
for 1 < χ � 1.4, the system is already in the magnetized
phase and no oscillations are visible in mz(t ). This behavior is
shown in Fig. 8(b) for χ = 1.3. Right after the critical point,
the oscillations in mz(t ) disappear completely; see Fig. 8(c),
where we show the case of χ = 1.408. In all cases, there is no
trace of the persistent oscillations indicating a BTC phase, at
least at the mean-field level of the analysis thus far. The end
point of this region tends to χ = √

2 when η → 1+.
In order to explain the transient seen in Fig. 8, we have to

consider that we are in the coexistence regime, where there
are two stable fixed points (and an unstable one). Each of

FIG. 7. Phase-space flow portraits in the plane mx = 0 for η = 2.
(a) χ = 0.7; (b) χ = 1.3. The fixed points are marked in blue. The
shaded area corresponds to the region where N � 1.

the stable fixed points has its own basin of attraction, and
the dynamics eventually reaches one or another according
to the chosen initial conditions. By studying the phase-space
portraits in this regime, we see that, if the initial state has a
total magnetization N [Eq. (9)] above a certain threshold, the
fixed point with N ≈ 0 is never reached. We can see this in the
phase-space portrait shown in Fig. 9 for η = 1.1 and χ = 2
in the plane mx = 0. The system converges to the fixed point
m(1)

z (black line) if the initial state falls within the basin of
attraction of this point, i.e., if the initial total magnetization is
larger than N = 0.5. Instead, if N < 0.5, the system spirals
toward the fixed point with N ≈ 0.

The small-N fixed point is continuously connected to the
one in Fig. 7(a), and the spiraling dynamics of the trajectories
are similar. The large-N fixed point is continuously connected
to the one in Fig. 7(b) and trajectories converge to it without
spiraling. The coexistence of fixed points with these properties
of the trajectories converging to them explains the results
shown in Fig. 8. Here the system is initialized inside the basin
of attraction of the small-N fixed point, and near the boundary
between the two attraction basins. So, there is a transient
where the system behaves as it was converging to the large-N
fixed point, and then the trajectory spirals around the small-N
fixed point and converges to it.

IV. QUANTUM CORRELATIONS: THIRD-ORDER
CUMULANT EXPANSION

Equations (6) are obtained performing the mean-field
approximation, which is equivalent to neglecting quantum
fluctuations 〈σα

j σ
β

l 〉
t
� 〈σα

j 〉
t
〈σβ

l 〉t ∀ j, l = 1, . . . , N , with
j 	= l , and α, β = x, y, z [82]. Here we write 〈(· · · )〉t ≡
Tr[ρ(t )(· · · )] for brevity. This is a strong approximation, be-
cause from a physical point of view it is equivalent to state
that the density matrix ρ(t ) gives rise to distributions of mea-
surement outcomes of σα

j with no fluctuations. This is a good
approximation in the case of η = 0 (see Ref. [34]), as well as
in the case η → ∞ (see Ref. [78]). By contrast its validity is
not known for intermediate values of η. Here, we focus our
attention on the long-range regime 0 � η � 1.

In order to clarify the relevance of quantum fluctuations,
we apply a third-order cumulant expansion [83]. In the mean-
field approximation one considers the distribution of the
measurement outcomes of σα

j and imposes that the nontriv-

ial second cumulants are vanishing, C2(α, β, t ) ≡ 〈σα
j σ

β

l 〉
t
−

〈σα
j 〉

t
〈σβ

l 〉t = 0, with j 	= l [82]. Notice that C2 is independent
of j and l , a valid assumption in the thermodynamic limit
in the long-range regime; see Appendix C. The mean-field
Eq. (6) can be obtained from the exact equations of motion
[see Eq. (B5)] requiring that the second cumulants of the prob-
ability distributions of the magnetization components vanish.

In the third-order cumulant expansion, instead, one im-
poses that the nontrivial third cumulants (and all the next ones)
are vanishing, that is to say,

C3(α, β, γ , t ) = 〈
σα

j σ
β

l σγ
m

〉
t
− 〈

σα
j σ

β

l

〉
t

〈
σγ

m

〉
t

− 〈
σα

j σγ
m

〉
t

〈
σ

β

l

〉
t − 〈

σ
β

l σγ
m

〉
t

〈
σα

j

〉
t

+ 2
〈
σ

β

l

〉
t

〈
σγ

m

〉
t

〈
σα

j

〉
t
= 0. (14)
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FIG. 8. Time evolution of the magnetization for η = 1.1 for several values of the dissipation strength χ . (a) χ = 0.7; (b) χ = 1.3; (c) χ =
1.408. The insets of panels (a) and (b) zoom in on the regions where oscillations of mz start to occur. The inset of panel (c) shows the behavior
of mz at longer times: for this choice of χ , the magnetization does not oscillate.

This is the so-called Gaussian approximation, because one
assumes that in the distribution of the measurement outcomes
of σα

j only the first two cumulants are nonvanishing, as appro-
priate for Gaussian distributions.

Assuming the Gaussian approximation Eq. (14), the equa-
tions of motion are more involved and include also the
correlations. Thanks to the effective permutation invariance
of the model in the thermodynamic-limit in the long-range
regime (see discussion in Appendix C), one reduces to solve
an ODE system with nine equations [see Eqs. (C3)].

We numerically solve these equations initializing the sys-
tem in the uncorrelated state with mz(0) = 1, with vanishing
second cumulants. Letting the system evolve, it has the free-
dom to develop nonvanishing second-order cumulants, and
then get nontrivial quantum correlations. Taking 0 � η �
1, whatever are the considered values of χ , we find that
these second-order cumulants take values of order of 10−2 or

FIG. 9. Phase-space flow in the plane mx = 0 for η = 1.1 and
χ = 2. The attractive fixed points are marked in blue with a square
(N ≈ 0) and a circle (N ≈ 1). The orange cross marks the unsta-
ble fixed point. The light shaded area corresponds to the region
where N � 1. The dark shaded area denotes the basin of attraction
of the fixed point with small N . Two trajectories, where the starting
states fall within the basin of attraction of the two stable fixed points,
are shown as an example.

smaller. We show this fact in Fig. 10, where we plot some
examples of evolution of �z(t ) = C2(z, z, t ). In this figure we
focus on the case of η = 0.5 as an example of long range, but
we have checked that the results discussed here are represen-
tative of all other values of η.

These findings imply that results obtained with the mean
field in the long-range regime 0 < η � 1 remain almost un-
changed when quantum fluctuations are considered, because
these fluctuations are vanishingly small, even if the system
is allowed to develop them at the level of second cumulants.
We emphasize that this is a numerical observation, and further
studies are needed to understand it from the analytical point of
view.

Notice that the vanishing of the second-order cumulant
occurs only in the thermodynamic limit. If we consider a
finite-size system, we see that non-negligible second-order
cumulants (and the associated quantum fluctuations) develop
in time. We show an example of this in Fig. 11 for the case of
η = 0.5 and χ = 0.7.

V. CONCLUSIONS

In conclusion, we have introduced a class of long-range
dissipative models that support a time-crystal phase, where
the Lindblad operators decay as a power law with exponent
η. The steady-state phase diagram of the model we consid-
ered appears quite rich with different transition lines and a
coexistence phase. The form of long-range dissipation has
been motivated by a recent proposal [60,61] and can be im-
plemented with Rydberg atoms in cavities.

FIG. 10. Variance �z = Czz − m2
z as a function of time, for

η = 0.5 and several values of χ = γ /4J . The initial condition is
mz(0) = Czz = 1, thus �z(0) = 0. (a) χ = 0.7; (b) χ = 1; (c) χ =
1.3; (d) χ = 2.
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FIG. 11. Variance �z = Czz − m2
z as a function of time, for η =

0.5 and χ = 0.7, for small system sizes. The initial condition is the
factorized density matrix with all the spins pointing in the positive z
direction. The curves have been obtained by numerically solving the
master equation for the density matrix, Eq. (3).

In this model, as opposed to the one proposed in
Ref. [24], the square of the collective spin operator is no
longer conserved. Nevertheless, studying the dynamics of
the total magnetization, we see that the time-translation-
symmetry-breaking oscillations persist if 0 < η � 1 (long-
range regime). In this regime there is a transition between
a small-χ time-translation-symmetry-breaking phase and a
large-χ phase with no time crystal, where the magnetization
attains an asymptotic finite value. For 0 < η � 1 the transi-
tion point in χ is independent of η. So, in this regime, the
thermodynamic-limit dynamics is independent of η, similarly
to what happens in Hamiltonian models with long-range inter-
action. Remarkably, although the square of the collective spin
operator is not conserved for any finite size, its expectation in
the thermodynamic limit (the square of the total magnetiza-
tion) is conserved.

Outside this range of parameters, the system reaches an
asymptotic steady state. Here, an interesting regime occurs for
1 < η � 1.625, where the system shows a first-order phase
transition line (a discontinuity) of the z magnetization in the
χ -η plane and there is a region where two stable steady states
coexist. This phase transition line terminates with a critical
point, beyond which the magnetization is analytic. The way
the first-order phase transition develops corresponds to an
asymmetric pitchfork bifurcation.

In order to study the thermodynamic-limit dynamics of
the total magnetization, we use the mean-field approximation.
That means that we impose zero quantum fluctuations in the
Ehrenfest equations of the expectation of the magnetization.
From a mathematical point of view, this is equivalent to
imposing that the distribution of the outcomes of the mea-
surements of the spin components on the wave function has
vanishing second cumulant (that is to say, no fluctuations).
It was already known that this approximation is exact in the
thermodynamic limit for η = 0 [24] and η → ∞ [78]. Here
we numerically prove that it is quantitatively accurate, in the
thermodynamic limit and in the Gaussian approximation, also
for 0 < η � 1.

In order to do that, we study the Ehrenfest equa-
tions beyond the mean-field approximation: imposing that
the third-order cumulants are vanishing. So, we approximate
that the distribution of the outcomes of the measurements of
the spin components on the wave function is a Gaussian. In
this approximation, the system has the freedom to build up
a nonvanishing second-order cumulant (with the associated
fluctuations and correlations). We focus on the thermody-
namic limit for 0 � η � 1, and numerically observe that no
second-order cumulant appears, so the mean-field picture is
exact in this regime of parameters. Beyond this range of η,
the second-order cumulant dynamics becomes much more
complicated to analyze, because one loses the effective per-
mutation symmetry that emerges in the thermodynamic limit
for 0 � η � 1. Studying the correlations in this regime will be
the subject of a future publication.

Perspectives of future work include also to better under-
stand analytically this absence of second-order cumulants,
which we verify here only numerically. Moreover, it will be
interesting to break the full permutation symmetry of the
model (for instance applying disorder to the Lindbladians),
in order to see whether the time-crystal phase is stable to
this further reduction of symmetry. In this context, another
direction to pursue is using an interacting Hamiltonian, in or-
der to see the effect on the BTC of the correlations induced by
the interaction. This can be numerically studied by applying
the discrete truncated Wigner approximation [84–86]. Finally,
we plan to apply the long-range dissipation to a model dis-
playing quantum chaos with an infinite-range dissipator [87].
Our aim is to understand how the chaotic properties change,
and whether the mean-field approximation is still valid in the
thermodynamic limit when there is chaos.

ACKNOWLEDGMENTS

This work has been funded by project code PIR01_00011
“IBiSCo”, PON 2014-2020. The work has been supported by
the ERC under Grant Agreement No. 101053159 (RAVE). We
thank F. Iemini and M. M. Wauters for useful comments on the
manuscript.

APPENDIX A: KAC NORMALIZATION

The power-law Lindblad operators are defined in Eq. (4),
where

fi j (η) = K (N )(η)

[min(|i − j|, N − |i − j|) + 1]η
. (A1)

The Kac normalization factor K (N )(η) is defined in such a way
that

∑N
j=1 fi j (η) = 1 for all i. For convenience, let us then

suppose N is even and fix i = N/2, so that the denominator of
fi j (η) contains the term N/2 − j if j � N/2, and j − N/2 if
j > N/2. Thus, we have

N∑
j=1

fi j (η) = K (N )(η)

[
N/2∑
j=1

1

(N/2 − j + 1)η

+
N∑

j=N/2+1

1

( j − N/2 + 1)η

]
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= K (N )(η)

⎡
⎣ N/2∑

k=1

1

kη
+

N/2+1∑
k=2

1

kη

⎤
⎦

= K (N )(η)

⎡
⎣ 2

N/2∑
k=1

1

kη
− 1 +

(
2

N + 2

)η

⎤
⎦ = 1.

(A2)

Similar algebra holds for the case of odd N . For even N , we
find

K (even N)(η) = 1

2H (η)
1+N/2 − 1 − (

1 + N
2

)−η
, (A3)

where H (k)
n = ∑n

j=1 j−k is the nth harmonic number of order
k. Similarly, for odd N ,

K (odd N)(η) = 1

2H (η)
1+(N−1)/2 − 1

. (A4)

APPENDIX B: MEAN-FIELD MAGNETIZATION
DYNAMICS

When the time evolution is described by the Lindbladian of
Eq. (3), then for any observable O we can write the dissipative
Ehrenfest theorem as

˙〈O〉 = i〈[H, O]〉 + γ

2

N∑
i=1

〈L†
i [O, Li] + [L†

i , O]Li〉, (B1)

where we avoid writing the η- and time-dependence for con-
venience and the expectation values are taken over ρ(t ).
Evaluating this equation for the magnetization components
mα = 2〈Sα〉/N , we obtain the following equations,

ṁx = − γ

2N

N∑
i=1

〈L†
i Mi + MiLi〉, (B2)

ṁy = U (N )
y + γ

i 2N

N∑
i=1

〈L†
i Mi − MiLi〉, (B3)

ṁz = U (N )
z − 2γ

N

N∑
i=1

〈L†
i Li〉, (B4)

where we defined Mi(η) = ∑
i j fi j (η)σ z

i and U (N )
α =

2i 〈[H, Sα]〉/N . In terms of single-spin operators, these
equations can be rewritten as follows:

ṁx = − γ

2N

N∑
j=1

F j j (η) mx − γ

2N

N∑
j=1

N∑
k 	= j

F jk (η)Cxz
jk ,

ṁy = U (N )
y − γ

2N

N∑
j=1

F j j (η) my − γ

2N

N∑
j=1

N∑
k 	= j

F jk (η)Cyz
jk,

ṁz = U (N )
z + γ

N

N∑
j=1

F j j (η) (1 − mz )

+ γ

2N

N∑
j=1

N∑
k 	= j

F jk (η)
(
Cxx

jk + Cyy
jk

)
,

where we introduced the correlation functions Cαβ

jk = 〈σα
j σ

β

k 〉
and the coefficients F jk (η) = ∑N

i=1 fi j (η) fik (η). They satisfy∑N
j=1

∑N
k=1 F jk = N . Due to the form of fi j , the coefficients

F jk only depend on | j − k|; in particular F (N )
η ≡ F j j does not

depend on the spatial index. Thus, the equations of motion can
be simplified to read

ṁx = −γ

2
F (N )

η mx − γ

2N

N∑
j=1

N∑
k 	= j

F jk (η)Cxz
jk ,

ṁy = U (N )
y − γ

2
F (N )

η my − γ

2N

N∑
j=1

N∑
k 	= j

F jk (η)Cyz
jk,

ṁz = U (N )
z + γ F (N )

η (1 − mz )

+ γ

2N

N∑
j=1

N∑
k 	= j

F jk (η)
(
Cxx

jk + Cyy
jk

)
. (B5)

In the mean-field approximation, we suppose that the sys-
tem state is uncorrelated and can be written as a tensor
product of single-qubit density matrices (Gutzwiller ansatz):
ρ = ⊗N

i=1 ρi. Thus, we assume Cαβ

jk = mαmβ due to trans-
lational invariance and obtain the mean-field equations of
motion in the thermodynamic limit,

ṁx = −γ

2
Fη mx − γ

2
(1 − Fη ) mxmz,

ṁy = U (∞)
y − γ

2
Fη my − γ

2
(1 − Fη ) mymz,

ṁz = U (∞)
z +γ Fη(1 − mz ) + γ

2
(1 − Fη )

(
m2

x + m2
y

)
, (B6)

also shown in the main text [Eq. (6)].
To derive these equations in the thermodynamic limit N →

∞, we analytically evaluated the coefficients Fη. In particular,
we have that

Fη = lim
N→∞

F (N )
η

= lim
N→∞

N∑
i=1

[K (N )(η)]2

(min |i − j|, N − |i − j| + 1)2η
. (B7)

This relation must hold for all j; thus we can fix j = N/2 and
follow the same steps as those of Appendix A. In this way, we
easily obtain

Fη =
{ 2ζ (2η)−1

[2ζ (η)−1]2 , η > 1,

0, 0 � η � 1,
(B8)

where ζ (z) = limn→∞ H (z)
n is Riemann’s Zeta function, de-

fined for Re(z) > 1. For finite N , the sum in Eq. (B7) can be
evaluated numerically.

APPENDIX C: CORRELATION DYNAMICS
IN THE GAUSSIAN APPROXIMATION

As mentioned in the main text, one way to keep some
information regarding correlation is by requiring that the
third cumulant be zero. This is known as the Gaussian
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approximation. The 3-body correlation functions appearing in
the dynamical equations of the 2-body correlation functions
can be decomposed as 〈x1x2x3〉 = 〈x1x2〉〈x3〉 + 〈x1x3〉〈x2〉 +
〈x2x3〉〈x1〉 − 2〈x1〉〈x2〉〈x3〉; hence it is possible to write down
a closed-form system of ordinary differential equations for
the magnetization and 2-body correlations only. In the case

of permutation-invariant systems, this ODE system has nine
equations.

When the system Hamiltonian is H = 2JSx, the time
evolution of the correlation function Cαβ

lm = 〈σα
l σβ

m 〉 in the
power-law dissipative model in the Gaussian approximation
is given by

Ċαβ

lm = 2J
(
εxαθCθβ

lm + εxβθCαθ
lm

)

+ γ

2

⎧⎨
⎩εβxθ

⎡
⎣my

(
Cαθ

lm − 2mαmθ

) + mθ

⎛
⎝Flm(δyα − εxαζ mζ ) +

∑
j 	=l

F jmCαy
l j

⎞
⎠ + mα

⎛
⎝Fmm(δyθ − εxθζ mζ ) +

∑
j 	=m

F jmCyθ
jm

⎞
⎠
⎤
⎦

− εβyθ

⎡
⎣mx

(
Cαθ

lm − 2mαmθ

) + mθ

⎛
⎝Flm(δxα + εyαζ mζ ) +

∑
j 	=l

F jmCαx
l j

⎞
⎠ + mα

⎛
⎝Fmm(δxθ + εyθζ mζ ) +

∑
j 	=m

F jmCxθ
jm

⎞
⎠
⎤
⎦

+ εαxθ

⎡
⎣my

(
Cθβ

lm − 2mβmθ

) + mθ

⎛
⎝Flm(δyβ − εxβζ mζ ) +

∑
j 	=m

Fl jC
yβ
jm

⎞
⎠ + mβ

⎛
⎝Fll (δyθ − εxθζ mζ ) +

∑
j 	=l

Fl jC
θy
l j

⎞
⎠
⎤
⎦

− εαyθ

⎡
⎣mx

(
Cθβ

lm − 2mβmθ

) + mθ

⎛
⎝Flm(δxβ + εyβζ mζ ) +

∑
j 	=m

Fl jC
xβ
jm

⎞
⎠ + mβ

⎛
⎝Fll (δxθ + εyθζ mζ ) +

∑
j 	=l

Fl jC
θx
l j

⎞
⎠
⎤
⎦
⎫⎬
⎭.

(C1)

Due to the translational invariance of the model, we have Cαβ

lm = Cαβ

|l−m|. In the long-range regime (0 < η � 1), due to the Kac
factors (see Appendix A), the terms in Eq. (C1) containing Flm,Fll , and Fmm vanish in the thermodynamic limit N → ∞. As
a consequence, in this limit, the equations (C1) become symmetric under all the site-permutation transformations, as is easy to
check. So, initializing the system in a permutation-invariant state (as we do), the correlations become independent of the lattice
indices, and the system behaves as it is symmetric under site permutations, resembling the infinite-range case η = 0.

Thermodynamic limit

If we exploit the model’s permutation invariance (Cαβ

lm = Cαβ) emerging in the long-range regime in the thermodynamic limit
and sum both sides of the equation over l and m 	= l (so that the spin operators in the expectation value always commute), we
get the following equation:

Ċαβ = 2J (εxαθCθβ + εxβθCαθ ) + γ

2
{εβxθ [my(Cαθ − 2mαmθ ) + mθCαy + mα (Fη(δyθ − εxθζ mζ ) + Cyθ (1 − Fη ))]

− εβyθ [mx(Cαθ − 2mαmθ ) + mθCαx + mα (Fη(δxθ + εyθζ mζ ) + Cxθ (1 − Fη ))]

+ εαxθ [my(Cθβ − 2mβmθ ) + mθCyβ + mβ (Fη(δyθ − εxθζ mζ ) + Cθy(1 − Fη ))]

− εαyθ [mx(Cθβ − 2mβmθ ) + mθCxβ + mβ (Fη(δxθ + εyθζ mζ ) + Cθx(1 − Fη ))]}. (C2)

Putting everything together, we obtain the following system of ordinary differential equations:

ṁx = −γ

2
Fη mx − γ

2
(1 − Fη )Cxz,

ṁy = 2Jmz − γ

2
Fη my − γ

2
(1 − Fη )Cyz,

ṁz = −2Jmy + γ Fη (1 − mz ) + γ

2
(1 − Fη ) (Cxx + Cyy),

Ċxx = −γ {mx[Fηmx + (2 − Fη )Cxz − 2mxmz] + mzCxx},
Ċxy = 2JCxz − γ

2
{mx[Fηmy + (2 − Fη )Cyz − 2mymz] + my[Fηmx + (2 − Fη )Cxz − 2mxmz] + 2mzCxy},

Ċxz = −2JCxy + γ

2

{
mx

[
2Fη(1 − mz ) + (Cxx + Cyy)(1 − Fη ) + 2Cxx − 2m2

x + 2m2
z − Czz

]
+ my(2Cxy − 2mxmy) − mz[Fηmx + (2 − Fη )Cxz]

}
,

Ċyy = 4JCyz − γ {my[Fηmy + (2 − Fη )Cyz − 2mymz] + mzCyy},
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Ċyz = 2J (Czz − Cyy) + γ

2

{
mx(2Cxy − 2mxmy) + my

[
2Cyy − 2m2

y + 2Fη(1 − mz )

+ (Cxx + Cyy)(1 − Fη ) − Czz + 2m2
z

] − mz[Fηmy + (2 − Fη )Cyz]
}
,

Ċzz = −4JCyz + γ {2mx(Cxz − mxmz ) + 2my(Cyz − mymz ) + mz[2Fη(1 − mz ) + (Cxx + Cyy)(1 − Fη )]}. (C3)

It is a stiff nonlinear system; thus its numerical solution is only stable when the evolution time is relatively short [81].
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[57] C. Booker, B. Buča, and D. Jaksch, New J. Phys. 22, 085007

(2020).
[58] R. Khasseh, R. Fazio, S. Ruffo, and A. Russomanno, Phys. Rev.

Lett. 123, 184301 (2019).
[59] A. Pizzi, J. Knolle, and A. Nunnenkamp, Nat. Commun. 12,

2341 (2021).
[60] K. Seetharam, A. Lerose, R. Fazio, and J. Marino, Phys. Rev.

Res. 4, 013089 (2022).
[61] K. Seetharam, A. Lerose, R. Fazio, and J. Marino, Phys. Rev. B

105, 184305 (2022).
[62] J. Marino, Phys. Rev. Lett. 129, 050603 (2022).
[63] F. Liu, R. Lundgren, P. Titum, G. Pagano, J. Zhang, C. Monroe,

and A. V. Gorshkov, Phys. Rev. Lett. 122, 150601 (2019).
[64] M. C. Angelini, G. Parisi, and F. Ricci-Tersenghi, Phys. Rev. E

89, 062120 (2014).
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