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Chern numbers of topological phonon band crossing determined with inelastic neutron scattering
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Topological invariants in the band structure, such as Chern numbers, are important for the understanding and
classification of the topological properties of matter and dictate the occurrence of exotic behaviors, yet their
direct spectroscopic determination has been largely limited to electronic bands. Here, we use inelastic neutron
scattering in conjunction with ab initio calculations to identify a variety of topological phonon band crossings in
MnSi and CoSi single crystals. We find a distinct relation between the Chern numbers of a band-crossing node
and the scattering intensity modulation in momentum space around the node. Given sufficiently high resolution,
our method can be used to determine arbitrarily large Chern numbers of topological phonon band-crossing nodes.
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I. INTRODUCTION

Ever since the discovery of topological quantum numbers
in quantum Hall states [1,2], the concept of band topology has
shed light on the exploration and classification of crystalline
materials [3–7]. Topological insulators, semimetals, and su-
perconductors are extensively studied, both as novel phases
of matter and for their potential applications. Unlike conven-
tional phases of matter described by symmetry in the Landau
paradigm, topological phases are classified by topological in-
variants, which do not change under adiabatic deformations
of the band structure.

An important topological invariant is called the Chern
number, which is associated with a mapping from a two-
dimensional (2D) closed surface in reciprocal space to the
Hilbert space of Bloch states. The Chern number characterizes
the topological structure of such mapping and has observ-
able consequences. In the gapped energy spectrum of 2D
quantum Hall systems, nonzero Chern numbers correspond
to the number of edge states, which lead to the quanti-
zation of the Hall conductance [3,8]. In three-dimensional
(3D) Weyl semimetals, Weyl nodes act as monopoles of
Berry flux and have nonzero Chern numbers (defined by
the mapping from their enclosing surface in momentum
space to the Hilbert space), which determine the number of
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Fermi-arc surface states [9–11] and the quantized magni-
tude of circular photogalvanic effect [12,13]. As the essence
of topological band theory is independent of the statistics
of the constituent quasiparticles, much effort has been de-
voted to the search for similar topological bands in bosonic
systems. In artificial structures, topological photonic and
acoustic bands and their corresponding surface states have
been predicted and observed by various spectroscopy meth-
ods [14–18]. The discrete transport of such edge modes has
also been confirmed in photonic crystals, as the jump in
microwave transmission coefficient matches the number of
edge modes defined by the Chern numbers [19]. In natural
crystals, many predictions have been made on such distin-
guished surface states from bulk topological phonons [20–26]
and magnons [27–31], but they have not been observed since
common probes cannot single out surface states from the
bulk ones. Besides the surface states, the physical conse-
quences of topological bosons are rather limited compared
to the electronic case, as the phonons and magnons do not
carry charges and there is no Fermi surface. Thermal mea-
surements are still possible, such as anomalous thermal Hall
effects arising from nonzero Berry curvatures of topologi-
cal phonons [32] and magnons [27,33]. Another possibility
is gauge-field-induced chiral phonon mode with Aharonov-
Bohm-type effects in nanomechanical systems [34]. Yet these
are all subtle effects that need demanding measurements.
Given that accessible observables of bosonic band topology
are still very limited to date, practical methods for deter-
mining Chern numbers in phonon and magnon bands are
desired.
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FIG. 1. (a) Cubic unit cell of MSi (M = Mn, Co). (b) and (c) Representative INS intensities of MnSi and CoSi, respectively, along a
high-symmetry momentum trajectory, measured at T = 40 K. Data measured with Ei = 57 meV and 90 meV are combined after proper
intensity normalization. (d) The Brillouin zone (BZ), with the momentum trajectory marked in red. (e) and (f) S(Q, ω) calculated from the
fitted-force-constant model along the same trajectories as in (b) and (c). Solid lines in (b), (c), (e), and (f) indicate the calculated phonon
dispersions.

It is experimentally possible to determine Chern num-
bers in phonon and magnon bands, if one can measure the
topological structure of wave functions, i.e., eigenvectors in
momentum space. Scattering methods such as inelastic neu-
tron scattering (INS) and x-ray scattering are suitable for this
purpose, because their dynamical structure factor S (Q, ω) is
determined by the excitations’ eigenvectors [35,36]. As the
eigenvectors vary strongly in the vicinity of Weyl and Dirac
points, the observed intensities are expected to undergo strong
and distinct modulations, which can reflect the topological
structure of the excitation spectrum. Such modulations have
been recently reported in several topological magnon systems
around Dirac points [37,38] and nodal lines [39,40].

Here, we report an INS study of MSi (M = Co, Mn) single
crystals, which host multiple types of topological phonon
band crossing nodes [22,23,41]. Except for their linear dis-
persions, potential physical consequences of such topological
phonons, including the surface modes [22] and the possible
anomalous thermal Hall effect [32], remain largely unex-
plored. By comparing the observed INS intensities with our
fitted model based on density functional perturbation theory
(DFPT) calculations, we verify the theoretically predicted co-
existence of twofold quadruple Weyl points, threefold spin-1
Weyl points, and fourfold charge-2 Dirac points in MSi. We
further explore the spectroscopic signatures of topological
structures near the topological band crossing points and show,
theoretically and in some cases with comparison to the ex-
perimental data, that the number of intensity extrema on a
momentum sphere enclosing the band-crossing node equals
the Chern number of the node. Our result demonstrates the
capability of INS for direct Chern-number determination.

This paper is organized as follows: In Sec. II, we describe
the INS experiment and the fitted-force-constant model based
on DFPT. In Sec. III, we show phonon dispersions, both in
a global view and close to topological band crossing nodes.
In Sec. IV, we discuss INS spectroscopic features near the
band-crossing nodes and investigate their relation with the
Chern numbers. In Sec. V, we make a brief discussion and
a summary.

II. EXPERIMENT AND CALCULATION METHODS

A. INS experiment

High-quality single crystals of MnSi and CoSi were grown
by a traveling floating zone method. The INS experiments
were performed on the 4SEASONS spectrometer at MLF,
J-PARC, Japan and the SEQUOIA spectrometer at SNS,
ORNL, USA [42,43]. A total of 33 (28) grams of MnSi
(CoSi) twin-free single crystals with a mosaic spread of �
1.3◦ full-width at half-maximum (FWHM) were used for the
experiments (Fig. S1 [44,45]). The INS data shown in this
paper were collected with incident neutron energies Ei =
57 and 90 meV at a fixed temperature of T = 40 K, and
analyzed with the UTSUSEMI and HORACE software [46,47]. As
MnSi and CoSi share the B20-type structure belonging to the
noncentrosymmetric space group P213 [Fig. 1(a)], data from
equivalent momenta have been symmetrized and averaged
accordingly in order to improve counting statistics. Intensities
are presented in absolute scattering cross sections by using the
incoherent elastic scattering of the sample for normalization
(Fig. S2, [44,48]). To best visualize the phonon cross sections,
we present coherent scattering signals from the sample only,
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whereas intensities arising from incoherent scattering of the
sample and from the aluminum sample holders have been
subtracted as background (see more details in Sec. III in
Ref. [44]).

B. Fitted-force-constant model

The phonon force constant matrices of CoSi and MnSi
were calculated with the Vienna ab initio simulation package
(VASP) [49–53] using the DFPT method. The calculations
were done with the Perdew-Burke-Ernzerhof (PBE)-type
exchange-correlation functional, under the generalized gra-
dient approximation (GGA) [54]. The kinetic energy cutoff
was set to 400 eV. Integrations over the Brillouin zone were
performed with Monkhorst-Pack Q-point grids (equivalent to
12 × 12 × 12 grid for CoSi and 15 × 15 × 15 grid for MnSi).
Lattice constants and atomic positions were relaxed until
residual forces drop below 0.001 eV/Å. The relaxed lattice
constants were 4.35 Å for CoSi and 4.42 Å for MnSi, which
are slightly smaller than our experimental values, 4.43 ± 0.02
Å for CoSi and 4.56 ± 0.01 Å for MnSi. After obtaining
the band dispersion ω(Q), the coherent dynamical structure
factors S (s)

coh(Q, ω) for all vibration modes (s) were written
as [35,36,55]

S (s)
coh(Q, ω) = (2π )3

V0

∑
G,q

|F (s)
coh(Q)|2

2ω(s)(q)

× δ(Q − q − G)δ(ω − ω(s)(q)),

F (s)
coh(Q) =

∑
d

bd,coh√
md

Q · ξ
(s)
d (q)eiQ·rd , (1)

where Q = q + G is the total momentum transfer with G
being a reciprocal lattice vector, V0 is the total volume, and
md , rd , bd,coh, ξ

(s)
d (q) denote the mass, position, coherent

scattering length, and eigenvector (see Eqs. 4.26 and 4.28 in
Ref. [35]) of the dth atom in the unit cell.

Notably, the original DFPT results have deviations from
the INS data, including a global rescaling in energies,
slight distortions in the dispersions and scattering intensity
(Fig. S4 [44]). Such deviations may stem from inaccuracy
in the calculated crystal structure and force constants, or the
correlation effects. A more accurate model description of the
phonon bands can be obtained by performing parametric fits
on the leading force constants while discarding the weaker
interactions. The energy values of all phonon branches at
high-symmetry points �, X, M, R are extracted from experi-
ment spectra (Table S1 [44]) and used as fitting benchmarks.
With about ten pairwise interactions, our model reproduces
features in the experimental dispersions and intensities with
satisfactory accuracy over many BZs (Fig. S4 [44]). All model
calculation results in the main text are obtained with the opti-
mized parameters listed in Table S2.

III. DISPERSION AND TOPOLOGICAL BAND CROSSING

To begin, we present in Figs. 1(b) and 1(c) represen-
tative INS spectra of MnSi and CoSi, respectively, along
high-symmetry lines in the irreducible Brillouin zone (BZ)
[Fig. 1(d)]. A wealth of phonon scattering signals are ob-

served. The strong contaminations below 10 meV originate
from multiple scattering, since they only appear with specific
incident neutron energy and geometry (see Fig. S5 [44]).
Some residual aluminum scattering signals are also observed
below 20 meV due to energy-dependent absorption [44]. They
are more evident in the CoSi spectrum [Fig. 1(c)] than in
MnSi because cobalt has a larger neutron absorption cross sec-
tion [55]. Overall, the phonon INS signals compare favorably
with our model calculations in Figs. 1(e) and 1(f). The model
for MnSi is particularly satisfactory. This suggests that our
fitted-force-constant model provides an adequate representa-
tion of the phonons.

Having established the model describing the phonon spec-
trum, we now zoom into the topological band crossings. We
start from the � point at the BZ center. According to group
theoretical analysis, phonons at the � point are irreducible
representations of the tetrahedral T (23) point group: � =
2A + 2E + 6T , where A, E , and T represent singly, doubly,
and triply degenerated modes, respectively. Importantly, all
threefold degenerate phonon band crossings at the � point
form spin-1 Weyl points protected by the point-group sym-
metry [22], and all twofold degenerate phonons are quadruple
Weyl points protected by the extra time-reversal symmetry
T [41,56]. We have additionally verified the irreducible rep-
resentations of the BZ-center phonons using polarized Raman
spectroscopy (Fig. S6 [44]).

Based on the above information, we zoom into the spin-1
Weyl point at the highest energy (52.5 meV) in CoSi. The INS
intensities along a R-�-R momentum trajectory are displayed
in Fig. 2(a). This band crossing has relatively large dispersion
velocities and is far away from other bands, yet, the fact that
a total of three branches are involved in the crossing makes
them challenging to resolve experimentally. By making en-
ergy line cuts and fitting the intensity profiles systematically
[Fig. 2(b)], we find that the INS data do support a crossing
of three bands. For comparison, fitting the spectra obtained
symmetrically away from � with only two or fewer peaks does
not yield a consistent description (Fig. S7(a) [44]). Similar
energy line cuts along a M-�-M trajectory (Fig. S8) also agree
with the existence of gapless three bands crossing at � point
(52.5 meV). We thus conclude that the spin-1 Weyl point is
present at � point in CoSi. In MnSi, however, all threefold
degenerate modes at the � point are too close in energy to
other phonon branches, precluding a similar analysis.

We next turn to the R point at the BZ corner, where all
band crossings are fourfold degenerate charge-2 Dirac points
protected by the crystallographic and T symmetries [22].
Here, a charge-2 Dirac point is the direct sum of two iden-
tical spin-1/2 Weyl points. Because the bands remain twofold
degenerate along the RX and RM directions, we expect to
observe only two linearly dispersing branches along these
directions, which can be regarded as a key signature of the
Dirac points. INS spectra consistent with such understand-
ing are displayed near 41 meV for MnSi and 52 meV for
CoSi in Figs. 2(c) and 2(e), respectively. The band crossings
are also reproduced in our model calculations [Figs. 2(d)
and 2(f)]. Energy cuts at a series of successive Q positions
[Fig. 2(e)] further confirm the approximate linear band cross-
ing [Fig. 2(g)], and a similar case for CoSi is displayed in
Fig. S7(b) [44]. For MnSi, the fitted-force-constant model also
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FIG. 2. (a) INS spectra near a spin-1 Weyl point in CoSi, plotted along a R − � − R trajectory. Colored dashed lines correspond to energy
cuts in (b), which are fitted with a sum of Gaussian profiles on a linear background, by assuming a total of one and three peak(s) at and away
from the � point, respectively, and under the constraint that equivalent q positions must have the same energies and peak widths. (c) and
(d) Phonon intensities from INS experiment and the fitted-force-constant model, respectively, plotted along a X − R − X trajectory near a
charge-2 Dirac point in CoSi. (e) and (f) Similar to (c) and (d), but for MnSi and along an M − R − M trajectory. (g) Energy cuts at a series of
Q points using the same data as in (e) and (f). The INS and fitted model calculated data are displayed by circles and dashed lines, respectively.
Open squares denote peak positions estimated from two-peak fits to the data (the fits are not shown), which form an approximate linear band
crossing. Data in (b) and (g) are offset for clarity.

quite accurately accounts for the scattering cross sections, as
seen from the colored dashed lines in Fig. 2(g), which actually
represent model calculated intensities rather than peak fitting.
This quantitative agreement suggests that it is possible to use
the intensity information, from the experiment and/or the
calculation, to elucidate the Chern number of a topological
band crossing, which is our next subject.

IV. DETECTION OF CHERN NUMBERS BY NEUTRON
SCATTERING

A. General theoretical scheme for twofold Weyl points

In this section, we will derive the explicit relation among
phonon eigenvectors, Chern numbers, and the INS dynamical
structure factor, using low-energy effective models near topo-
logical band crossing points. We will first present theoretical
considerations for twofold Weyl points. Then, we will use the
general formulism in our specific analyses of fourfold charge-
2 Dirac points (2× twofold Weyl points) and quadruple Weyl
points.

To begin with, for a twofold Weyl point, the effective
Hamiltonian can be written as a 2 × 2 Hermitian matrix

H2×2(q) =
∑

i=x,y,z

fi(q) · σi + f0(q)σ0, (2)

where q is momentum measured from the Weyl point and σi

are the Pauli matrices. In this notation, the eigenvector of one
of the bands (e.g., the upper band) is represented by a spinor
ξup(q) = (ψ1(q), ψ2(q))T. We can further define a pseudospin
quantity S(q) whose components are

Si(q) ≡ fi(q)

|f (q)| = 〈ξ up|σi|ξ up〉, (3)

whose direction is represented by a point on the Bloch sphere
SB. If we consider a surface Sq enclosing the Weyl point in
momentum space, on which a gap always exists between the
upper and lower bands, a wrapping number can be used to
characterize the mapping from Sq to SB. This number is the
Chern number ±C of the Weyl node [41], which does not
depend on the shape of Sq. Specifically, S(q) will take every
possible direction on SB at least |C| times as q moves around
Sq. We will see examples of this in Figs. 3(b) and 4(a).

Next, we show that the pseudospin texture S(q) can leave
distinct signatures in the INS dynamical structure factors.
As we can see from Eq. (1), the dynamic structure factor
S (s)

coh(Q, ω) is sensitive to the inner product of ξ
(s)
d (q) and

Q. Taking acoustic phonons for example, the INS intensity
vanishes if the polarization vector ξ (same for all atoms for
acoustic phonons) lies perpendicular to Q, and reaches maxi-
mum when the two vectors are parallel. For optical branches,
similar conclusions are obtained by generalizing the real-
space polarization vectors to abstract phonon eigenvectors in
the Hilbert space. In the close vicinity of a Weyl node, assum-
ing that |Q| � |q| and |q| � 2π/a, so that Q ≈ G, the only
fast varying term in the formula is the phonon eigenvector
ξup(q). Using the pseudospin quantities, it is straightforward
to show that the INS intensity of the upper band is approxi-
mately [44]

Sup
coh(Q, ω) ∝ |V|(1 + cos〈S(q), V(G)〉), (4)

where V(G) is a constant vector that does not sensitively
depend on q but varies between BZs, and 〈S, V〉 is the angle
between two vectors. Both the pseudospin S and the vector
V are vectors in the effective two-band Hilbert space, which
ultimately represent certain lattice vibration modes. It then
becomes clear that the INS intensity is related to a projection
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FIG. 3. (a) Phonon dispersions near the charge-2 Dirac point at
29.6 meV in MnSi. Solid color indicates energy integration range
(30–32 meV). (b) Pseudospin texture on a q sphere enclosing the
R point. Color indicates energy-integrated INS intensities near Q =
(2.5, 2.5, 2.5). (c) INS intensity along the red circle

	

ABA in (b),
fitted with a cosine function (red line, see text). (d) and (e) INS
intensities averaged over solid q spheres enclosing (2.5, 2.5, 2.5)
and (2.5, 3.5, 3.5) respectively, with a radius of 0.2 r.l.u. and a cone-
smoothing width of ±20◦. (e) and (f) Fitted-force-constant model
calculations according to Eq. (4), for the same q spheres as in (d) and
(e), respectively.

of S(q) along V. In particular, Sup
coh(Q, ω) would reach maxi-

mum when S(q) and V are parallel, and vanish when they are
antiparallel.

Combining Eq. (4) with our former arguments about the
wrapping (Chern) number, we come to the following explicit
statement: On a momentum surface Sq that encloses the Weyl
node, there are at least |C| momenta where pseudospin S
is parallel to V, where the INS intensity of the upper band
Sup

coh(Q, ω) reaches maximum. Similarly, there are also at
least |C| momenta where the intensity reaches zero. In most
practical cases where the lowest-order k · p theory holds, the
total numbers of maxima and zeros are simply |C|. The ap-
proximation of Q = q + G ≈ G can also be released since Q
has trivial topology on the surface Sq as long as the origin
of Q is not enclosed. In summary, a Weyl node serves as
a singular point of the pseudospin in momentum space, and
the contrasting INS intensity distribution around it reveals its
Chern number.

B. Charge-2 Dirac point

Now that we have linked the pseudospin texture with the
INS intensity distribution, we next use it to analyze the charge-
2 Dirac point in the phonon bands of MSi at the R point
of the BZ. Although being fourfold degenerate, the effective

FIG. 4. (a) The pseudospin texture on a q sphere enclosing �,
with the colors indicating the magnitude of Sz component. The orien-
tations of S at eight diagonal directions are marked especially by blue
and red arrows, showing tetrahedral symmetry. (b) Sz component
of the pseudospin as a function of polar and azimuthal angles on
the sphere. (c) Simulated INS intensity near Q = (2, 4, 3), showing
similar patterns to (b) since V is almost in the z direction. All
simulations are done with |q| = 0.05 r.l.u. and for the upper band
near the 40.1 meV band-crossing point in MnSi.

Hamiltonian near the band crossing H4(q) ∝ (q · σ 0
0 q · σ) is

the direct sum of that of two identical spin-1/2 Weyl points,
each with Chern number C = ±1 [22]. The general relation
between pseudospin and INS intensity can be easily general-
ized in this case with only minor modifications [44]. Namely,
as long as the INS intensities of the two upper bands are
considered as a whole, there will be exactly one maximum
and one minimum on the enclosing Sq, i.e., resembling that of
a regular spin-1/2 Weyl point. The only difference is an extra
constant term in the intensity, so that the minimum is finite
rather than zero [44].

For a concrete example, we inspect the INS intensities near
a charge-2 Dirac point (at the BZ R point) at about 29.6 meV
in MnSi. The phonon dispersion nearby is schematically
shown in Fig. 3(a). On a small q sphere around the R point,
the pseudospin texture is visualized in Fig. 3(b), where purple
arrows indicate the pseudospin directions S(q). The outward
hedgehog configuration of the arrows indicates that S(q) takes
every direction once on the Bloch sphere, corresponding to
Chern number |C| = 1.

From an experimental perspective, a q sphere as small as
possible should be used to extract the INS intensity, in order
to avoid an overlap with neighboring bands. But the sphere
cannot be too small or thin, as otherwise the counting statistics
would be too low. In our case, we find that binning INS
data over a finite solid sphere produces satisfactory results, as
the intensity modulations around topological nodes are robust
and only weakly depends on the magnitude of |q| (Fig. S10
in [44]). In Fig. 3(d), intensities integrated over [30, 32] meV
around R = (2.5, 2.5, 2.5) are displayed as a function of the
polar and azimuthal angles. The radius of the solid sphere is
set to be 0.2 reciprocal lattice units (r.l.u.), and the displayed
intensity at each angle represents the average over a cone
volume within a 20◦ half-apex angle.
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The above INS result agrees nicely with our fitted-force-
constant model calculations [Fig. 3(f)]. To rationalize their
characteristics with our effective model in Eq. (4), we note
that due to the threefold rotational symmetry, the vector V for
the Dirac point at R = (2.5, 2.5, 2.5) is along the [111] direc-
tion. Consequently, the intensity will reach its maximum and
minimum along the [111] and [1̄1̄1̄] directions (or vice versa).

Moreover, on a great circle
	

ABA [red dashed lines in Figs. 3(b)
and 3(d)] that passes through the [111] and [1̄1̄1̄] directions,
the intensity is expected to have a cosine dependence, which
we also confirm experimentally [Fig. 3(c)].

Besides for the R point (2.5, 2.5, 2.5) where the symmetry
is high, the same analysis can be performed at other R points,
such as (2.5, 3.5, 3.5). The results [Figs. 3(e) and 3(g)] show
that the extrema are no longer located along the diagonal
direction, due to the different orientation of V. Nevertheless,
the fact that the intensity exhibits one minimum and one max-
imum indicates that the underlying Chern number is |C| = 1.

C. Quadruple Weyl point

We further explore the quadruple Weyl points at the �

point, which are protected by time-reversal symmetry T =
Kσx and have an unusual Chern number of ±4. The effec-
tive phonon Hamiltonian near the band crossing point can be
written as [41]

H2×2(q) = −
(

Aqxqyqz B
(
q2

x + ωq2
y + ω2q2

z

)
B
(
q2

x + ω2q2
y + ωq2

z

) −Aqxqyqz

)
,

(5)

where ω = exp(−2π i/3), and A and B are real constants. We
have omitted the kinetic energy term f0(q) that has nothing
to do with the band topology. The pseudospin texture S(q)
around the quadruple Weyl point is shown in Fig. 4(a). The
Sz component of the pseudospin is illustrated by the colors on
the spherical q surface in Fig. 4(a) and plotted on a flat map in
Fig. 4(b). The direction of S(q) is almost always in the qxqy

plane except near [111] and equivalent diagonal directions.
As indicated by the blue and red arrows in Fig. 4(a), the eight
diagonal directions can be subdivided into two tetrahedron-
vertex sets with opposite Sz, and the total wrapping number
(Chern number) is |C| = 4.

An experimentally unfavorable aspect of the quadruple
Weyl point is in the weak dispersion—the energy splitting
between the two bands only increases as a quadratic (in most
directions) or even a cubic (along [111] and its equivalents)
function of q. This makes it difficult to separately measure
S (Q, ω) of one of the bands. Moreover, all the quadruple
Weyl points in MnSi and CoSi turn out to be close to other
phonon branches. With the energy resolution of our INS ex-
periment, it is not possible to extract the pseudospin texture
of the quadruple Weyl points from the INS data. Nevertheless,
our fitted-force-contants phonon model has no such resolution
limits. In Fig. 4(c), we calculate S (Q, ω) of the upper band
of the quadruple Weyl point at 40.1 meV in MnSi, on a
0.05 r.l.u. |q| sphere surrounding � = (2, 4, 3). The BZ center
(2, 4, 3) is chosen because the V vector lies very close to the z
direction, such that the INS intensities on the q sphere exhibit
a similar distribution as the Sz component in Fig. 4(b), with

four maxima and four minima approximately along the 〈111〉
diagonal directions. This virtual measurement suggests that
INS has in principle the capability to reveal the pseudospin’s
wrapping behavior (and hence the Chern number) associated
with the novel quadruple Weyl points. It can be realized in
experiments with higher resolution and/or in materials where
the quadruple Weyl points are far away from other phonons.

V. DISCUSSION AND CONCLUSION

Our study demonstrates the capability of INS to mea-
sure Chern numbers of topological phonon band crossing.
While scattering intensity varies with momentum even for
nontopological bands, the unique spectroscopic characteris-
tics of Weyl and Dirac points lie in the fact that they are
singular points for eigenvectors, hence the intensity distri-
bution around them exhibits abrupt variations: Even on an
infinitely small enclosing momentum surface, the intensity
modulations around the topological nodes are still present,
whereas in the case of topologically trivial band crossings,
the intensity distribution would approach a constant as the
enclosing surface shrinks into a point. To provide a concrete
example, simulated INS intensities around a trivial two-band
crossing in MnSi are presented in Fig. S10 [44]. The intensity
variations gradually disappear upon shrinking the q surface, in
sharp contrast with the robust modulations around topological
nodes. Consequently, in order to determine Chern numbers
from INS experiments, it is better to study the close vicinity of
the band crossing points, i.e., using a small q surface to both
avoid other bands and ensure that the intensity modulations
arise solely from the topology. We also note that the inten-
sity modulations we discuss here are universal for twofold
phonon Weyl points of any Chern number, as well as for some
of the fourfold Dirac points. For other types of topological
band crossings, e.g., the spin-1 Weyl points, similar abrupt
intensity changes are also expected to occur because the Weyl
points are still singularities of pseudospin texture, but it is
unclear at this point whether our method for analyzing two-
band crossing has useful multiband counterparts. According
to group theory [56], phonon Weyl points exist in crystals
of certain space groups, and they can be found at specific
high-symmetry points in the BZ. As long as they are far away
from other bands and have a relatively large group velocity,
intensity modulations can be observable by INS.

The detection of wave functions (or, vibrational eigenvec-
tors) is not restricted to INS experiments on phonons, and
it can be a common capability of many spectroscopic meth-
ods. In polarization-dependent angle-resolved photoemission
spectroscopy (ARPES), changes in the signal intensity have
been suggested to reflect the wave functions of Dirac elec-
trons [57]. Related measurements have also been proposed
for resonant inelastic x-ray scattering (RIXS) [58]. While the
wave-function texture of the quasiparticles is at the origin
of all the spectroscopic observables, the specific interactions
between the experimental probes and the quasiparticles may
add further complexity to the interpretation of experiments.
For instance, INS measurements of phonons involve neutron
collisions with nuclei, giving rise to the Q · ξ term in the
scattering cross section; and because Q uniquely determines
V in Eq. (4), the associated projection of ξ always allows for

224304-6



CHERN NUMBERS OF TOPOLOGICAL PHONON BAND … PHYSICAL REVIEW B 106, 224304 (2022)

the determination of the Chern number. On the contrary, for
magnon bands, dipole-dipole interactions between neutrons
and magnetic moments lead to a Q × (Q × S) term in the
cross section, and the component of S parallel to Q is missing
from the detection. As a result, the number of extrema in
the intensity modulation on an enclosing momentum surface
may change between different choices of the measurement
BZ, rendering it necessary to have extra knowledge about the
magnetic system in order to correctly infer the topological
invariant. In the cases of ARPES and RIXS, complexity may
arise because the different polarization channels have to be
considered together. We note that the very same materials
(MnSi and CoSi) could potentially be good model systems
for such APRES measurements because they also possess
multiple topological band crossings in their electronic bands
with different Chern numbers [59–61]. To this end, our INS
measurement of phonons may be regarded as a demonstration
of principles that motivates further studies.

Lastly, we discuss the possibility of manipulating phonon
band topology with external tuning. In MnSi and CoSi, the
multiple Weyl points are protected by crystalline symmetries
and are sensitive to symmetry-breaking external fields such
as the strains. For example, a [111]-uniaxial strain breaks the
quadruple Weyl point into four single Weyl points. However,
it remains challenging to open a full gap between the two
bands and to make the gap topological. The former is because
a Weyl point can only be gapped by annihilation with another
oppositely charged Weyl point, and the latter is because the
topological classification is trivial for all bosonic gaps with
the presence of time-reversal symmetry. Therefore, a topo-
logical phonon gap would require a density-wave order that
folds the positive and negative Weyl points together, plus
magnetism that couples to the phonons. Besides altering the
crystal structure (e.g., with strain), a practical approach is
to break time-reversal symmetry with an external magnetic
field or magnetic order. In such cases, degeneracies at some
high-symmetric points might be lifted, e.g., the charge-2 Dirac
points might split into two spin-1/2 Weyl points, and the
quadruple Weyl points might split into two single bands. MnSi

actually develops a spiral magnetic order below 29.5 K [62].
However, we do not observe any evident topological band
splitting at T = 4 K (Fig. S9 [44]), possibly because the mag-
netoelastic coupling is too weak. Therefore, we conclude that
studying symmetry-breaking effects on phonon band topology
is hardly feasible in MnSi and CoSi, but the idea might be
worthwhile to try in other materials.

In conclusion, we have performed a comprehensive study
on the topological phonon band crossings in MnSi and CoSi.
Both the band dispersions and the coherent dynamical struc-
ture factors are experimentally resolved with high precision,
yielding results that compare well with model calculations.
The existence of spin-1 Weyl points and charge-2 Dirac points
in the phonon bands are verified by the measured dispersions.
Combining experiments and model calculations, we further
demonstrate the capability of INS for unambiguously deter-
mining Chern numbers of band crossing nodes. Our general
theoretical scheme based on effective Hamiltonians suggests
that related methods can be used in the study of other topolog-
ical quasiparticles, as well as other spectroscopic methods.
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M. Soljačić, Experimental observation of Weyl points, Science
349, 622 (2015).

[17] M. Xiao, W.-J. Chen, W.-Y. He, and C. T. Chan, Synthetic gauge
flux and Weyl points in acoustic systems, Nature Phys. 11, 920
(2015).

[18] H. Ge, X. Ni, Y. Tian, S. K. Gupta, M.-H. Lu, X. Lin, W.-D.
Huang, C. T. Chan, and Y.-F. Chen, Experimental Observation
of Acoustic Weyl Points and Topological Surface States, Phys.
Rev. Appl. 10, 014017 (2018).

[19] S. A. Skirlo, L. Lu, Y. Igarashi, Q. Yan, J. Joannopoulos, and M.
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